

EVAL-M1-IM323 user guide

iMotion™ modular application design kit

About this document

Scope and purpose

This user guide provides an overview of the evaluation board EVAL-M1-IM323 including its main features, key data, pin assignments, and mechanical dimensions.

This evaluation board has been developed to provide initial support to customers in designing motor drive applications for major home appliances such as air conditioners, pumps, fans, and other variable-speed drives.

The EVAL-M1-IM323 is part of the iMOTION[™] modular application design kit (MADK). Together with a control board equipped with the M1 20-pin interface connector, such as the EVAL-M1-101T, it features and demonstrates the Infineon CIPOS[™] Tiny intelligent power module (IPM) technology and advanced motion control engine (MCE 2.0) technology for permanent magnet motor drives. EVAL-M1-IM323 is based on the IM323-L6Gx CIPOS[™] Tiny IPM. The IM323-L6Gx is designed to control 3-phase AC motors and permanent magnet motors in variable-speed drives. It works with a voltage of 600 V and provides a current rating of 15 A.

Intended audience

This user guide is intended for all technical specialists who know motor control and low-power electronic converters. The evaluation board is intended to be used under laboratory conditions.

Evaluation Board

This evaluation board is to be used during the design-in process for evaluating and measuring characteristic curves, and for checking datasheet specifications.

Note: PCB and auxiliary circuits are NOT optimized for final customer design.

Figure 1 The iMotion[™] MADK evaluation board for IM323-L6Gx CIPOS[™] Tiny IPM

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

EVAL-M1-IM323 user guide iMotionTM modular application design kit

Safety precautions

Safety precautions

Note:

Please note the following warnings regarding the hazards associated with development systems.

Table 1	Safety precautions
	Warning: The DC link potential of this board is up to 400 V _{DC} . When measuring voltage waveforms by oscilloscope, high voltage differential probes must be used. Failure to do so may result in personal injury or death.
	Warning: The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
	Warning: The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
	Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.
	Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.
	Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.
	Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.
	Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.
	Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

About	t this document	1
Safet	y precautions	3
Table	of contents	4
1	The board at a glance	5
1.1	Scope of supply	5
1.2	Block diagram	5
1.3	Main features	7
1.4	Board parameters and technical data	7
2	System and functional description	10
2.1	Getting started	10
2.2	Description of functional blocks	15
2.2.1	Overview of IM323-L6Gx	15
2.2.2	Overview of ICE5AR4770BZS	17
2.2.3	Motor external current feedback configuration and calculation	17
3	System design	19
3.1.1	EMI filter and soft power-up circuit	19
3.1.2	Inverter section using CIPOS™ Tiny IPM	19
3.1.3	Auxiliary power supply	20
3.2	Layout	21
3.3	Bill of material	24
3.4	Connector details	31
3.5	Test points	32
4	System performance	34
4.1	Input voltage range test	34
4.2	Bus capacitors and V_{DC} ripple	35
4.3	Output current and PWM frequency range test	36
4.4	Case temperature of IPM vs. output power and V_{TH}	38
4.5	Heat sink thermal resistance test result	40
4.6	Auxiliary power supply	41
4.7	Inrush current test	43
4.8	Overcurrent protection (OCP)	44
4.9	Short-protection	46
4.10	Overvoltage protection (OVP)	48
4.11	EMC test	49
4.12	Surge test	51
4.13	Electrical fast transient (EFT) test	51
Acron	nyms	53
Refer	ences	55
Revis	ion history	56
Discla	aimer	57

1 The board at a glance

The EVAL-M1-IM323 evaluation power board is part of the iMOTION[™] modular application design kit for motor drives (iMOTION[™] MADK). The MADK platform is intended to be used with various power stages and different control boards. The EVAL-M1-IM323 can be easily connected to a control board such as the EVAL-M1-101T through the 20-pin iMOTION[™] MADK M1 connector. The EVAL-M1-101T control board is designed to control a single motor.

The EVAL-M1-IM323 is available through regular Infineon distribution partners and through Infineon's website. This user guide details the features of the evaluation board (Section 1.3) and provides information on how customers can copy, modify, and qualify the design for production according to their specific requirements.

Environmental conditions were considered in the design of the EVAL-M1-IM323, but the evaluation board is not qualified, in terms of safety requirements, for manufacturing and operation over the entire operating temperature range or lifetime. The boards provided by Infineon are subjected to functional testing only.

The evaluation boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN), and product discontinuation (PD). Evaluation boards are intended to be used under laboratory conditions by technical specialists only.

1.1 Scope of supply

The EVAL-M1-IM323 evaluation board is designed to provide an easy-to-use power stage based on Infineon's CIPOS[™] Tiny intelligent power module (IPM) IM323-L6Gx.

The delivery includes the finished evaluation board as shown in Figure 1. It provides a single-phase AC-input connector, an EMI filter, an input rectifier, DC bus capacitors, and a 3-phase output to connect the motor. It also contains:

- A CoolSET[™] based auxiliary power supply to provide output of 15 V and 3.3 V
- Emitter shunts for current sensing and overcurrent protection
- A voltage divider for DC-link voltage measurement

The evaluation board shown in Figure 1 can be operated directly with the required power supply without additional components.

1.2 Block diagram

The block diagram of the EVAL-M1-IM323 board is shown in Figure 2.

The board at a glance

Figure 2 Block diagram of the EVAL-M1-IM323 evaluation board

Figure 3 shows the top-side functional groups of the EVAL-M1-IM323 board.

Figure 3 Top-side functional groups of the EVAL-M1-IM323 evaluation design

Figure 4 shows the bottom-side design of the EVAL-M1-IM323 board.

Figure 4 Evaluation design of the EVAL-M1-IM323, bottom-side

1.3 Main features

The EVAL-M1-IM323 evaluation board, combined in a kit, with one of the available MADK control boards has the following features:

- Input voltage 165 V_{AC} to 265 V_{AC}
- Maximum 12 A input current at 165 V_{AC}
- Maximum 1500 W motor power output at 220 V_{AC}
- Inrush current limiter for circuit protection
- On-board EMI filter and pass EMI standards EN55032
- Auxiliary power supply with 15 V, 3.3 V
- Overcurrent hardware protection and over temperature protection
- Sensing of DC-link voltage
- Thermistor output
- Temperature controlled cooling fan speed adjustment
- PCB size is 180 mm × 140 mm, two layers with 1 oz. copper
- RoHS compliant

1.4 Board parameters and technical data

Table 2 lists the important specifications of the EVAL-M1-IM323.

Parameter	Symbol	Conditions	Value	Unit		
Input						
Input voltage	V _{AC}	Lower AC input, less motor power output	165 - 265	V _{rms}		

Table 2Parameters

EVAL-M1-IM323 user guide iMotionTM modular application design kit

The board at a glance

Parameter	Symbol	Conditions	Value	Unit
Input current	I _{AC(max1)}	Input 265 V_{AC} , f_{PWM} = 6 kHz, T_A = 29°C, T_C = 90°C, with heat sink	8.72	A _{rms}
	I _{AC(max2)}	Input 165 V_{AC} , f_{PWM} = 6 kHz, T_A = 29°C, T_C = 90°C, with heat sink	12.59	A _{rms}
Output				
Power (3-phase)	P _{out(max)}	Input 165 V_{AC} , $f_{PWM} = 6$ kHz, $T_A = 29$ °C, $T_c = 90$ °C, with heat sink	1400	W
Current per leg	l _{out(max)}	Input 165 V_{AC} , $f_{PWM} = 6$ kHz, $T_A = 29^{\circ}$ C, $T_C = 90^{\circ}$ C, with heat sink	7.788	A _{rms}
DC bus				
Maximum DC-bus voltage	$V_{\text{DC(max)}}$	AC input 265 V _{rms}	355	V
Minimum DC-bus voltage	V _{DC(min)}	AC input 165 V _{rms}	208	V
Current feedback				
Shunt resistance	RS1, RS2, RS3	Leg shunt	30	mΩ

