

15 W 5 V Adapter Reference Board

with ICE2QS03G, IR1161, IPS65R1K5CE, BSZ100N06LS3 G and BASW21-03W

About this document

Scope and purpose

This document is an engineering report that describes 15 W 5 V USB adapter reference design board using Quasi-Resonant PWM IC ICE2QS03G (DSO-8) with CoolMOS[™] IPS65R1K5CE (IPAK SL) and secondary side synchronous rectification IC IR1161 (5-Pin SOT-23) with OptiMOS[™] BSZ100N06LS3 G (S3O8, 3x3 mm style SuperSO8). The reference USB adapter board is specially designed in a very small form factor, high efficiency, low standby power, various modes of protections for a high reliable system and it pass conductive EMI, ESD and Lightning surge test. This board can be used for production by customers after final verification with minor changes.

Intended audience

This document is intended for power supply design/application engineer, students, etc.) who wish to design 15 W 5 V AC-DC adapter in short period of time, high efficiency, high reliability and very small form factor with Infineon CoolMOS[™] CE series, OptiMOS[™], Quasi-Resonant PWM IC ICE2QS03G and synchronous rectification IC IR1161.

Table of Contents

	About this document	1
	Table of Contents	1
1	Abstract	3
2	Reference board	4
3	Specification of Reference Board	5
4	Circuit description	6
4.1	Mains input rectification and filtering	6
4.2	PWM control and switching MOSFET	6
4.3	Snubber network	6
4.4	Output stage	6
4.5	Feedback loop	6
5	Circuit operation	7
5.1	Startup operation	7
5.2	Normal mode operation	7
5.3	Primary side peak current control	7
5.4	Digital frequency reduction	7
5.5	Burst mode operation	7
6	Protection features	9
6.1	VCC over voltage and under voltage protection	9
6.2	Over load/Open loop protection	9
6.3	Auto restart for over temperature protection	9
6.4	Adjustable output overvoltage protection	9
6.5	Short winding protection	9
6.6	Foldback point protection	9

15 W 5 V Adapter Reference Board with ICE2QS03G, IR1161, IPS65R1K5CE, BSZ100N06LS3 G and BASW21-03W

Abstract

7	Circuit Diagram	10
8	PCB layout	11
8.1	Top side	
8.2	Bottom side	11
9	Component list	12
10	Transformer construction	13
11	Test results	14
11.1	Efficiency, regulations and output ripple	14
11.2	Standby power	16
11.3	Line regulation	16
11.4	Load regulation	17
11.5	Maximum input power	17
11.6	ESD immunity (EN61000-4-2)	17
11.7	Surge immunity (EN61000-4-5)	17
11.8	Conducted emissions (EN55022 class B)	
11.9	Thermal measurement	20
12	Waveforms and scope plots	21
12.1	Start up at low and high AC line input voltage with maximum load	21
12.2	Soft start	21
12.3	Start up delay and output voltage rise time	22
12.4	Hold up time	22
12.5	Drain and current sense voltage at maximum load	22
12.6	Zero crossing point during normal operation	23
12.7	Load transient response (Dynamic load)	23
12.8	Output ripple voltage at maximum load	24
12.9	Output ripple voltage at burst mode 1 W load	24
12.10	Active burst mode	25
12.11	Over load protection (Auto Restart Mode)	25
12.12	Output overvoltage protection (Latched mode)	26
12.13	VCC under voltage/Short optocoupler protection (Auto restart mode)	26
13	References	27
	Revision History	27

1 Abstract

This application note is an engineering report of a very small form factor reference design for universal input 15 W 5 V adapter. The adapter is using **ICE2QS03G**, a second generation current mode control Quasi-Resonant flyback topology controller, **IR1161**, µSmartRectifier[™] for synchronous rectification, **IPS65R1K5CE**, a **CE** series of high voltage power CoolMOS[™] and **BSZ100N06LS3 G**, a third series of medium voltage power logic level OptiMOS[™], optimized for logic level driver of Synchronous Rectification. The distinguishing features of this reference design are very small form factor, best-in-class low standby power, very high efficiency, good EMI performance and various modes of protection for high reliable system.

2 Reference board

This document contains the list of features, the power supply specification, schematic, bill of material and the transformer construction documentation. Typical operating characteristics such as performance curve and scope waveforms are showed at the rear of the report.

