

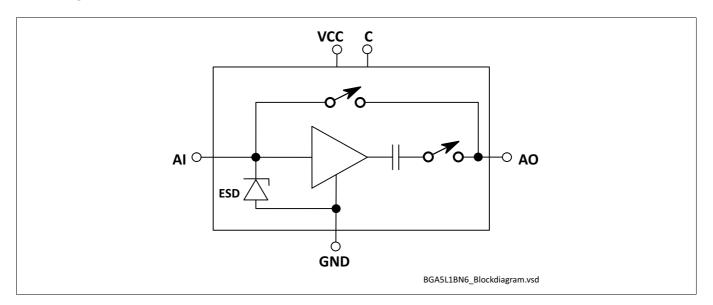
BGA5L1BN6

18dB High Gain Low Noise Amplifier for LTE Lowband

Features

- Operating frequencies: 600 1000 MHz
- Insertion power gain: 18.5 dB
- Insertion Loss in bypass mode: 2.7 dB
- Low noise figure: 0.7 dB
- Low current consumption: 8.2 mA
- Multi-state control: Bypass- and high gain-Mode
- Ultra small TSNP-6-10 leadless package
- RF output internally matched to 50 Ohm
- Low external component count

Application


The LTE data rate can be significantly improved by using the Low Noise Amplifier. The integrated bypass function increases the overall system dynamic range and leads to more flexibility in the RF front-end.

In high gain mode the LNA offers best Noise Figure to ensure high data rates even on the LTE cell edge. Closer to the basestation the bypass mode can be activated reducing current consumption.

Product Validation

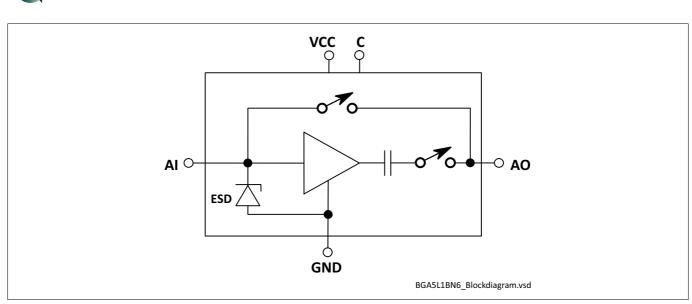
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Block diagram

Table of Contents

Table of Contents

	Table of Contents	2
1	Features	3
2	Maximum Ratings	5
3	Electrical Characteristics	6
4	Application Information	8
5	Package Information	9


Features

RoHS

1 Features

- Insertion power gain: 18.5 dB
- Insertion Loss in bypass mode: 2.7 dB
- Low noise figure: 0.7 dB
- Low current consumption: 8.2 mA
- Operating frequencies: 600 1000 MHz
- Multi-state control: Bypass- and High gain-Mode
- Supply voltage: 1.5 V to 3.6 V
- Ultra small TSNP-6-10 leadless package (footprint: 0.7 x 1.1 mm²)
- B9HF Silicon Germanium technology
- RF output internally matched to 50 Ohm
- Low external component count
- Pb-free (RoHS compliant) package

Product Name	Marking	Package
BGA5L1BN6	3	TSNP-6-10

BGA5L1BN6 18dB High Gain Low Noise Amplifier for LTE Lowband

Features

Description

The BGA5L1BN6 is a front-end low noise amplifier for LTE which covers a wide frequency range from 600 MHz to 1000 MHz. The LNA provides 18.5 dB gain and 0.7 dB noise figure at a current consumption of 8.2 mA in the application configuration described in **Chapter 4**. In bypass mode the LNA provides an insertion loss of 2.7 dB. The BGA5L1BN6 is based upon Infineon Technologies' B9HF Silicon Germanium technology. It operates from 1.5 V to 3.6 V supply voltage. The device features a single-line two-state control (Bypass- and High gain-Mode). OFF-state can be enabled by powering down VCC.