The board at a glance

Parameter	Symbol	Conditions	Value	Unit
Protections				
Overcurrent protectionI OCPConfigured by changing shunt resistors RS1, RS2, and RS3 for current sensing		21.5 1	A_{peak}	
Auxiliary power supply				
Voltage circuit (VCC) voltage output	V _{cc}	Used for IPM power supply	15 ±5%	V
VCC current output	I _{vcc}	Used for IPM power supply	100	mA
3.3 V voltage output	V _{3.3 V}	Used for IMC101T controller and protection circuits	3.3 ±2%	V
3.3 V current output	I _{3.3 V}	Used for IMC101T controller and protection circuits	200	mA
PCB characteristics				
Dimension		Length × width	180×140	Mm
Material		FR4, 1.6 mm thickness, 1 oz. PCB		
System environment				
Ambient temperature	T _A		29	°C

¹ For iMOTION[™] IC IMCxxx, there are three types of gatekill input source options in the MCEWizard setup: gatekill-pin, comparator, and both. If you select the "comparator" mode, the external gatekill signal will not be used, and the signals I_U+/I_V+/I_W+ will be compared by the internal comparator with the "Device overcurrent trigger level setting" value set in the MCEWizard.

2 System and functional description

2.1 Getting started

To run the motor system, a combination of iMOTION[™] MADK power board (EVAL-M1-IM323) and a matching MADK control board (EVAL-M1-101T or other control board) is required. This chapter provides information on setting up the system and getting started with the iMOTION[™] MADK development platform.

EVAL-M1-IM323 evaluation boards are tested with EVAL-M1-101T control boards that are shipped with embedded firmware and default parameters.

Note: If you use the EVAL-M1-101T board as a controller, remove resistor R2 (4.7 k) from this evaluation board. The EVAL-M1-IM323 evaluation board contains a pull-up resistor R21 with the recommended 18 k. This improves the temperature behavior of the IM323-L6GX.

The following actions must be performed to achieve a usable motor controller IC from a blank IMC101T:

- Programming the motion control engine (MCE)
- Programming the parameter sets for system and motor
- Programming customer scripts (optional)
- Programming the combined file for an integrated system (optional)

The iMOTION[™] software tools—MCEDesigner and MCEWizard—are required for initial system setup, and to control and fine-tune the system performance to match the user's exact needs. These tools can be downloaded from the <u>Infineon website</u>. Please visit this page periodically to check for tools and software updates.

An iMOTION[™] link or an on-board USB-to-UART cable is needed to bridge the PC/debugger side and the motor drive system (on the target iMOTION[™] device, hot side) with a 1 kV DC galvanic isolation.

Figure 5 shows the basic system connection using the EVAL-M1-IM323 board to run a 3000 W GK6081-6AC31 motor with MCEDesigner. Refer to the MCEWizard and MCEDesigner documentation for more information.

Figure 5 Example of the system connection

EVAL-M1-IM323 user guide iMotionTM modular application design kit System and functional description

Figure 6 MCEWizard's welcome page

After downloading and installing the MCEWizard and MCEDesigner, follow these steps to run the motor:

- 1. Connect the EVAL-M1-101T control board to the EVAL-M1-IM323 evaluation board. Then, connect the PC-USB connector to the EVAL-M1-101T control board.
- 2. Connect the 220 V AC power supply and the UVW outputs to the motor.
- 3. In the MCEWizard, enter the system and operating parameters of the target motor, and the hardware parameters of the evaluation board. This data is used for calculating the digital parameter set of the controller, representing the complete motor drive system.
- 4. After setting the system and operating parameters, go to the Verify & Save page and click Calculate Parameters. If no errors are reported, save the drive parameter set into your project directory by clicking Export to MCEDesigner file (.txt) (see Figure 7); if an error message appears, double-click the error message (highlighted in RED) and adjust the erroneous parameters. This drive-system parameter file is later used by the MCEDesigner (step 9.)
- Note: Refer to the MCEWizard_V2.3.0.0 User Guide.pdf for details. This guide is available in the MCE Wizard's installation path.

System and functional description

Figure 7 MCEWizard's Verify & Save page

- 5. Turn on the 220 V AC power supply, LED 1 and 2 turn red.
- 6. Start the MCEDesigner tool and click File > Open to open the MCEDesigner default configuration file (.irc) for the IMC101T device (IMC101T_Vxxx.irc.)

(The IMC101T_Vxxx.irc file is included in the downloaded IMC101T MCE software package.)

- 7. The MCEDesigner should automatically connect to the EVAL-M1-101T board using the default COM port (indicated by a green circle next to the "COMx Up" status in the bottom frame of the MCEDesigner GUI). If the connection cannot be established due to an incorrect COM port, change the COM port by following these steps:
 - a) Open the System Page window.
 - b) Click Preferences > Connection > Connect using.
 - c) Choose one of the other available COM ports from the drop-down list.
- 8. In case of a blank IC: If the firmware has been erased from the IMC101T, a warning message will pop up (see Figure 8)—"Target device firmware and parameters files are not programmed! Please program firmware and parameters file." See step 9 on how to obtain/program firmware and parameters.

MCEDesigner	×
target device firmare and parameters files are not pro Please program firmare and parameters files.	grammed!
	ОК

Figure 8 MCEDesigner warning message

- 9. In case of a blank IC: To program the firmware and the parameters file into the internal Flash memory of the iMOTION[™] Control IC, follow these steps:
 - a) Open the System Page.

EVAL-M1-IM323 user guide iMotionTM modular application design kit

System and functional description

- b) Click **Tools** > **Programmer** and select Program Firmware and Parameters, as shown in Figure 9. The encrypted firmware is available in the IMC101T MCE Software Package. For the parameters file, browse and select the .txt file generated in step 4. If the IMC101T IC is blank, the MCEDesigner will generate a pop-up message—"Target device firmware and parameter files are not programmed!"
- c) Program the MCE firmware and system parameters into the internal Flash memory of the iMOTION™ IC by selecting Tools > Programmer from the pull-down menu, and then selecting the Program Firmware and Parameter check box.
- d) Select the right parameter file and firmware file.
- e) Click **Start** to program the firmware and parameter.
- f) Click **YES** and then **OK** to update the IRC file with the parameter file.
- g) Click Save As to save the IRC file with a file name that contains the COM config, parameters, and firmware file path information.

Note:

Refer to the MCEDesigner User Guide.pdf and the MCEDesigner_V2.3.0.0 Application Guide.pdf (available in MCEDesigner's install path) for details.

After the programming is complete, the red LED1 on EVAL-M1-101T will flash on.

Program IMC controller	?	×
Information DLL Version: V1.03.01 Release Time: 2019-11-26 Connection Port 0	OM308	
Operation Options Program Parameters Program Firmware and Parameters Program Script P	am Combined F	File
File		
Program Parameter File M1-IM323 test\Debugge-Legshunt\GK6081\V0.2\EVAL-M1-IM323-V0.2-16k.	Brows	e
Program Firmware File C:\Users\mliu1\Documents\iMOTION2.0\MC101T-T038\IMC101T-T038_A	Brows	e
Program Script File	Brows	в
Program Combined File	Brows	e
Start	Can	cel

Figure 9 MCEDesigner's program page

- 10. Double-click the **VF Diagnostic** function in the motor1 page and monitor the motor current with an oscilloscope. If the motor current is not sinusoidal, change the target speed and Vd_Ext in VF Diagnostic sub-function, then double-click VF Diagnostic again. Repeat until the oscilloscope shows a steady sinusoidal current with an amplitude that is 30–50% of the motor rate current.
- 11. Open System Page > Monitor Definitions and double-click I_u & I_v_Slow. The motor current feedback should be clean and sinusoidal, as shown in Figure 10. If not, please tune the Gating Propagation Delay & Phase Shift Window Size in the MCEWizard. The sampled motor-current noise amplitude should be less than 50-100 counts (below 5% of the motor current or below 5% of the maximum AD (Analog to Digital converter) range, which is 2048 counts.) If not, the motor current sample-related hardware and the setup need tuning. The VF Diagnostic sub-function can verify whether the:
 - Motor is correctly connected
 - IGBT/MOS and gate driver work as expected
 - Parameters related to current-sensing are correctly configured 0

- PCB layout and DC bus decoupling has been done correctly
- 12. After the VF Diagnostic is complete, click **STOP** (the red traffic light button) to stop the PWM (Pulse Width Modulation).