Figure 1 REF-15W_IR_Opti3 ADAPTER [Dimensions L x W x H: 47mm x 31mm x 16mm]

Figure 2 REF-15W_IR_Opti3 ADAPTER (Top view)

Figure 3 REF-15W_IR_Opti3 ADAPTER (Bottom view)

Specification of Reference Board

Specification of Reference Board 3

Specification of REF-15W_IR_Opti3 ADAPTER Table 1

Input voltage and frequency	85 V _{AC} (60 Hz)~265 V _{AC} (50 Hz)
Output voltage, current & power	5 V/3 A/15 W
Output voltage rise time	<30 ms
Start up delay time (V _{AC} 115 V, 60 Hz, Full Load)	<250 ms
Hold up time (V _{AC} 115 V, 60 Hz, Full Load)	>5 ms
Dynamic load response (50mA to full load, slew rate at 1.5 A/µs, 100 Hz)	±3% of nominal output voltage (V _{ripple_p_} <300 mV)
Output ripple voltage	±1% of nominal output voltage
(full load, 85 V _{AC} ~265 V _{AC})	(V _{ripple_p_} <100 mV)
Active mode four point average efficiency (25%,50%,75%,100%load) (EU CoC Version 5, Tier 2 and EPS of DOE USA)	>88% at 115 V_{AC} & >87% at 230 V_{AC}
10% load efficiency (EU CoC Version 5, Tier 2)	>87% at 115 V_{AC} & >84% at 230 V_{AC}
No load power consumption (EU CoC Version 5, Tier 2 and EPS of DOE USA)	<30 mW at 265 V _{AC}
Conducted emissions (EN55022 class B)	Pass with 10 dB margin for 115 V_{AC} and 6 dB margin for 230 V_{AC}
Safety Leakage Current	<50 μA @ V _{AC} = 265 V _{AC}
$(50 \ \mu A @ V_{AC} = 265 \ V,L \ to \ FG \& N \ to \ FG)$	
ESD immunity (EN61000-4-2)	Level 4 (±8 kV: contact discharge)
Surge immunity (EN61000-4-5)	Installation class 3 (2 kV: common mode)
Form factor case size (L x W x H)	(47 x 31 x 16) mm ³

4 Circuit description

4.1 Mains input rectification and filtering

The AC line input side comprises the input fuse F1 as over-current protection. A rectified DC voltage (120 V ~ 374 V) is obtained through a bridge rectifier BR1 and a pi filter C13, FB21 and C22. The pi filer also attenuates the differential mode conducted EMI.

4.2 PWM control and switching MOSFET

The PWM pulse is generated by the Quasi Resonant PWM current-mode Controller **ICE2QS03G** and this PWM pulse drives the high voltage power CoolMOS[™], **IPS65R1K5CE (CE)** which designed according to the revolutionary Superjunction (SJ) principle. The CoolMOS[™] CE provides all benefits of a fast switching SJ MOSFET while not sacrificing ease of use. It achieves extremely low conduction and switching losses and can make switching applications more efficient, more compact, lighter and cooler. The PWM switch-on is determined by the zero-crossing input signal and the value of the up/down counter. The PWM switch-off is determined by the feedback signal V_{FB} and the current sensing signal V_{CS}. **ICE2QS03G** also performs all necessary protection functions in flyback converters. Details about the information mentioned above are illustrated in the product datasheet.

4.3 Snubber network

A snubber network DZD11 dissipates the energy of the leakage inductance and suppress ringing on the SMPS transformer.

4.4 Output stage

On the secondary side, 5 V output, the PWM pulse is generated by synchronous rectification controller **IR1161**. The synchronous rectification pulse drives the logic level medium voltage power OptiMOS[™], **BSZ100N06LS3 G** which is optimized for synchronous rectification such as the lowest R_{DS}(on), the perfect switching behavior of fast switching, the smallest footprint (S3O8, 3x3 mm style SuperSO8) and highest power density. The capacitors C22 provides energy buffering following with the LC filter FB21 and C24 to reduce the output ripple and prevent interference between SMPS switching frequency and line frequency considerably. Storage capacitor C22 is designed to have an internal resistance (ESR) as small as possible. This is to minimize the output voltage ripple caused by the triangular current.