Pin Definition and Function

Pin No.	Name	Function	
1	GND	Ground	
2	VCC	DC supply	
3	AO	LNA output	
4	GND	Ground	
5	AI	LNA input	
6	С	Control	

Table 1Pin Definition and Function

Maximum Ratings

2 Maximum Ratings

Table 2Maximum Ratings

Parameter	Symbol	Symbol Values				Note or	
		Min.	Тур.	Max.		Test Condition	
Voltage at pin VCC	V _{cc}	-0.3	-	3.6	V	1)	
Voltage at pin Al	V _{AI}	-0.3	-	0.9	V	-	
Voltage at pin AO	V _{AO}	-0.3	-	V _{CC} + 0.3	V	-	
Voltage at pin C	V _C	-0.3	-	V _{CC} + 0.3	V	-	
Voltage at pin GND	V _{GND}	-0.3	-	0.3	V	-	
Current into pin VCC	I _{cc}	-	-	16	mA	-	
RF input power	P _{IN}	-	_	+25	dBm	-	
Total power dissipation, $T_{\rm S} < 148 ^{\circ}{\rm C}^{2)}$	P _{tot}	-	-	60	mW	-	
Junction temperature	TJ	-	-	150	°C	_	
Ambient temperature range	T _A	-40	-	85	°C	-	
Storage temperature range	T _{STG}	-55	-	150	°C	-	

1) All voltages refer to GND-Node unless otherwise noted

2) $T_{\rm S}$ is measured on the ground lead at the soldering point

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Electrical Characteristics

3 Electrical Characteristics

Table 3Electrical Characteristics $V_{cc} = 1.8V^{1}$

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm C,BP}$ = 1.8 V, $V_{\rm C,OFF}$ = 0 V, f = 600 - 1000 MHz

	Min.				Note or Test Condition	
17		Тур.	Max.			
V _{cc}	1.5	1.8	3.6	V	-	
V _C	1.0	_	V _{cc}	V	High gain mode	
	0	-	0.4	V	Bypass mode	
I _{cc}	-	8.2	9.7	mA	High gain mode	
	-	85	120	μA	Bypass mode	
S ₂₁ ²	17.0	18.5	20.0	dB	High gain mode	
	-3.9	-2.7	-1.5	dB	Bypass mode	
NF	-	0.7	1.2	dB	High gain mode	
	-	2.7	3.9	dB	Bypass mode	
RL _{IN}	7	10	-	dB	High gain mode	
	8	11	-	dB	Bypass mode	
RL _{OUT}	10	19	_	dB	High gain mode	
	5	8	-	dB	Bypass mode	
$1/ S_{12} ^2$	22	29	-	dB	High gain mode	
	1.5	2.7	_	dB	Bypass mode	
ts	-	3	7	μs	OFF to High gain mode	
IP _{1dB}	-24	-20	-	dBm	High gain mode	
	-2	2	-	dBm	Bypass mode	
IIP ₃	-12	-7	-	dBm	High gain mode	
	6	11	-	dBm	Bypass mode	
k	>1	-	-		f = 20 MHz 10 GHz	
	$ \begin{array}{c} I_{CC} \\ I_{CC} \\ S_{21} ^2 \\ NF \\ RL_{IN} \\ RL_{OUT} \\ I/ S_{12} ^2 \\ t_S \\ IP_{1dB} \\ IIP_3 \\ \end{array} $	$\begin{array}{c c c c c c c c } \hline 0 & & & \\ \hline 1 & & & \\ \hline \\$	$\begin{array}{ c c c c c }\hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & - & & & & \\ \hline 0 & 18.5 & & \\ \hline -3.9 & -2.7 & & \\ \hline 0 & -2 & 2.7 & \\ \hline 10 & 19 & & \\ \hline 0 & 10 & 19 & \\ \hline 5 & 8 & & \\ \hline 11 & & \\ 11 & & \\ \hline 11 & & \\ 11 &$	$\begin{array}{ c c c c c c } \hline 0 & - & 0.4 \\ \hline 0 & - & 0.4 \\ \hline 0 & - & 0.4 \\ \hline 0 & - & 8.2 & 9.7 \\ \hline - & 85 & 120 \\ \hline - & 85 & 120 \\ \hline - & 3.9 & -2.7 & -1.5 \\ \hline NF & - & 0.7 & 1.2 \\ \hline - & 2.7 & 3.9 \\ \hline P & 2.7 & 3.9 \\ \hline P & 2.7 & 3.9 \\ \hline RL_{IN} & 7 & 10 & - \\ \hline 8 & 11 & - \\ \hline 8 & 11 & - \\ \hline RL_{OUT} & 10 & 19 & - \\ \hline 5 & 8 & - \\ \hline 1/ S_{12} ^2 & 22 & 29 & - \\ \hline 1.5 & 2.7 & - \\ \hline IP_{1dB} & -24 & -20 & - \\ \hline -2 & 2 & - \\ \hline IIP_{3} & -12 & -7 & - \\ \hline 6 & 11 & - \\ \end{array}$	$\begin{array}{ c c c c c c } \hline 0 & - & 0.4 & V \\ \hline 0 & - & 8.2 & 9.7 & mA \\ \hline - & 85 & 120 & \muA \\ \hline - & 85 & 120 & \muA \\ \hline - & 85 & 120 & dB \\ \hline - & 3.9 & -2.7 & -1.5 & dB \\ \hline - & 2.7 & 3.9 & dB \\ \hline - & 2.7 & 3.9 & dB \\ \hline - & 2.7 & 3.9 & dB \\ \hline RL_{IN} & 7 & 10 & - & dB \\ \hline 8 & 11 & - & dB \\ \hline 8 & 11 & - & dB \\ \hline 8 & 11 & - & dB \\ \hline 8 & 11 & - & dB \\ \hline 1 & 19 & - & dB \\ \hline 5 & 8 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.5 & 2.7 & - & dB \\ \hline 1.7 & -2 & 2 & - & dB \\ \hline 1P_{1dB} & -24 & -20 & - & dBm \\ \hline 1P_{1} & -2 & 2 & - & dBm \\ \hline 1P_{1} & -1 & -1 & dBm \\ \hline 1P_{1} & -1 & -1 & dBm \\ \hline \end{array}$	