Figure 10 Trace waveform for $I_u \& I_v$ open loop diagnostic

- 13. Click the green traffic light button in the control bar to start the motor or double-click **Start Motor** subfunction in the Motor1 page - group of User Application Function Definitions; motor runs when the above step functions properly.
- 14. Check the motor-spin direction, adjust the UVW connection order, or set negative target speed in the MCEDesigner if the direction is wrong.
- 15. Set the target speed to about 50% of the maximum speed and start the I_u & Flx_M trace with Auto Repeat on Level Mode (see Figure 11.) Flx_M is better within the range of 2000 to 2500 (rated value is 2048), and must be steady and DC-like.

Some key tips for better motor-performance tuning are:

- If Flx_M is not steady (i.e. swinging or oscillating), double check the motor parameters, speed loop Propotional-Intergra (PI) gain, flux estimator time constant, and the setup related to the PLL PI bandwidth (parameters PLLKp and PLLKi)
- If Flx_M is noisy, double check the current feedback, and the hardware and parameters related to V_{DC}
- If Flx_M is far from 2048, adjust the Motor Back EMF Constant (Ke) in the MCEWizard

Figure 11 Trace waveform for I_u & Flx-M at 50% speed

16. To program a new parameter file after the firmware has been programmed, follow the instructions given in step 9. In such cases, firmware programming is not needed and the first option—Program Parameters can be selected.

Note: For detailed information on controller programming, refer to the Application Note AN2018-33 iMOTION™ 2.0 Device Programming, and the documentation for the MCEDesigner and MCEWizard.

2.2 Description of functional blocks

The motor inverter in the EVAL-M1-IM323 evaluation design is implemented using the CIPOS[™] Tiny IPM IM323-L6Gx, and the auxiliary power supply is based on the fixed-frequency CoolSET[™] ICE5AR4770BZS.

2.2.1 Overview of IM323-L6Gx

The CIPOS[™] Tiny IPM IM323 product group enables the integration of various power and control components to increase reliability, optimize PCB size, and reduce system costs. It is designed to control 3-phase AC motors and permanent-magnet motors in variable speed drives for applications such as air conditioners and refrigerators.

The package concept is especially adapted to power applications that need good thermal conduction, electrical isolation, EMI-save control, and overload protection. The integrated reverse-conducting IGBTs are combined with an optimized silicon on insulator (SOI) gate driver for excellent electrical performance.

Figure 12 shows the internal block diagram of the CIPOS™ Tiny IPM IM323-L6Gx.

EVAL-M1-IM323 user guide iMotionTM modular application design kit System and functional description

Its main features include:

- A 600 V reverse conducting, RCD2 IGBT
- A rugged SOI gate driver technology with stability against transient and negative voltage
- An allowable negative V_S potential up to -11 V for signal transmission at V_{BS} = 15 V
- An integrated bootstrap functionality
- An overcurrent shutdown mechanism
- A built-in NTC thermistor for temperature monitoring
- Undervoltage lockout at all channels
- Low-side emitter pins accessible for phase current monitoring (open emitter)
- A sleep function
- Cross-conduction prevention
- All six switches turn off during protection

Figure 12 Internal block of the IM323-L6Gx

System and functional description

Overview of ICE5AR4770BZS 2.2.2

The ICE5AR4770BZS is a 5th generation, fixed-frequency integrated power IC (CoolSET[™]) that offers high performance and integration with the 700 V avalanche rugged CoolMOS[™] MOSFET technology controller chip in a PG-DIP-7 package.

Figure 13 shows its internal block diagram and typical isolated flyback application.

Internal block of ICE5AR4770BZS and typical application in an isolated flyback mode Figure 13

Main features of the ICE5AR4770BZS include:

- A maximum switching frequency of 100 kHz with a 700 V integrated MOSFET
- Power delivery of up to 15 W with a universal wide input range (85 300 V_{AC}) DCM design •
- Brown-in protection, fast and robust start-up operation with cascode configuration •
- 3-level selectable entry/exit active-burst mode profile (optional) •
- A built-in digital soft start •
- Cycle-by-cycle peak current limitation •
- Support for both DCM and CCM operations with slope compensation •
- An integrated error amplifier to support direct feedback, typically with non-isolated flyback topology •
- Digital frequency reduction with decreased load for higher efficiency •
- Frequency jitters and soft gate driving for low EMI •
- Limited charging current for the V_{cc} pin short-to-ground •
- Comprehensive protection against Vcc overvoltage, Vcc undervoltage, overload/open loop, and • overtemperature
- Auto-restart for all protection features

Motor external current feedback configuration and calculation 2.2.3

As shown in Figure 14, the current input value is a product of the shunt resistance in milliohms and the gain of the external current-sense amplifier of the EVAL-M1-101T.

EVAL-M1-IM323 user guide iMotionTM modular application design kit

System and functional description

Figure 14 Current shunt feedback and sample timing for EVAL-M1-101T

The external gain-amplifier circuit can be found in the schematics or user manual for the control board (e.g. EVAL-M1-101T.)

Figure 15 shows the I_U+ current feedback-sensing circuity on the EVAL-M1-101T evaluation board. Please note that the default external amplification gain is less than 1 for the current-sense in this evaluation board.

Figure 15 Iu+ current feedback-sensing circuity on the EVAL-M1-101T evaluation board

Based on the principle of Kirchhoff's voltage law:

$$V_{2} \approx V_{1} \approx (V_{DD} - I_{sh} * R_{sh}) * \frac{R_{7}}{R_{6} + R_{7}} + I_{sh} * R_{sh} = \frac{R_{7}}{R_{6} + R_{7}} V_{DD} + \frac{R_{6}}{R_{6} + R_{7}} R_{sh} * I_{sh}$$

current input = $\frac{R_{6}}{R_{6} + R_{7}} R_{sh} = \frac{5}{6} R_{sh}$

Based on this calculation, the current input for the MADK combination in EVAL-M1-101T and EVAL-M1-IM323 is 25 mV/A.

The EVAL-M1-IM323 board is an optimized design for 220 V small home appliances like conditioner, pump, and fan applications. To meet individual customer requirements, and to make the EVAL-M1-IM323 evaluation design a basis for development or modification, all board design data such as schematics, Gerber, and AD files can be found on Infineon's website.

3.1.1 EMI filter and soft power-up circuit

Figure 16 shows the schematic from the AC input connector X1 to the rectified DC bus voltage. This circuitry includes a passive EMI filter consisting of elements X2, Y2 capacitors and common-mode inductor, a 35 A/800 V rectifier bridge D1, a fuse F1 for circuit protection, a PTC resistor R1, and a relay K1 for soft powering up and reducing conduction losses in the steady state.

Figure 16 Schematics for EMI filter and a soft power-up circuit

3.1.2 Inverter section using CIPOS[™] Tiny IPM

The inverter section is implemented using the CIPOS[™] Tiny IPM as shown in Figure 17. The module includes a combination of an optimized reverse-conducting IGBT Gen 2 (RCD2), and industry-benchmark rugged halfbridge drivers. The shunt resistor section is also given in the inverter section, including the 0 Ω resistors R46 and R47. These resistors allow leg shunt or single shunt through different combinations. The three capacitors C7, C13, and C15 are used as bootstrap capacitors to provide the necessary floating supply voltages VBS1, VBS2, and VBS3 respectively.