4.5 Feedback loop

For feedback, the output is sensed by the voltage divider of R26 and R25 and compared to TL431 internal reference voltage. C25, C26 and R24 comprise the compensation network. The output voltage of TL431 is converted to the current signal via optocoupler IC12 and two resistors R22 and R23 for regulation control.

5 Circuit operation

5.1 Startup operation

Since there is a built-in startup cell in the **ICE2QS03G**, there is no need for external start up resistor, which can improve standby performance significantly. When V_{cc} reaches the turn on voltage threshold 18V, the IC begins with a soft start. The soft-start implemented in **ICE2QS03G** is a digital time-based function. The preset soft-start time is 12 ms with 4 steps. If not limited by other functions, the peak voltage on CS pin will increase step by step from 0.32 V to 1 V finally. After IC turns on, the V_{cc} voltage is supplied by auxiliary windings of the transformer.

5.2 Normal mode operation

The secondary output voltage is built up after startup. The secondary regulation control is adopted with TL431 and optocoupler. The compensation network C25, C26 and R24 constitutes the external circuitry of the error amplifier of TL431. This circuitry allows the feedback to be precisely controlled with respect to dynamically varying load conditions, therefore providing stable control.

5.3 Primary side peak current control

The MOSFET drain source current is sensed via external resistor R14 and R14A. Since **ICE2QS03G** is a current mode controller, it would have a cycle-by-cycle primary current and feedback voltage control which can make sure the maximum power of the converter is controlled in every switching cycle.

5.4 Digital frequency reduction

During normal operation, the switching frequency for **ICE2QS03G** is digitally reduced with decreasing load. At light load, the CoolMOSTM **IPS65R1K5CE** will be turned on not at the first minimum drain-source voltage time, but on the nth. The counter is in range of 1 to 7, which depends on feedback voltage in a time-base. The feedback voltage decreases when the output power requirement decreases, and vice versa. Therefore, the counter is set by monitoring voltage V_{FB}. The counter will be increased with low V_{FB} and decreased with high V_{FB}. The thresholds are preset inside the IC.

5.5 Burst mode operation

At light load condition, the SMPS enters into Active Burst Mode. At this stage, the controller is always active but the V_{cc} must be kept above the switch off threshold. During active burst mode, the efficiency increase significantly and at the same time it supports low ripple on V_{out} and fast response on load jump. For determination of entering Active Burst Mode operation, three conditions apply:

1. The feedback voltage is lower than the threshold of V_{FBEB} (1.25 V). A_{CC}ordingly, the peak current sense voltage across the shunt resistor is 0.1667;

2. The up/down counter is 7;

3. And a certain blanking time (t_{BEB} =24 ms).

Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters Active Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation prevents mis-triggering of entering Active Burst Mode operation, so that the controller enters Active Burst Mode operation only when the output power is really low during the preset blanking time.

During active burst mode, the maximum current sense voltage is reduced from 1 V to 0.34 V so as to reduce the conduction loss and the audible noise. At the burst mode, the FB voltage is changing like a sawtooth between 3.0 and 3.6 V.

Circuit operation

The feedback voltage immediately increases if there is a high load jump. This is observed by one comparator. As the current limit is 34% during Active Burst Mode a certain load is needed so that feedback voltage can exceed V_{FBLB} (4.5 V). After leaving active burst mode, maximum current can now be provided to stabilize V_{out} . In addition, the up/down counter will be set to 1 immediately after leaving Active Burst Mode. This is helpful to decrease the output voltage undershoot.

6 Protection features

6.1 VCC over voltage and under voltage protection

During normal operation, the V_{cc} voltage is continuously monitored. When the V_{cc} voltage increases up to $V_{cc,OVP}$ or V_{cc} voltage falls below the under voltage lock out level $V_{cc,off}$, the IC will enter into autorestart mode.

6.2 Over load/Open loop protection

In case of open control loop, feedback voltage is pulled up with internally block. After a fixed blanking time, the IC enters into auto restart mode. In case of secondary short-circuit or overload, regulation voltage V_{FB} will also be pulled up, same protection is applied and IC will auto restart.

6.3 Auto restart for over temperature protection

The IC has a built-in over temperature protection function. When the controller's temperature reaches 140°C, the IC will shut down switch and enters into auto restart. This can protect power MOSFET from overheated.

6.4 Adjustable output overvoltage protection

During off-time of the power switch, the voltage at the zero-crossing pin ZC is monitored for output overvoltage detection. If the voltage is higher than the preset threshold 3.7 V for a preset period 100 μ s, the IC is latched off.

