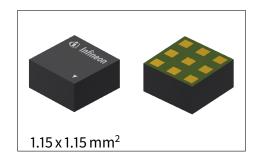


SP2T Low Noise Amplifier Multiplexer Module with Bypass

Features

• Wideband operating frequencies: 703 - 960 MHz

• Insertion power gain: 13.3 dB

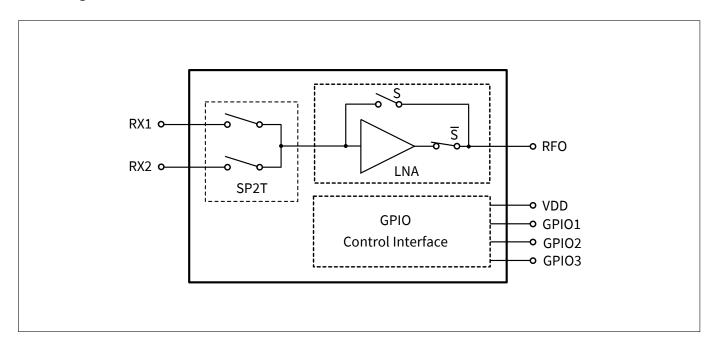

• Insertion loss in bypass mode: 3.2 dB

• Ultra low noise figure: 0.7 dB

• Low current consumption: 5.2 mA

• Multi-state control: OFF-, Bypass- and Gain-Mode

• Small ATSLP leadless package


Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Application

The LTE data rate can be significantly improved by using the LNA Multiplexer Module (LMM). The integrated bypass function increases the overall system dynamic range and leads to more flexibility in the front-end. In high gain mode the LMM offers best Noise Figure to ensure high data rates even on the LTE cell edge. Closer to the basestation the bypass mode can be activated reducing current consumption. Thanks to the GPIO control interface, control lines are reduced to a minimum. Up to two 3GPP LTE bands in the low-band can be controlled and dynamically amplified with one Low Noise Amplifier. This reduces PCB area and system cost.

Block diagram

Data Sheet www.infineon.com

SP2T Low Noise Amplifier Multiplexer Module with Bypass

Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Maximum Ratings	3
3	DC Characteristics	4
4	RF Characteristics	4
5	GPIO Specification	5
6	Application Information	6
7	Package Information	8

1

SP2T Low Noise Amplifier Multiplexer Module with Bypass

Features

1 Features

• Power gain: 13.3 dB

• Ultra low noise figure: 0.7 dB

• Low current consumption: 5.2 mA

• Wideband frequency range from 703 to 960 MHz

• RF output internally matched to 50 Ω

• High port-to-port-isolation

• Suitable for LTE / LTE-Advanced and 3G applications

• No decoupling capacitors required if no DC applied on RF lines

• On chip control logic including ESD protection

• Supply voltage: 1.6 to 3.1 V

• General Purpose Input-Output (GPIO) Interface

• Small form factor 1.15 mm x 1.15 mm

• High EMI robustness

• RoHS and WEEE compliant package

Description

The BGM12LBA9 is a LNA multiplexer module for LTE Low-band frequencies that increases the data rate while keeping flexibility and low footprint. It is a perfect solution for multimode handsets for 3G, 4G and Carrier Aggregation. The device configuration is shown in Fig. 1.