1) Based on the application described in **Chapter 4**

2) PCB losses are subtracted

3) Verification based on AQL; not 100% tested in production

4) Gain changed to >90% of gain difference (in dB)

5) Input power HG = -30 dBm for each tone; input power BP = -10 dBm for each tone

6) Guaranteed by device design; not tested in production

BGA5L1BN6 18dB High Gain Low Noise Amplifier for LTE Lowband

Electrical Characteristics

Table 4Electrical Characteristics $V_{cc} = 2.8V^{1}$

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm C,BP}$ = 2.8 V, $V_{\rm C,OFF}$ = 0 V, f = 600 - 1000 MHz

Parameter	Symbol		Value	S	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{cc}	1.5	2.8	3.6	V	-
Control voltages	V _C	1.0	-	V _{cc}	V	High gain mode
		0	-	0.4	V	Bypass mode
Supply current	I _{cc}	-	9.4	10.9	mA	High gain mode
		-	87	120	μA	Bypass mode
Insertion power gain	S ₂₁ ²	17.2	18.7	20.2	dB	High gain mode
f=840 MHz		-3.9	-2.7	-1.5	dB	Bypass mode
Noise figure ²⁾	NF	-	0.75	1.25	dB	High gain mode
f = 840 MHz, $Z_{\rm S}$ = 50 Ω		-	2.7	3.9	dB	Bypass mode
Input return loss ³⁾	RL _{IN}	8	11	-	dB	High gain mode
f=840 MHz		8	11	-	dB	Bypass mode
Output return loss ³⁾	RL _{OUT}	10	18	-	dB	High gain mode
f = 840 MHz		5	8	-	dB	Bypass mode
Reverse isolation ³⁾	$1/ S_{12} ^2$	22	29	-	dB	High gain mode
f = 840 MHz		1.5	2.7	-	dB	Bypass mode
Power on time ⁴⁾⁶⁾	ts	-	3	7	μs	OFF to High gain mode
Inband input 1dB-compression	IP _{1dB}	-24	-20	-	dBm	High gain mode
point, <i>f</i> = 840 MHz ³⁾		-2	2	-	dBm	Bypass mode
Inband input 3 rd -order	IIP ₃	-12	-7	-	dBm	High gain mode
intercept point ³⁾⁵⁾ f ₁ = 840 MHz, f ₂ = f ₁ +/- 1 MHz		6	11	-	dBm	Bypass mode
Stability ⁶⁾	k	>1	_	-		f = 20 MHz 10 GHz

1) Based on the application described in **Chapter 4**

2) PCB losses are subtracted

3) Verification based on AQL; not 100% tested in production

4) Gain changed to >90% of gain difference (in dB)

5) Input power HG = -30 dBm for each tone; input power BP = -10 dBm for each tone

6) Guaranteed by device design; not tested in production

Application Information

4 Application Information

Application Board Configuration

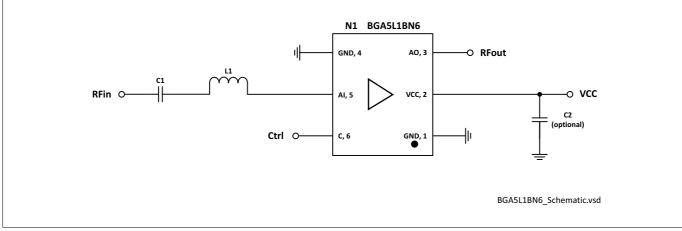


Figure 2 Application Schematic BGA5L1BN6

Table 5 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1	1nF	0402	Various	Input matching
C2 (optional)	≥1nF	0402	Various	RF bypass ¹⁾
_1	11nH	0402	Murata LQW15 type	Input matching
N1	BGA5L1BN6	TSNP-6-10	Infineon	SiGe LNA

1) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/ltelna

Package Information

5 Package Information

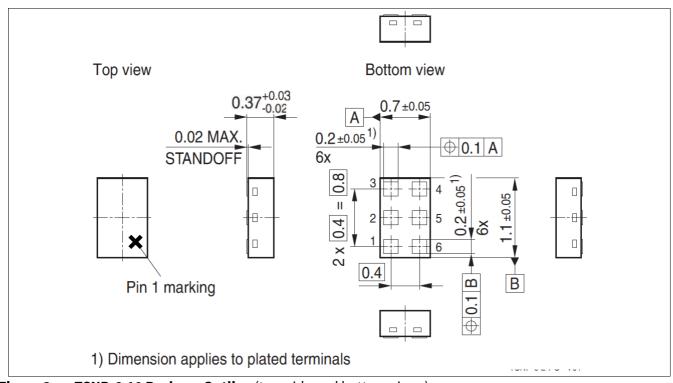
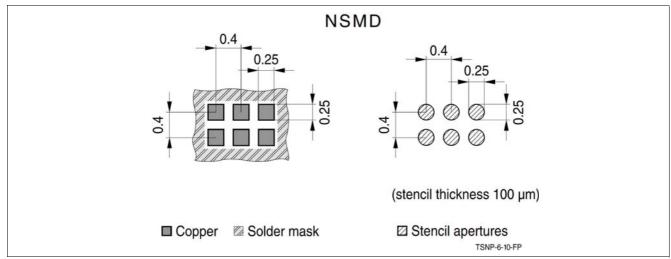



Figure 3 TSNP-6-10 Package Outline (top, side and bottom views)

Package Information

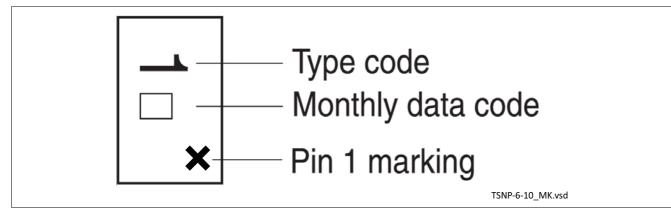


Figure 5 Marking Layout TSNP-6-10 (top view)

Month	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
01	а	р	Α	Р	а	Р	А	Р	а	Р	А	Р
02	Ь	q	В	Q	Ь	q	В	Q	Ь	q	В	Q
03	с	Г	C	R	С	Г	C	R	С	Г	C	R
04	d	s	D	S	d	s	D	S	d	s	D	S
05	e	t	E	Т	e	†	E	Т	e	†	E	T
06	f	U	F	U	f	u	F	U	f	U	F	U
07	g	v	G	V	g	v	G	V	g	V	G	V
08	h h	х	Н	X	h	×	Н	Х	h	x	Н	Х
09	j	у	J	Y	j	у	J	Υ	j	у	J	Y
10	k	Z	K	Z	k	Z	K	Z	k	Z	K	Z
11	ι	2	L	4	l	2	L	4	l	2	L	4
12	n	3	Ν	5	n	3	Ν	5	П	3	Ν	5

Figure 6 Date Code Marking TSNP-6-10

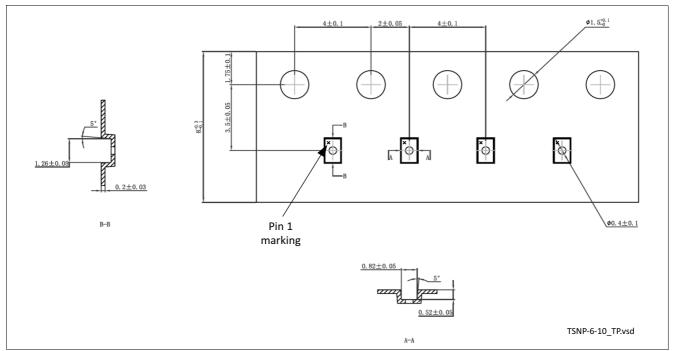


Figure 7 Tape & Reel Dimensions TSNP-6-10 (reel diameter 180 mm, pieces/reel 12000)

bieste (meier changes since regulare regulation)
bjects (major changes since previous revision)
)3-15
date Package Information
date Maximum Ratings
)

Other Trademarks All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-03-15 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: BGA5L1BN6E6327XTSA1