6.5 Short winding protection

The source current of the MOSFET is sensed via external resistor R14 and R14A. If the voltage at the current sensing pin is higher than the preset threshold V_{cssw} of 1.68 V during the on-time of the power switch, the IC is latched off. This constitutes a short winding protection. To avoid an accidental latch off, a spike blanking time of 190 ns is integrated in the output of internal comparator.

6.6 Foldback point protection

For a quasi-resonant flyback converter, the maximum possible output power is increased when a constant current limit value is used for all the mains input voltage range. This is usually not desired as this will increase additional cost on transformer and output diode in case of output over power conditions. The internal foldback protection is implemented to adjust the V_{cs} voltage limit according to the bus voltage. Here, the input line voltage is sensed using the current flowing out of ZC pin, during the MOSFET on-time. As the result, the maximum current limit will be lower at high input voltage and the maximum output power can be well limited versus the input voltage.

Figure 4 Schematic of REF-15W_IR_Opti3 ADAPTER

PCB layout

8 PCB layout

Figure 5 Top side copper and component legend

8.2 Bottom side

Component list

9 Component list

Table 2	Bill of materials (V0.2)
---------	--------------------------

No.	Designator	Description	Footprint	Part Number	Manufacturer	Quantity
1	BR1	(800V/1A)	SOP-4	D1UBA80	SHINDENGEN	1
2	C12	470pF/250V	MKT3/13/10_0M8	DE1B3KL471KC4BNA1S	MURATA	1
3	C13, C13A	15uF/400V	RB10H(10x16)	400AX15M10X16	RUBYCON	2
4	C16	22uF/35V	1206	C3216X5R1V226M	TDK	1
5	C17	100nF/50V	0402	GRM155R71H104KE14D	MURATA	1
6	C18, C26	1nF/50V	0402	GRM155R71H102KA01D	MURATA	2
7	C19	47pF/50V	0402	GRM1555C1H470JA01D	MURATA	1
8	C21	560pF/100V	0603	GRM1885C2A561JA01D	MURATA	1
9	C22	820uF/6.3V	RB6.3	MP6RL820MC8	MATSUKI POLYMER	1
10	C24	450uF/6.3V	RB5	MP6RL450MB8	MATSUKI POLYMER	1
11	C25	220nF/25V	0402	GRM155C81E224KE01D	MURATA	1
12	C27	1uF/25V	0402	GRM155R61E105KA12D	MURATA	1
13	D12,D13	200V/0.25A	SOD323	BAS21-03W	INFINEON	2
14	D21	50V/8A	DO-221BC(SMPA)	V8PAN50-M3/I		1
15	DZD11	140V	2F	ST02D-140F2	SHINDENGEN	1
16	F1	250V/1A	AXIAL0.4_V 3mm	0263001.HAT1L		1
17	FB21	FAIR RITE	AXIAL0.4_V 3mm	2743002112		1
18	FB11,FB22,FB23	Pin 2 of Q2, leads of C12		B64290P0035X038	EPCOS	3
19	IC11	ICE2QS03G	SO-8	ICE2QS03G	INFINEON	1
20	IC12	TCMT1103	half pitch mini flat	TCMT1103		1
21	IC21	TL431	SOT-23	TL431BFDT		1
22	IC22	IR1161	5-Pin SOT-23	IR1161LPBF	INTERNATIONAL RECTIFIER	1
23	L11	100µH/0.8A	CH6	7447462101	WURTH ELECTRONICS	1
24	Q11	650V/1.5Ω	IPAK	IPS65R1K5CE	INFINEON	1
25	Q21	60V/10mΩ	PG-TSDSON-8	BSZ100N06LS3	INFINEON	1
26	R12, R15	10R	0402			2
27	R12A, R13, R14B, R15A	0R	0402			4
28	R12B	43k/1%	0402			1
29	R12C	12k/1%	0402			1
30	R14, R14A	2R/0.33W/1%	1206	ERJ8BQF2R0V		2
31	R18	10k	0402			1
32	R21	47R/0.5W	0805	ERJP6WF47R0V		1
33	R22	130R	0402			1
34	R23	1.2k	0402			1
35	R24	12k	0402			1
36	R25, R26	20k	0402			2
37	R27	2R	0402			1
38	R28	50k	0402			1
40	R30	43.2k	0402			1
41	R31, R33	51.1k	0402			1
42	R32	75k	0402			1
43	TR1	718µH(66:5:15)	TR_RM6_THT8Pin			1
44	USB Port	USBPORT	USB2 Short	JL-CAF-001		1
45	ZD11	22V Zener	SOD323	UDZS22B		1