Product Name	Marking	Package	
BGM12LBA9	2L	ATSLP-9-1	

SP2T Low Noise Amplifier Multiplexer Module with Bypass

Maximum Ratings

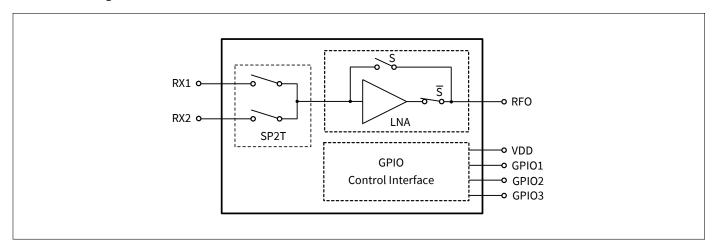


Figure 1: BGM12LBA9 Block diagram

2 Maximum Ratings

Table 1: Maximum Ratings

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Supply Voltage VDD	V_{DD}	0.3	_	3.6	٧	1
Voltage at RF pins Rx	V _{Rx}	-0.3	_	0.9	٧	_
Voltage at RF output pin RFO	V_{RFO}	-0.3	_	V _{DD} + 0.3	٧	_
Voltage at GND pins	V_{GND}	-0.3	_	0.3	٧	_
Current into pin VDD	I _{DD}	_	-	16	mA	_
RF input power	P _{IN}	_	-	0	dBm	_
Total power dissipation	P _{tot}	-	-	60	mW	_
Junction temperature	T _J	_	-	150	°C	-
Ambient temperature range	T _A	-30	-	85	°C	_
Storage temperature range	T _{STG}	-55	_	150	°C	-
ESD capability, HBM	V _{ESD_HBM}	-2000	_	2000	٧	2

¹All voltages refer to GND-Nodes unless otherwise noted

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

 $^{^2}$ Human Body Model ANSI/ESDA/JEDEC JS-001-2014 (R = $1.5~\mathrm{k}\Omega$, C = $100~\mathrm{pF}$).

SP2T Low Noise Amplifier Multiplexer Module with Bypass

RF Characteristics

3 DC Characteristics

Table 3: DC Characteristics at $T_{\rm A}$ = 25 $^{\circ}$ C

Parameter ¹	Symbol		Values			Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V_{DD}	1.6	2.8	3.1	V	-	
		_	5.2	6.7	mA	ON Mode	
Supply Current	I _{DD}	-	325	375	μA	Bypass Mode	
		-	0.1	2	μΑ	OFF Mode	

¹Based on the application described in Chapter 6

4 RF Characteristics

Table 4: RF Characteristics in ON Mode at T_A = 25 °C, V_{DD} = 2.8 V, not used RX ports terminated with 50 Ohm

Parameter	Symbol Values				Unit	Note / Test Condition	
		Min.	Тур.	Max.	1		
Insertion power gain	$ S_{21} ^2$	11.8	13.3	14.8	dB	f = 830 MHz	
Noise figure, $Z_S = 50 \Omega$	NF	_	0.7	1.3	dB	f = 830 MHz	
Input return loss	RLin	10	20	-	dB	f = 830 MHz	
Output return loss	RLout	7	10	-	dB	f = 830 MHz	
Reverse isolation RFO to RX port	1/ S ₁₂ ²	16	21	-	dB	f = 830 MHz	
Isolation RX to RX port	ISO	33	38	-	dB	f = 830 MHz	
Isolation RX to RFO port	ISO	17	22	-	dB	f = 830 MHz	
Inband input 1dB-compression	IP _{1dB}	-10	-6	-	dBm	f = 830 MHz	
point							
Inband input 3 rd -order intercept	IIP3	-1	4	-	dBm	$f_1 = 830 \text{ MHz}, f_2 = f_1 + 1 \text{ MHz}$	
point ¹							
Stability	k	>1	_	_		f = 20 MHz - 10 GHz	

 $^{^{1}}$ Input power = -30 dBm for each tone

SP2T Low Noise Amplifier Multiplexer Module with Bypass

GPIO Specification

Table 5: RF Characteristics in Bypass Mode at $T_{\rm A}$ = 25 °C, $V_{\rm DD}$ = 2.8 V, not used RX ports terminated with 50 Ohm

Parameter	Symbol		Values			Note / Test Condition	
		Min.	Тур.	Max.			
Insertion power gain	$ S_{21} ^2$	-4.2	-3.2	-2.2	dB	f = 830 MHz	
Noise figure, $Z_S = 50 \Omega$	NF	_	3.2	4.2	dB	f = 830 MHz	
Input return loss	RLin	4	7	_	dB	f = 830 MHz	
Output return loss	RLout	3	5	_	dB	f = 830 MHz	
Inband input 1dB-compression	IP _{1dB}	2	6	_	dBm	f = 830 MHz	
point							
Inband input 3 rd -order intercept	IIP ₃	12	17	_	dBm	$f_1 = 830 \text{ MHz}, f_2 = f_1 + 1 \text{ MHz}$	
point ¹							
Transient time between ON	t _S	_	1	3	μs		
mode and Bypass mode							
Phase discontinuity between	_	-6	_	6	° Part to part variation		
ON mode and Bypass mode						pensation in Base Band with	
						constant value	