Figure 17 Schematics for the IM323-L6Gx IPM and peripheral circuit

3.1.3 Auxiliary power supply

Figure 18 shows the schematic of the auxiliary power supply for the EVAL-M1-IM323 board. The circuit includes the latest CoolSET[™] 5 (ICE5AR4770BZS) from Infineon and a flyback topology with direct output of 15 V and 7 V. The VCC is connected to the gate drivers inside the CIPOS[™] IPM.

Figure 18 Auxiliary power supply of the EVAL-M1-IM323

EVAL-M1-IM323 user guide iMotionTM modular application design kit

System design

The linear voltage regulator IFX25001ME V33 generates 3.3 V from a 7 V power supply VCC. The 3.3 V power supply is used in the inverter's external overcurrent comparator circuit. Both VCC and 3.3 V are also present on the 20-pin iMOTION™ MADK-M1 interface connector X3 to power the circuitry on the control board.

3.2 Layout

The EVAL-M1-IM323 board has two electrical layers with 140 μ m copper (1 oz. copper) and dimension 180 mm x 140 mm. The thickness of the PCB board is 1.6 mm. Figure 19 to 22 shows the assembly prints and layers of the EVAL-M1-IM323.

Figure 19 Top-assembly print of the EVAL-M1-IM323

Figure 20 Bottom-assembly print of the EVAL-M1-IM323

Figure 21 Top layer of the EVAL-M1-IM323

Figure 22 Bottom layer of the EVAL-M1-IM323

Bill of material 3.3

The complete bill of material can be downloaded (a customer login is required) from the Download section on the homepage of Infineon's website.

Table 3	BOM of the r	evaluation board			
S. No.	Ref Designator	ef Designator Description		Manufacturer P/N	
1	C1, C12	CAP / FILM / 470nF / 630 V / 10% / MKT (Metallized Polyester) / -40°C to 85°C / 22.50 mm C x 0.80 mm W 26.00 mm L X 9.00 mm T X 19.00 mm H / THT / -	Wurth Elektronik	890303426008CS	
2	C2, C3, C4	CAP / ELCO / 680 μF / 450 V / 20% / Aluminiumelectrolytic / -25°C to 105°C / 10.00 mm Pitch x 35.00 mm Dia x 59.00 mm H / - / -	Wurth Elektronik	861141486026	

Table 3	BOM of the most im	portant/critical	parts of the eva	luation board
			p	

S. No.	Ref Designator	Description	Manufacturer	Manufacturer P/N
3	C5	CAP / CERA / 10 μF / 25 V / 10% / X5R (EIA) / -55°C to 85°C / 1206(3216) / SMD / -		GRM31CR61E106KA12
4	C6	CAP / CERA / 10 µF / 16 V / 10% / X5R (EIA) / -55°C to 85°C / 0805(2012) / SMD / -	MuRata	GRM21BR61C106KE15
5	C7, C13, C15	CAP / CERA / 10 μF / 25 V / 10% / X7R (EIA) / -55°C to 125°C / 1206 (3216) / SMD / -	Wurth Elektronik	885012208069
6	C8, C14, C16	CAP / CERA / 100 nF / 25 V / 10% / X7R (EIA) / -55°C to 125°C / 1206(3216) / SMD / -	MuRata	GRM319R71E104KA01
7	C9, C10	CAP / CERA / 1 μF / 25 V / 5% / X7R (EIA) / -55°C to 125°C / 1206(3216) / SMD / -	MuRata	GCM31MR71E105JA37
8	C11, C52	CAP / CERA / 100 nF / 630 V / 10% / X7R (EIA) / -55°C to 125°C / 1812 / SMD / -	Wurth Elektronik	885342211006
9	C17, C18, C19, C20, C21, C22	CAP / - / 1 nF / 16 V / 10% / X7R (EIA) / - / 0805 / SMD / -	AVX	0805YC102K4T2A
10	C23	CAP / CERA / 1 nF / 25 V / 5% / - / -55°C to 125°C / 0805 (2012) / SMD / -	Wurth Elektronik	885012007040
11	C24, C46	CAP / CERA / 22 nF / 25 V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM216R71E223JA01
12	C25	CAP / CERA / 2.2 nF / 760 V / 20% / Y5U (EIA) / -30°C to 125°C / 9.50 mm C x 0.81 mm W 10.90 mm L x 5.70 mm T x 14.10 mm H / - / -	Vishay	440LD22-R
13	C26	CAP / CERA / 4.7 nF / 100 V / 5% / COG (EIA) / NP0 / -55°C to 125°C / 1206(3216) / SMD / -	MuRata	GRM3195C2A472JA01
14	C27	CAP / CERA / 470 pF / 630 V / 5% / COG (EIA) / NP0 / -55°C to 125°C / 1206(3216) / SMD / -	MuRata	GRM31A5C2J471JW01
15	C28	CAP / ELCO / 22 μF / 400 V / 20% / Aluminiumelectrolytic / -25°C to 105°C / 5.00 mm C x 0.60 mm W 10.50 mm Dia x 18.00 mm H / - / -	-	EHS2GM220G16OT
16	C29	Chip Monolithic Ceramic Capacitor	MuRata	GCM32D7U2J103JX01
17	C30, C31, C44, C48	CAP / ELCO / 220 μF / 25 V / 20% / Aluminiumelectrolytic / -40°C to	Wurth Elektronik	860020474012

S. No. Ref Designator		Description	Manufacturer	Manufacturer P/N	
		105°C / 3.50 mm C x 0.60 mm W			
		8.00 mm Dia x 13.00 mm H / - / -			
18	C32, C33	Chip Monolithic Ceramic Capacitor	MuRata	GRM31CR71E106MA12	
19	C34, C35	CAP / ELCO / 220 μF / 16 V / 20% / Aluminiumelectrolytic / -40°C to 85°C / 2.50 mm C x 0.50 mm W 6.30 mm Dia x 12.50 mm H / THT / -	Wurth Elektronik	860010373010	
20	C36	CAP / ELCO / 100 μF / 16 V / 20% / Aluminiumelectrolytic / -40°C to 85°C / 2.00 mm C x 0.50 mm W 5.00 mm Dia x 12.50 mm H / THT / -	Wurth Elektronik	860010372006	
21	C37	CAP / CERA / 100 nF / 16 V / 20% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM21BR71C104MA01	
22	C38	CAP / ELCO / 100 μF / 35 V / 20% / Aluminiumelectrolytic / -40°C to 85°C / 2.50 mm C x 0.50 mm W 6.30 mm Dia x 12.50 mm H / - / -	Wurth Elektronik	860010573007	
23	C39	Chip Monolithic Ceramic Capacitor	MuRata	GRM21BR71E104KA01	
24	C40, C41	Chip Monolithic Ceramic Capacitor	MuRata	GRM216R71E102KA01	
25	C42, C45, C47, C50	CAP / CERA / 220 nF / 25 V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM219R71E224JA01	
26	C43	CAP / CERA / 100 nF / 25 V / 10% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM219R71E104KA01	
27	C49	CAP / CERA / 100 nF / 25 V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM21BR71E104JA01	
28	C51	CAP / CERA / 1 nF / / 20% / E (JIS) / -40°C to 125°C / 7.50 mm C x 0.60 mm W 7.00 mm L x 7.00 mm T x 10.00 mm H / THT / -	MuRata	DE6E3KJ102MN3A	
29	CX1	CAP / FILM / 1 µF / 630 V / 10% / MKP (Metallized Polypropylene) / -40°C to 105°C / 22.50 mm C x 0.80 mm W 26.00 mm L x 11.00 mm T x 20.50 mm H / - / -	Wurth Elektronik	890334026027CS	
30	CX2	CAP / FILM / 2.2 μF / 630 V / 10% / MKP (Metallized Polypropylene) / -40°C to 105°C / 22.50 mm C x	Wurth Elektronik	890334026034CS	