Transformer construction

10 Transformer construction

Core and material: RM6 TP4A Bobbin: RM6 with 4 pin

Primary Inductance, Lp=718 μH ($\pm 10\%), measured between pin 2 and pin 1$

Test results

11 Test results

11.1 Efficiency, regulations and output ripple

Input (V _{AC} /Hz)	P _{in} (W)	V _{out} (V _{DC})	l _{out} (A)	V _{OutRPP} (mV)	P _{out} (W)	Efficiency (η) (%)	Average η (%)	OLP P _{in} (W)	OLP I _{out} (A)	
	0.02157	5.01	0.00	69.00						
	1.72	5.01	0.30	80.00	1.50	87.38				
	4.25	5.01	0.75	48.00	3.76	88.41	07.00	20.02	2 5 2	
85 VAC/60 HZ	8.51	5.01	1.50	52.00	7.52	88.31		20.82	3.32	
	12.83	5.01	2.25	55.00	11.27	87.86	81.02			
	17.50	5.01	3.00	68.00	15.03	85.89				
	0.02256	5.01	0.00	72.00						
	1.71	5.01	0.30	84.00	1.50	87.89		21.00	3.60	
115 / /60 Ц-	4.24	5.01	0.75	45.00	3.76	88.62				
115 V _{AC} /60 HZ	8.45	5.01	1.50	52.00	7.52	88.93	88.43			
	12.72	5.01	2.25	52.00	11.27	88.62				
	17.17	5.01	3.00	58.00	15.03	87.54				
	0.02469	5.01	0.00	86.00						
	1.78	5.01	0.30	88.00	1.50	84.44		87.13 21.01		l I
	4.38	5.01	0.75	44.00	3.76	85.79	87.13		3.72	
230 V _{AC} /30 HZ	8.63	5.01	1.50	51.00	7.52	87.08				
	12.83	5.01	2.25	53.00	11.27	87.86				
	17.12	5.01	3.00	56.00	15.03	87.79				
	0.02689	5.01	0.00	94.00						
	1.80	5.01	0.30	91.00	1.50	83.50			3.75	
	4.52	5.01	0.75	42.00	3.76	83.13	86.26	01.17		
203VAC/30 ΠΖ	8.64	5.01	1.50	52.00	7.52	86.98		21.11		
	12.89	5.01	2.25	54.00	11.27	87.45				
	17.18	5.01	3.00	56.00	15.03	87.49				

Table 3Efficiency, regulation & output ripple

Test results

Figure 9 Efficiency vs output power at 115 V_{AC} and 230 V_{AC} line

15 W 5 V Adapter Reference Board with ICE2QS03G, IR1161, IPS65R1K5CE, BSZ100N06LS3 G and BASW21-03W

Test results

Figure 10 Standby power at no load vs AC line input voltage (measured by Yokogawa WT210 power meter - integration mode)

Figure 11 Line regulation Vout at full load vs AC line input voltage

15 W 5 V Adapter Reference Board with ICE2QS03G, IR1161, IPS65R1K5CE, BSZ100N06LS3 G and BASW21-03W

Test results

11.4 Load regulation

Figure 12 Load regulation Vout vs output power

11.5 Maximum input power

11.6 ESD immunity (EN61000-4-2)

Pass EN61000-4-2 Level 3 (±8 kV for contact discharge).

11.7 Surge immunity (EN61000-4-5)

Pass EN61000-4-5 Installation class 3 (±2 kV for line to earth). Application Note 17

Test results

11.8 Conducted emissions (EN55022 class B)

The conducted EMI was measured by Schaffner (SMR2503) and followed the test standard of EN55022 (CISPR 22) class B. The demo board was set up at maximum load (15 W) with input voltage of 115 V_{AC} and 230 V_{AC}.

Figure 14 Conducted emissions(Line) at 115 V_{AC} and maximum Load

Figure 15 Conducted emissions(Neutral) at 115 V_{AC} and maximum Load

Pass conducted emissions EN55022 (CISPR 22) class B with 10 dB margin for quasi peak limit at low line (115 V_{AC}).