 $^{^{1}}$ Input power = -15 dBm for each tone

5 GPIO Specification

Table 6: Modes of Operation (Truth Table)

		Control Inputs					
State	Mode	GPI01	GPIO2	GPI03			
1	Off	0	0	0			
2	RX2 Bypass	0	0	1			
3	RX1 Bypass	0	1	1			
4	Off	1	0	0			
5	RX2 On	1	0	1			
6	RX1 On	1	1	1			

Application Information

6 Application Information

Pin Configuration and Function

Figure 2: BGM12LBA9 Pin Configuration (top view)

Table 7: Pin Definition and Function

Pin No.	Name	Function
1	GPIO2	Control pin 2
2	VDD	Power supply
3	RFO	RF output port
4	GPIO1	Control pin 1
5	GPIO3	Control pin 3
6	NC	Not connected
7	RX2 ¹	RF input port 2
8	RX1 ¹	RF input port 1
9	GND	Ground

¹ Need to be terminated with 50 Ohm if not used

Application Information

Application Board Configuration

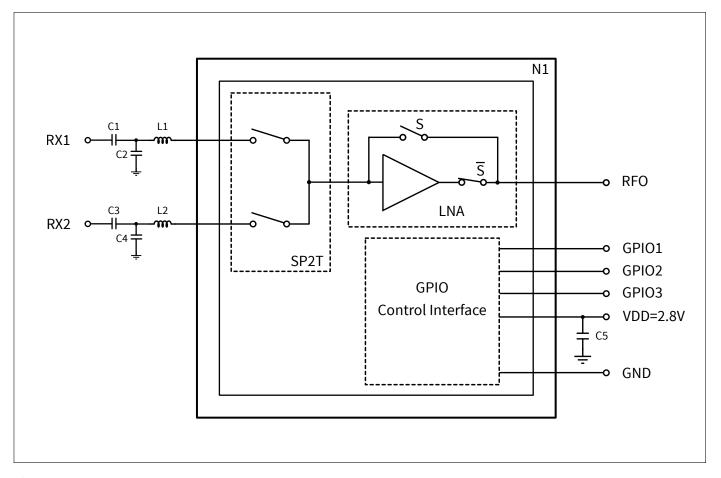


Figure 3: BGM12LBA9 Application Schematic

Table 8: Bill of Materials Table

Name	Value	Package	Manufacturer	Function
C1	1nF	0402	Various	DC block
C2	1pF	0402	Various	Input matching ¹
C3	1nF	0402	Various	DC block
C4	1pF	0402	Various	Input matching ¹
C5	≥ 10nF	0402	Various	RF Bypass ²
L1	16nH	0402	Murata LQW15 type	Input matching ¹
L2	16nH	0402	Murata LQW15 type	Input matching ¹
N1	BGM12LBA9	ATSLP-9-1	Infineon	LNA Multiplexer Module

¹The matching elements must be optimized with reference to the frequency band of interest. Each band can be arbitrarily assigned to an RF port.

 $^{^2\}mbox{RF}$ by pass recommended to mitigate power supply noise.

Package Information

7 Package Information

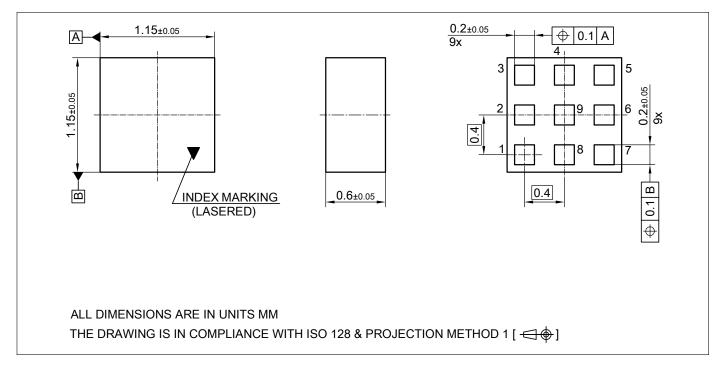


Figure 4: ATSLP-9-1 Package Outline (top, side and bottom views)