S. No.	Ref Designator	Description	Manufacturer	Manufacturer P/N
		0.80 mm W 26.00 mm L x 15.00 mm T x 25.50 mm H / - / -		
31	CY1, CY4	CAP / CERA / 2.2 nF / / 20% / - / - 40°C to 125°C / 7.50 mm C x 0.60 mm W 9.00 mm L x 7.00 mm T x 12.00 mm H / - / -	MuRata	DE6E3KJ222MN3A
32	СҮ2, СҮ3	CAP / CERA / 3.3 nF / / 20% / E (JIS) / -40°C to 125°C / 7.50 mm C x 0.60 mm W 10.00 mm L x 7.00 mm T x 13.00 mm H / THT / -	MuRata	DE6E3KJ332MN3A
33	D1	35 Amp Glass Passivated Bridge Rectifier, 800 V	Micro Commercial Components	GBJ3508-BP
34	D2, D3	Surface Mount Fast Switching Diode	Diodes Incorporated	1N4148W-7-F
35	D4, D5, D6	Silicon Schottky Diode	Infineon Technologies	BAT60A
36	D7, D8, D10	Surface Mount Ultrafast Rectifier 1.0 A/1000 V	Vishay	US1M-E3/61T
37	D9	2.0 A/100 V, Surface Mount Schottky Power Rectifier	ON Semiconductor	MBRS2H100T3G
38	D11, D13	Surface Mount Schottky Barrier Rectifier, 60 V	Vishay	SS16HE3_B/H
39	D12	Surface Mount Ultrafast Rectifier 1.0 A/200 V	Vishay	US1D-E3/61T
40	F1	250 V _{AC} /V _{DC} , 20 A rated, Fuse with ceramic body construction permits higher interrupting ratings and voltage ratings. Ideal for applications where high current loads are expected.	Littelfuse	326020.MXP
41	FAN1	Fan Guard, for 50 mm Fan, 40 mm pitch	СИ	FG50-40
42	FAN2	DC Axial Fan for omniCOOL bearing system, 50 mm x 50 mm frame. Mulitple Speed options	CUI	CFM-5015V-138-201
43	GT1	Gas Discharge Tubes - GDTs / Gas Plasma Arrestors STANDARD 470 V NOM	Littelfuse	CG2470L
44	H1	Standard Heat sink	Infineon Technologies	HS-5050-100
45	K1	Relay, 1 Pole, Normally Open 3, 6 to 4, 5, 6 Pins	Omron	G2RL-1A-E-CV DC12
46	L1, L2	IND / STD / 7 mH / 15 A / 50% / - 40°C to 125°C / 9.5 mR / THT / Inductor, THT; 10.00 mm pitch, 4	Wurth Elektronik	7448061507

S. No.	Ref Designator	Description	Manufacturer	Manufacturer P/N
		pin, 27.00 mm W x 46.00 mm L x 46.00 mm H body / THT / -		
47	L3, L4	IND / STD / 2.2 µH / 2.5 A / 20% / - 40°C to 125°C / 71 mR / SMD / Inductor, SMD; 2-Leads, 4.50 mm L x 4 mm W x 3.50 mm H body / SMD / -	Wurth Elektronik	744773022
48	L5, L6	WE-CBF SMD EMI Suppression Ferrite Bead	Wurth Elektronik	742792118
49	L7	For Choke	MuRata	LQH55DN101M03
50	LED1	LED 3 mm Red Through Hole Lamp	LiteOn Optoelectronics	LTL-1CHEE
51	LED2, LED3	WL-SMCW SMT Mono-color Chip LED Waterclear, Green, 515 nm	Wurth Elektronik	150060GS75000
52	MP1, MP2, MP3, MP4, MP5	M3 Hexagonal Threaded Spacer, Length 11 mm	Harwin	R30-1611100
53	MP7, MP8, MP9, MP10, MP12	P7, MP8, MP9,M3 x 6 mm Pan Head, Cross HeadDuratP10, MP12Metric Screw, 5.6 mm x 2.4 mmHead, Nylon 6,6		D00687
54	Q1	30 V 154 mOhm@4.5 V MOSFET	Infineon Technologies	IRLML2030TRPbF
55	R1	PTC thermistor for overcurrent protection and as inrush current limiters	TDK Corporation	B59451C1130B070
56	R2, R7	RES / STD / 1MEG / 250 mW / 1% / 100 ppm/K / -55°C to 155°C / 1206 / SMD / -	Vishay	CRCW12061M00FK
57	R3, R4, R8, R9	3, R9 RES / STD / 499 k / 1 W / 1% / Vishay C 100 ppm/K / -55°C to 155°C / 2512 / SMD / -		CRCW2512499KFK
58	R5, R42, R44 RES / STD / 100 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / - Vishay CRCW04		CRCW0805100KFK	
59	R6	RES / STD / 51k / 250mW / 1% / 100ppm/K / -55°C to 155°C / 1206 / SMD / -	Vishay	CRCW120651K0FK
60	R12	RES / STD / 220 k / 125 mW / 1% / Vishay CR 100 ppm/K / -55°C to 155°C / 0805 / SMD / - 0		CRCW0805220KFK
61	R14, R15, R16, R17, R18, R19, R22	RES / STD / 100 R / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW0805100RFK
62	R20	RES / STD / 4.7 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW08054K70FK

S. No.	o. Ref Designator Description		Manufacturer	Manufacturer P/N
63	R21	RES / STD / 18 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW080518K0FK
64	R23	RES / STD / 1 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW08051K00FK
65	R24	RES / STD / 510 R / 250 mW / 1% / 100 ppm/K / -55°C to 155°C / 1206 / SMD / -	Vishay	CRCW1206510RFK
66	R25	RES / STD / 240 k / 250 mW / 1% / 100 ppm/K / -55°C to 155°C / 1206 / SMD / -	Vishay	CRCW1206240KFK
67	R26, R28, R30, R31	15M / 0.25 W / 5%	Yageo	RC1206JR-0715ML
68	R29	RES / STD / 15 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW080515K0FK
69	R32	Standard Thick Film Chip Resistor	Vishay	CRCW120610R0FK
70	R33, R37	RES / STD / 1.5 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW08051K50FK
71	R35, R38	RES / STD / 12 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW080512K0FK
72	R39	RES / STD / 0R / - / 0R / - / -55°C to 155°C / 2512 / SMD / -	Vishay	CRCW25120000Z0
73	R40	0 RES / STD / 2.4 k / 125 mW / 1% / Vishay 100 ppm/K / -55°C to 155°C / 0805 / SMD / -		CRCW08052K40FK
74	R41 RES / STD / 2MEG / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / - Vishay CR0		CRCW08052M00FK	
75	R43	R43 RES / STD / 62 k / 125 mW / 1% / Vishay 100 ppm/K / -55°C to 155°C / 0805 / SMD / -		CRCW080562K0FK
76	R45	RES / STD / 22 k / 125 mW / 1% / 100 ppm/K / -55°C to 155°C / 0805 / SMD / - Vishay CRCW0805		CRCW080522K0FK
77	RS1, RS2, RS3	RES / STD / 30 mR / 5 W / 1% / 75 ppm/K / -65°C to 275°C / 4527 / SMD / -	Vishay	WSR5R0300FEA
78	RS4, RS5	Standard Thick Film Chip Vishay CRCW12062R4 Resistor		CRCW12062R40FK