Test results

Figure 16 Conducted emissions(Neutral) at 230 V_{AC} and maximum Load

Figure 17 Conducted emissions(Neutral) at 230 V_{AC} and maximum Load

Pass conducted emissions EN55022 (CISPR 22) class B with 6 dB margin for quasi peak limit at high line (230 V_{AC}).

Application Note

11.9 **Thermal measurement**

Test results

The reference adapter's open frame thermal test was done by thermal infrared camera (TVS-500EX) at the ambient temperature 25 °C. The thermal measures were taken after two hours running with full load.

Table 4	Thermal measurement of REF-15W_IR_Opti3 ADAPTER	

No.	Component	85 V _{AC} & 15 W load (°C)	265 V _{AC} & 15 W load (°C)
1	Q11 (IPS65R1K5CE)	84	90.6
2	Q21 (BSZ100N06LS3 G)	78.5	75.5
3	IC22 (IR1161)	63.3	65.2
4	TR1 (Transformer)	69.2	66.1
5	IC11 (ICE2QS03G)	69.7	66.9
6	BR1 (bridge diode)	66.2	47.8
7	DZD11(Snubber zenor diode)	79.2	77.4
8	C13A (Bulk Cap)	57.7	50.3
9	L11 (Differnetial Choke)	52.7	43.2
10	R14 (Current sense resistor)	48.6	44.9
11	Ambient	25	25

(PCB top side, 85 V_{AC} & full load)

0 135 927 13:29:52

109 991 11:53:39

Avio

(PCB bottom side, 265 V_{AC} & full load)

Avio 99 1019 15:16:19 Ĉ (PCB top side, 265 V_{AC} & full load)

12 Waveforms and scope plots

All waveforms and scope plots were recorded with a TELEDYNELECROY 606Zi oscilloscope.

12.1 Start up at low and high AC line input voltage with maximum load

Figure 19 Start up

12.2 Soft start

Figure 20 Soft start

Figure 21 Start up delay and output voltage rise time

12.4 Hold up time

Figure 22 Hold up time

Zero crossing point during normal operation

Waveforms and scope plots

12.6

Figure 23 Drain and current sense voltage at maximum load

Figure 24 Zero crossing

12.7 Load transient response (Dynamic load)

Figure 25 Load transient response

12.8 Output ripple voltage at maximum load

Figure 26 Output ripple voltage at maximum load

12.9 Output ripple voltage at burst mode 1 W load

Figure 27 Output ripple voltage at burst mode 1 W load

12.10 Active burst mode

Figure 28 Active burst mode at $85 V_{AC}$

12.11 Over load protection (Auto Restart Mode)

Figure 29 Over load protection

12.12 Output overvoltage protection (Latched mode)

Figure 30 Output overvoltage protection

12.13 VCC under voltage/Short optocoupler protection (Auto restart mode)

Figure 31 V_{vcc} under voltage/short optocoupler protection

13 References

- [1] ICE2QS03G data sheet, Infineon Technologies AG
- [2] IR1161 data sheet, International Rectifier
- [3] IPS65R1K5CE data sheet, 650V CoolMOS™ CE Power Transistor, Infineon Technologies AG
- [4] BSZ100N06LS3 G data sheet, 60V OptiMOS[™] 3 Power Transistor, Infineon Technologies AG
- [5] BAS21-03W data sheet, Infineon Technologies AG
- [6] ICE2QS03G design guide. [ANPS0027]
- [7] IR1161 dedsign notes, International Rectifier

Revision History

Major changes since the last revision

Page or Reference	Description of change
	First Release

İnfineon

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CoolGaN[™], CoolMOS[™], CoolSET[™], CoolSiC[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], DI-POL[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], Infineon[™], ISOFACE[™], IsoPACK[™], i-Wafer[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OmniTune[™], OPTIGA[™], OptiMOS[™], ORIGA[™], POWERCODE[™], PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], RASIC[™], REAL3[™], ReverSave[™], SatRIC[™], SIEGET[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], TEMPFET[™], thinQ^{I™}, TRENCHSTOP[™], TriCore[™].

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-03-01 Published by

Infineon Technologies AG

81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ANREF_201511_PL21_010

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: REF15WIROPTI3TOBO1