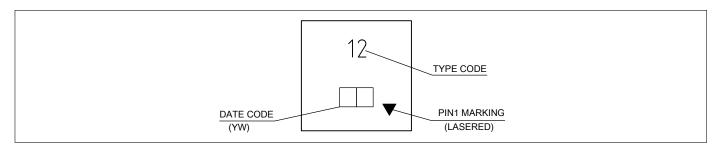


Figure 5: Marking Specification (top view)

SP2T Low Noise Amplifier Multiplexer Module with Bypass

Package Information

Table 9: Year date code marking - digit "Y"

			_	0	
Year	"Y"	Year	"Y"	Year	"Y"
2000	0	2010	0	2020	0
2001	1	2011	1	2021	1
2002	2	2012	2	2022	2
2003	3	2013	3	2023	3
2004	4	2014	4	2024	4
2005	5	2015	5	2025	5
2006	6	2016	6	2026	6
2007	7	2017	7	2027	7
2008	8	2018	8	2028	8
2009	9	2019	9	2029	9

Table 10: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	Α	12	N	23	4	34	h	45	v
2	В	13	Р	24	5	35	j	46	x
3	С	14	Q	25	6	36	k	47	у
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	Т	28	b	39	р	50	9
7	G	18	U	29	С	40	q	51	2
8	н	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	S	53	M
10	K	21	Υ	32	f	43	t		
11	L	22	Z	33	g	44	u		

SP2T Low Noise Amplifier Multiplexer Module with Bypass

Package Information

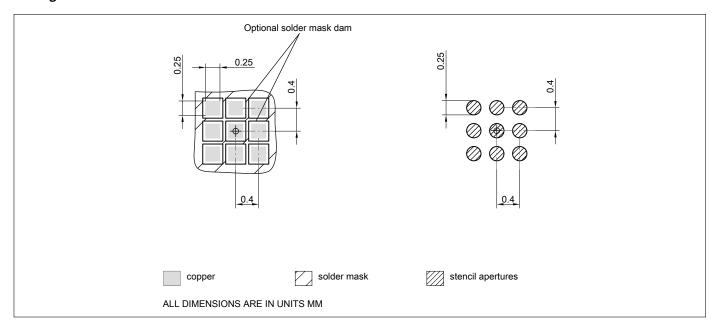


Figure 6: Footprint Recommendation

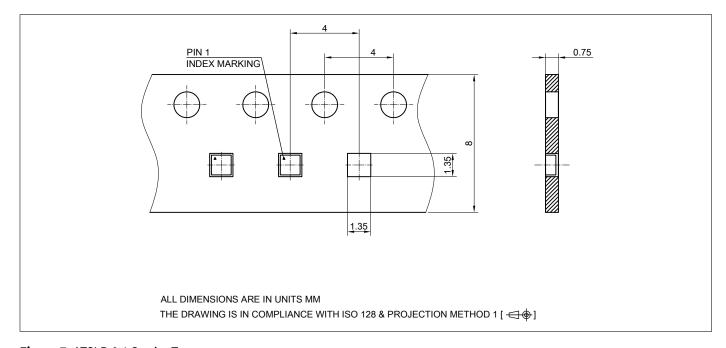


Figure 7: ATSLP-9-1 Carrier Tape

Revision History							
Previous Revision 2.0 - 2016-10-19							
Page or Item	Subjects (major changes since previous revision)						
Revision 3.1, 2017-11-09							
2	Final marking added						
3	Maximum ratings comment updated						
3	ESD capability updated						
4	DC characteristics updated						
4-5	RF characteristics updated						
5	1dB-compression point for bypass mode added						
6	Footnote updated in Table 7						
7	Application schematic drawing updated						
7	Bill of materials table updated						
8	Package outline drawing updated						
8	Marking specification added						
9	Date code description added in Tables 9 and 10						
10	Footprint recommendation drawing updated						
10	Carrier tape drawing added						

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-11-09 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BGM12LBA9E6327XTSA1