S. No.	o. Ref Designator Description		Manufacturer	Manufacturer P/N	
79	RV1, RV2, RV3, RV4	RES / STD / - / 600 mW / - / - / - 40°C to 85°C / 7.50 mm C x 0.80 mm W 16.50 mm L x 7.00 mm T x 20.00 mm H / - / -	Wurth Elektronik	820443011E	
80	Т1	Transformer, Turns Ratio (2- 1):(9-7)-10:1, (2-1):(4-5)-5.71:1, (2-1):(6-8)-11.43:1, Dielectric- 3000 V _{AC}	Wurth Elektronik	750344798	
81	U1	CIPOS Tiny IM323	Infineon Technologies	IM323-L6G	
82	U2	Low Dropout Voltage Regulator, 3.3 V Output	Infineon Technologies	IFX25001ME V33	
83	U3	Fixed Frequency 700 V CoolSET	Infineon Technologies	ICE5AR4770BZS	
84	U4	PLER, TRANSISTOR, 35 V, DIP-4	Wurth Elektronik	140817140010	
85	U5	Precision Programmable Reference	Texas Instruments	TL431CDBZR	
86	U6	5 1.8 A DC/DC Step-Down Voltage Infineor Regulator, Adjustable Output Techno Voltage		IFX91041EJV	
87	X1, X2	Horizontal Cable Entry Rising Cage Clamp WR-TBL,3 Pins	Wurth Elektronik	691250910003	
88	Х3	WR-PHD 2.54 mm Angled Dual Socket Header	Wurth Elektronik	613020243121	
89	X4	Male Vertical Shrouded Header, 2 Pins, 2 mm Pitch	Wurth Elektronik	62000211622	
90	X5	Test Point THT, White	Keystone Electronics Corp.	5002	
91	X6	Test Point THT, WhiteKeystone5002Electronics Corp.Electronics Corp.		5002	
92	X7	Board Mount Fuse Clips for 1/4" Littelfuse 01220055Z Diameter Fuses		01220055Z	
93	X8	Test Point THT, White Keystone 5002 Electronics Corp.		5002	
94	Х9	Test Point THT, White	Keystone Electronics Corp.	5002	
95	X10, X29	Test Point THT, White Keystone 500 Electronics Corp.		5002	
96	X11	Test Point THT, White	Keystone Electronics Corp.	5002	
97	X12	Test Point THT, White	Keystone Electronics Corp.	5002	
98	X13	Test Point THT, White	Keystone 5002 Electronics Corp.		

S. No.	Ref Designator	Description	Manufacturer	Manufacturer P/N	
99	X14	Test Point THT, WhiteKeystone5Electronics Corp.5		5002	
100	X15	X15 Test Point THT, White Ke		5002	
101	X16	Test Point THT, White	Keystone Electronics Corp.	5002	
102	X17	Test Point THT, White	Keystone Electronics Corp.	5002	
103	X18	Test Point THT, White	Keystone Electronics Corp.	5002	
104	X19	Test Point THT, White	Keystone Electronics Corp.	5002	
105	X20	Test Point THT, White	Keystone Electronics Corp.	5002	
106	X21	Test Point THT, White	Keystone Electronics Corp.	5002	
107	X22	Test Point THT, White	Keystone Electronics Corp.	5002	
108	X23	Test Point THT, White	Keystone Electronics Corp.	5002	
109	X24	Test Point THT, White	Keystone Electronics Corp.	5002	
110	X25	Test Point THT, White	Keystone Electronics Corp.	5002	
111	X26, X28	Test Point THT, White	Keystone Electronics Corp.	5002	
112	X27	Test Point THT, White	Keystone Electronics Corp.	5002	
113	X30	Test Point THT, White	Keystone Electronics Corp.	5002	
114	X31	Test Point THT, White	Keystone Electronics Corp.	5002	
115	X32	Test Point THT, White	Keystone Electronics Corp.	5002	
116	ZD1	Zener Diode with Surge Current Specification	Vishay	BZD27C22P-HE3-08	

3.4 Connector details

General information on the connectors of the EVAL-M1-IM323 board's evaluation design is provided in this section. Table 4 lists the details of the AC-input connector.

Table 4AC input connector (X1)

PIN	Label	Function
1	E	Earth ground
2	Ν	AC neutral input
3	L	AC line input

Table 5 lists the details of the motor UVW output connector X2.

Table 5Motor-side connector (X2)

PIN	Label	Function
1	U	Connected to motor phase U
2	V	Connected to motor phase V
3	W	Connected to motor phase W

Table 6 lists the pin assignments of the 20-pin iMOTION[™] MADK-M1 interface connector X3. This connector is the interface to the controller board.

PIN	Label	Function
1	PWMUH	3.3 V-compatible logic input for high-side gate driver - Phase U
2	GND	Ground
3	PWMUL	3.3 V-compatible logic input for low-side gate driver - Phase U
4	GND	GND ground
5	PWMVH	3.3 V-compatible logic input for high-side gate driver - Phase V
6	+3.3 V	Onboard 3.3 V supply
7	PWMVL	3.3 V-compatible logic input for low-side gate driver - Phase V
8	+3.3 V	Onboard 3.3 V supply
9	PWMWH	3.3 V-compatible logic input for high-side gate driver - Phase W
10	I_U	Positive current sense output
11	PWMWL	3.3 V-compatible logic input for low-side gate driver - Phase W
12	I_U-	Negative current sense output or ground
13	GK	Gatekill signal – active low when overcurrent is detected
14	DCBSense	DC bus positive voltage, scaled in 0–3.3 V range by a voltage divider
15	VTH	Thermistor output
16	I_V	Not used
17	I_V-	Not used
18	I_W	Not used
19	I_W-	Not used
20	VCC	15 V power supply

Table 6 X3 - iMOTION[™] MADK-M1 20-pin interface connector for the controller board

3.5 Test points

Table 7 lists the assignments of the on-board test points.

Table 7Test points for signal measurement

PIN	Label	Function
X4	PWMUH	3.3 V-compatible logic input for high-side gate driver - Phase U
X5	PWMUL	3.3 V-compatible logic input for low-side gate driver - Phase U
X6	PWMVH	3.3 V-compatible logic input for high-side gate driver - Phase V
X7	PWMVL	3.3 V-compatible logic input for low-side gate driver - Phase V
X8	PWMWH	3.3 V-compatible logic input for high-side gate driver - Phase W
Х9	PWMWL	3.3 V-compatible logic input for low-side gate driver - Phase W
X10	U	Inverter output, motor phase U
X11	V	Inverter output, motor phase V
X12	W	Inverter output, motor phase W
X13	DCP	DCP bus-voltage test point
X14	GND	GND test point
X15	15 V	15 V supply
X16	3.3 V	3.3 V supply
X17	SGND	SGND test point
X18	VTH	Test point for temperature sensing

4.1 Input voltage range test

Table 8 Table 1 AC input voltage range

Specification	165 V _{AC} - 265 V _{AC}
Condition	Typical PWM setup for a 6 kHz motor PWM, 3-phase only mode, motor speed = 1400 rpm, $T_A = 29^{\circ}$ C, $T_C = 90^{\circ}$ C
Conclusion	Input = 1500 W, P_{out} = 1500 W, and I_{out} = 7 A_{rms} when input voltage is in the range of 165 to 265 V_{rms}

Test Data							
Input voltage (V _{rms})	Input current (A _{rms})	DCBUS (V)	Input power (W)	Power factor	Output power (W)	Output current (A _{rms})	Test waveform
165	12.59	208	1500	0.723	1400	7.788	
220	10.56	296	1455	0.630	1380	7.535	Figure 23
265	8.723	355	1445	0.632	1371	7.420	
Legend	CH1: IAC, CH2	2: VDCBUS, CH3:	Iu, CH4: VAC				

Figure 23 Input voltage range and output

Bus capacitors and VDC ripple 4.2

Table 9 Bus capacitors and V_{DC} ripple

Specification	< 10%				
Condition	Typical PWM setup for a 6 KHz motor PWM, 3-phase only mode, motor speed = 1400 rpm, $T_A = 29^{\circ}$ C, $T_C = 90^{\circ}$ C				
Conclusion	V _{DC} ripple is 2.3 - 5.6% (8.17 V - 11.65 V) at 1500 W run (165 V _{AC} - 265 V _{AC}), motor speed = 1400 rpm				
Test Data					
Input voltage (V _{AC})	PFC DC target (V)	Ripple voltage (V)	(%)	Test waveform	
165	208	23.11	5.6	Figure 24	
220	296	19.55	3.3	Figure 25	
265	355	16.66	2.3	Figure 26	
Legend	CH1: I _{AC} , CH2: V _{DCBUS} , CH3	: Iu, CH4: V _{AC}			

Figure 24 Input voltage = 165 V

Figure 25 Input voltage = 220 V

Figure 26 Input voltage = 265 V

4.3 Output current and PWM frequency range test

Table 10	Output current and PWM range
----------	------------------------------

Specification	Output current is maximum 7 A _{rms}
Condition	$T_{A} = 29^{\circ}C, T_{C} = 90^{\circ}C$
	5 <mark>-</mark> 20 kHz PWM
	AC input voltage = 220 V/50 Hz
	GK0681 motor speed = 1400 rpm

EVAL-M1-IM323 user guide iMotionTM modular application design kit

System performance

PWM frequency	I _{AC}	P _F	lout	Pout	Tc	ΔTc	V _{TH}	V _{fan+}	Test
(kHz)	(A _{rms})		(A _{rms})	(W)	(°C)	(°C)	(V)	(V)	waveform
5	11.09	0.617	7.731	1436	86.8	57.8	1.145	14.330	
6	10.43	0.630	7.535	1381	87.7	58.7	1.142	14.366	
10	9.79	0.623	7.094	1269	87.7	58.7	1.141	14.368	Figure 27
15	9.047	0.610	6.446	1153	87.7	58.7	1.148	14.286	
20	8.43	0.606	5.997	1062	87.9	58.9	1.142	14.364	
Legend									

Figure 27 Output current for different PWM frequencies

4.4 Case temperature of IPM vs. output power and V_{TH}

Specification	Output power is maximum 1500 W
Condition	T _A = 29°C, 6 kHz PWM, AC-input voltage = 220 V/50 Hz, GK0681 motor speed = 1400 rpm

EVAL-M1-IM323 user guide iMotionTM modular application design kit System performance

Conclusion

Test Data									
PWM frequency	I _{AC}	PF	lout	Pout	Tc	ΔTc	VTH	V _{fan+}	Test
(kHz)	(A _{rms})		(A _{rms})	(W)	(°C)	(°C)	(V)	(V)	waveform
	2.330	0.507	1.298	418	37.6	8.6	2.292	3.212	
	4.327	0.553	2.686	507	45.9	16.9	2.102	5.358	
	5.887	0.572	3.854	720	53.0	24.0	1.903	7.400	
6	7.347	0.591	4.986	924	60.4	31.4	1.689	9.392	
	8.655	0.600	5.976	1094	68.0	39.0	1.501	11.072	
	9.782	0.609	6.824	1248	77.5	48.5	1.316	12.672	
	10.750	0.612	7.506	1378	87.2	58.2	1.143	14.345	
Legend									

4.5 Heat sink thermal resistance test result

To test the thermal impedance of a heat sink to the ambient $R_{TH(C-A)}$, the DC source conducts the IPM's internal diodes, as shown in Figure 28. As the DC source voltage increases, the current through IPM I_{IPM} and the voltage on IPM V_{IPM} are monitored by the current and voltage meter. The IPM case-temperature test point is between the IPM and the heat sink. It is the same as the T_c point of the inverter IGBT in the IPM datasheet.

Table 11 Table 5 Heat sink temperature vs. fan voltage

Specification	$T_{HSMax} = 90^{\circ}C \text{ at } T_A = 25^{\circ}C$
Condition	$R_{TH(J-A)} = R_{TH(J-C)} + R_{TH(J-A)}$
	$R_{TH(C-A)} = \frac{\Delta T_{CA}}{P_{tot}} = \frac{T_C - T_A}{V_{IPM} \times I_{IPM}}$
Conclusion	

	Data						
DC current	DC voltage	DC power	T _A	Tc	ΔΤ	R _{th}	Image
(A)	(V)	(W)	(°C)	(°C)	(°C)	(°C /W)	
4.080	2.562	31.4	28.7	89.9	61.2	1.9	
4.413	2.619	34.7	29.1	90.1	61.0	0.9	
4.773	2.675	38.3	29.0	89.0	60.9	0.8	
4.940	2.699	40.0	29.5	90.1	60.6	0.8	
5.260	2.748	43.4	30.0	90.1	60.1	0.7	
5.363	2.765	44.5	30.9	90.4	59.5	0.7	Figure 28
5.510	2.782	46.0	30.9	90.1	59.2	0.6	Figure 29
5.597	2.798	47.0	30.5	90.5	60.0	0.6	
5.767	2.842	49.2	30.6	90.4	59.8	0.6	
5.803	2.831	49.3	31.0	90.7	59.7	0.6	
5.887	2.853	50.4	30.4	90.6	60.2	0.6	
5.927	2.862	50.9	30.2	90.0	59.8	0.6	
Legend							

Figure 28 Heat sink thermal testing setup

Figure 29 Input voltage is 15 V

4.6 Auxiliary power supply

Table 12Auxiliary power supply

Specification	3.3 V ±2%, maximum 400 mA; 15 V ±5%, maximum 500 mA
Condition	165 <mark>-</mark> 265 V _{AC}
Conclusion	3.3 V and 15 V accuracy is less than 1%

			Test Da	ata			
AC input voltage	3.3 V	Load	Accuracy	15 V	Load	Accuracy	Test
(V)	(V)	(mA)	(%)	(V)	(mA)	(%)	waveform
	3.312	0	0.4	14.92		0.5	
	3.309	100	0.3	14.92		0.5	
	3.302	200	0.1	14.92	0	0.5	
	3.294	300	0.2	14.92		0.5	
105	3.288	400	0.4	14.92		0.5	
105	3.317	0	0.5	14.90		0.7	
	3.309	100	0.3	14.90		0.7	
	3.300	200	0	14.91	500	0.6	
	3.294	300	0.2	14.91		0.6	
	3.288	400	0.4	14.91		0.6	
	3.315	0	0.5	14.92		0.5	
	3.309	100	0.3	14.92		0.5	
220	3.305	200	0.2	14.92	0	0.5	Figure 30
	3.300	300	0	14.92		0.5	
	3.286	400	0.4	14.92		0.5	
220	3.317	0	0.5	14.90	0.7 0.7 500 0.7	0.7	
	3.308	100	0.2	14.90		0.7	
	3.302	200	0.1	14.90		0.7	
	3.294	300	0.2	14.91		0.6	
	3.287	400	0.4	14.90	0.7	0.7	
	3.315	0	0.5	14.92		0.5	
	3.312	100	0.4	14.92		0.5	
	3.303	200	0.1	14.92	0	0.5	
	3.296	300	0.1	14.92		0.5	
265	3.289	400	0.3	14.92		0.5	
205	3.316	0	0.5	14.91		0.6	
	3.311	100	0.3	14.91		0.6	
	3.302	200	0.1	14.90	500	0.7	
	3.295	300	0.2	14.91		0.6	
	3.286	400	0.4	14.91		0.6	
Legend	CH3: 3.3	V, CH4: 15 V					

3.3 V and 15 V type waveform

4.7 Inrush current test

Table 13 Inrush current

	musnicu	itent			
Specification	Max. 30	A _{peak}			
Condition	• Maxi	imum AC input volta	ge		
	• Und	er 30 A _{peak}			
Conclusion	Maximu	m current is 21.25 A _p	_{eak} when AC input voltage	equals 265 V	
			Test Data		
Ac input volta	ige	Phase angle	Max current	Test waveform	
(V _{AC})		(°C)	(A _{peak})		
		0	11.45		
220		90	13.91		
		270	13.37		

Legend	CH1: I _{AC} , CH2: V _{AC} , CH3: V _{DCBUS}					
	270	20.99				
265	90	21.25				
	0	20.996	Figure 31			
	270	13.37	Figure 21			

Figure 31 Power-off 220 V_{AC}

4.8 Overcurrent protection (OCP)

Table 14 Motor OCP (IMC101T internal comparator)

Specification	OCP point is 20 A _{peak}
Condition	 Run the motor normally and increase the torque continuously until OCP is triggered The OCP threshold is set to 21.5 A_{peak}
Conclusion	Meets OCP requirement of 20 A _{peak}

Test Data

Operating cycle	OCP current peak value	Test waveform
1	20.54	Figure 32
2	21.33	Figure 33
Legend	CH1: I _V , CH2: I _U , CH3: GK, CH4: V _{DCBUS}	

First cycle

Figure 33 Second cycle

Short-protection 4.9

Motor output short-protection Table 15

	Test date
Conclusion	ITRIP response time is 1.2 us and fault-clear time is more than 100 us
Condition	Run the motor and quickly short-circuit U and V phase
Specification	Meet IPM's 3 μs short-circuit withstand time, fault-clear time is set to minimum 100 μs

Test uata				
Operation	Phenomenon (µs)	Test waveform	n	
Short U and V phase		Figure 34		
T _{FLT}	1.2	Figure 35		
T _{ITRIP}	1.68	Figure 36		
T _{FLT-CLR}	>100	Figure 37		
Legend	CH1: I _u , CH2: V _{U_phase} , CH3: GK, CH4: ITRIP			

Figure 36 TITRIP time

4.10 Overvoltage protection (OVP)

Table 16	Overvoltage protection
----------	------------------------

Specification	Report fault at the setup OVP point
Condition	Run motor and increase input voltage
Conclusion	Overvoltage triggered as expected

Test data				
Operation		Phenomenon	Test waveform	
Set the value of Question 47 – DC bus over-voltage level in the Wizard as 360 V and run only the motor, normally. Increase the V _{AC} voltage slowly		OV fault occurred when the bus voltage was just over 360 V, and the motor stopped	Figure 38	
Legend	CH1: PWMUL, CH2: V _{DCB} , CH3: V _{DCBSENSE}	, CH4: V _{AC}		

Figure 38 **Overvoltage protection**

4.11 **EMC test**

Table 17 EMI

Specification	Compliant with IEC standards IEC-61000-4-5
Condition	Type 6 kHz PWM
Conclusion	More than 3 dB margin
	Tast data

				l est data		
Trace	Frequency	Intensity	Limit	Margin	Note	Image
	(MHz)	(dBµV)	(dBµV)	(dB)		
2 AV	0.526	41.08	46.00	-4.92		
2 AV	10.034	44.92	50.00	-5.08	Lino	Figure 20
1 PK+	10.238	56.31	60.00	-3.69		Figure 39
1 PK+	10.854	54.55	60.00	-5.45		
2 AV	0.814	41.39	46.00	-4.61		
1 PK+	9.742	54.81	60.00	-5.19	Neutral	Figure 40
1 PK+	9.822	54.81	60.00	-5.19		
Legend						

Note:

The EMI test is directly affected by the test environment and method. The results of the EMI test in this document are for reference only and not intended as the final design basis.

Figure 39 Line noise

Figure 40 **Neutral noise**

Surge test 4.12

Table 18 Surge

Specification	IEC 61000-4-5			
	Class B			
Condition	EVAL-M1-101T control board			
	• GK6063			
	• IM323-L6G			
	Lightning surge simulator LSS-6230			
	• L-N 2kV, L/N-PE 4 kV			
Conclusion	All pass			

Test data

Pulse voltage	Basic voltage (V)	Connection	Waveform	Coupling impedance	ASYNC/ SYNC Angle	Times	Pass condition	Result
2000	(*rms) 220	L-N	1.2/50.05	18 u F		5		nass
2000	220	L-N	1.2/50 μs	18 μF	SYNC 0°	5		pass
2000	220	L-N	1.2/50 µs	18 µF	SYNC 90°	5		pass
2000	220	L-N	1.2/50 μs	18μF	SYNC 180°	5		pass
2000	220	L-N	1.2/50 μs	18 µF	SYNC 270°	5		pass
2000	220	L-N	1.2/50 µs	18 µF	ASYNC	5		pass
2000	220	L-N	1.2/50 μs	18 µF	SYNC 0°	5		pass
2000	220	L-N	1.2/50 μs	18 µF	SYNC 90°	5	 No Fault No damage 	pass
2000	220	L-N	1.2/50 μs	18 µF	SYNC 180°	5		pass
2000	220	L-N	1.2/50 μs	18 µF	SYNC 270°	5		pass
4000	220	L-PE/N-PE	1.2/50 μs	9 μF + 10 Ω	ASYNC	5	components	pass
4000	220	L-PE/N-PE	1.2/50 μs	9 μF + 10 Ω	SYNC 0°	5		pass
4000	220	L-PE/N-PE	1.2/50 μs	9 μF + 10 Ω	SYNC 90°	5		pass
4000	220	L-PE/N-PE	1.2/50 μs	9 μF + 10 Ω	SYNC 180°	5		pass
4000	220	L-PE/N-PE	1.2/50 μs	9 μF + 10 Ω	SYNC 270°	5		pass
Legend		•	•	•				

Electrical fast transient (EFT) test 4.13

Table 19 EFT test				
Specification	IEC 61000-4-4 Class B			
Condition	For input connector only			
Conclusion	Pass			

		Test data		
Item	V _{peak}	Frequency	Time	Result
L-N	±2 kV	5/100 kHz	15/300 ms	Pass
L-PE	±2 kV	5/100 kHz	15/300 ms	Pass
N-PE	±2 kV	5/100 kHz	15/300 ms	Pass
Legend				

Acronyms

Table 20 A	Abbreviations			
Abbreviation	Meaning			
AC	Alternating current			
AD	Altium designer			
САР	Capacitance			
ССМ	Continuous conduction mode			
CE	Conformité Européenne			
CERA	Ceramic			
EMI	Electromagnetic interference			
EMC	Electromagnetic compatibility			
ESD	Electrostatic discharge			
EFT	Electrical fast transient			
DC	Direct current			
DCBUS	Direct current bus voltage			
DCM	Discontinuous conduction mode			
DCP	Direct current bus voltage positive			
ELCO	Electrolytic capacitor			
FILM	Film capacitor			
GUI	Graphical user interface			
GDT	Gas discharge tube			
IC	Integrated circuit			
IGBT	Insulated gate bipolar translator			
IPM	Intelligent power module			
LED	Light emitting diode			
MADK	Modular application design kit			
MCE	Motion control engine			
NTC	Negative temperature coefficient			
OCP	Overcurrent protection			
PC	Personal computer			
PCB	Printed circuit board			
PCN	Process change notification			
PD	Product discontinuation			
PE	Protect earth			
PGND	Protect ground			
PLL	Phase locking loop			
РТС	Positive temperature coefficient			
PWM	Pulse-width modulation			
RES, R	Resistor			
RMA	Returned material analysis			

Abbreviation	Meaning	
RoHS	Restriction of hazardous substances in electrical and electronic equipment	
SGND	Secondary ground	
SOI	Silicon-on-insulator	
UART	Universal asynchronous receiver/transmitter	
USB	Universal serial bus	
UVW	U phase/V phase/W phase	
VCC	Voltage circuit	

References

- [1] Infineon Technologies AG. Datasheet of Infineon IM323 (202x). V1.0 <u>www.infineon.com</u>
- [2] Infineon Technologies AG. Datasheet of Infineon IMC101T-T038 (2019). V1.4 www.infineon.com
- [3] Infineon Technologies AG. MCEWizard_V2.3.0.0 User Guide (2019) www.infineon.com
- [4] Infineon Technologies AG. MCEDesigner_V2.3.0.0 Application Guide (2019) www.infineon.com
- [5] Infineon Technologies AG. iMOTION[™] Motion Control Engine Software Reference Manual (2020) V1.3 <u>www.infineon.com</u>

Revision history

Document version	Date	Description of changes
V1.0	18-05-2022	User guide initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-15

Published by Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference UG-2021-38

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: EVALM1IM323TOBO1