

MPR1348FP series front-end

Input: 100-120/200-240V_{AC}; Output: 48V_{DC} @ 1350W

Description

The MPRI348FP front end provides efficient isolated power from world-wide commercial AC mains. Offered in the industry standard compact IU form factor, this front ends provides comprehensive solutions for systems connected to commercial ac mains.

Application

- 48V_{DC} distributed power architectures
- Datacom and Telecom applications
- Mid to high-end Servers
- Enterprise Networking

Features

- Universal input with PFC
- Remote ON/OFF control of the 48V_{DC} output
- Remote sense of the 48V_{DC} output
- Isolated 48V_{DC} output configurable as +48 or -48V_{DC}
- No minimum load requirements
- Active current sharing
- Upward directed airflow
- $\bullet~$ Efficiency: typically 92% @ 220V $_{\rm AC}$ & full load
- 20ms of holdup time

- Network Attached Storage
- Telecom Access Nodes
- Routers/Switches
- ATE Equipment
- Auto recoverable OC & OT protection
- Operating temperature: 0 50°C
- Radiated and Conducted EMI exceeds CISPR22 (EN55032) Class A requirements
- Safety approvals: CSA[†] C22.2 No.62368-1, IEC 62368-1, CE[§] Mark available
- Compliant to RoHS EU Directive 2014/35/EU
- ISO** 9001 and ISO 14001 certified manufacturing facilities
- Meets EN6100 immunity and transient standards

FOOTNOTES

- * UL is a registered trademark of Underwriters Laboratories, Inc.
- [†] CSA is a registered trademark of Canadian Standards Association.
- [‡] VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
- § Intended for integration into end-user equipment. All the required procedures for CE marking of end-user equipment should be followed. (The CE mark is placed on selected products.)
- ** ISO is a registered trademark of the International Organization of Standards.
- * PMBus name and logo are registered trademarks of the System Management Interface Forum (SMIF)

Page 1

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the Technical Requirement. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Symbol	Min	Max	Unit
Input Voltage: Continuous	V _{IN}	0	264	V _{AC}
Operating Ambient Temperature	T _A	-10	50	°C
Storage Temperature	Tstg	-40	85	°C
I/O Isolation voltage to Frame (100% factory Hi-Pot tested)			1500	V_{AC}

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, load, and temperature conditions.

INPUT

Parameter	Symbol	Min	Тур	Max	Unit
Operational Range					
high line	\ /	180	230	264	\ /
Low Line	V _{IN}	90	110	140	V_{AC}
Frequency Range	F _{IN}	47	50/60	63	Hz
Main Output					
Turn_OFF ¹	V_{IN}	55		70	V_{AC}
Turn ON	V_{IN}	75		90	V_{AC}
Maximum Input Current $V_{IN} = 100V_{AC}$, $P_{OUT} = 1000W$	I _{IN}			12	A _{AC}
$(V_{OUT} = 48V_{DC})$ $V_{IN} = 200V_{AC}, P_{OUT} = 1350W$	IIN			8	AAC
Cold Start Inrush Current ² (Excluding x-caps, 25°C)	I _{IN}			35	A_{PEAK}
duration	IIN			1/2	cycle
Efficiency (T _{AMB} =25°C, V _{OUT} = 48V _{DC} ,)	VIN		100/220		V _{AC}
input 100% load			88/92		
1001000					
75% load	η		88/91		%
50% load			87/90		
20% load			80/84		
Power Factor (V _{IN} = 90 - 264V _{AC} , P _{OUT} = 1000W)	PF		0.99		
Holdup time ($V_{IN} = 90V_{AC}$, $T_{AMB} 25^{\circ}$ C, $V_{OUT} = 48V_{DC}$, $I_{OUT} = 20.8A$)	Т	20			ms
Ride through (output ≥ 46V _{DC})			1/2		cycle
Leakage Current (V _{IN} = 264V _{AC} , F _{IN} = 60Hz)	I _{IN}			3.5	mA
Isolation		3000			V _{AC}
Input/Output	V_{AC}	3000			
Input/Frame		1500			V_{AC}
Main output or main_rtn ³ /Frame	V_{DC}	-250		250	V_{DC}

 $^{^{1}\}text{The input fuse cannot clear for any input voltage levels below <math>90V_{AC}$

² 5 minutes OFF time, measured at 25°C, 220V @ 50Hz

³ Either output terminal of the power supply may be tied to frame ground

48V_{DC} MAIN OUTPUT

Parameter	Symbol	Min	Тур	Max	Unit
Output Power High Line Low Line	W	0	-	1350 1000	W
Regulation Set point (V _{IN} = 220V _{AC} , T _{AMB} 25°C, I _{OUT} = 13.5A) Temperature drift	V _{оит}	47.52	48.00	48.48 0.01	V _{DC}
Overall regulation (line, load, temperature) Maximum remote sense voltage drop		-2		+2 0.5	% V _{DC}
Ripple and noise ⁴ 20MHz bandwidth	V _{OUT}			600 100	mV_{P-P} mV_{RMS}
Turn-ON or turn-OFF overshoot				+0	%
Remote ON/OFF delay time				40	ms
Turn-ON monotonic rise time (10 – 90% of V _{OUT}) External Load capacitance		0.02		300 25,000	ms μF Ω
esr Transient response 25% step [10%-35%, 100% - 75%] di/dt – 1A/μs 0 – 95%, 95 – 0% load step Recovery to within 2% of V _{nominal}		-1 46.5		1 50 500	V _{DC} V _{DC} µs
Overvoltage protection, latched (recovery by cycling OFF/ON via hardware or software)				59	V _{DC}
Output current High line Low line Overcurrent protection threshold High line	I _{оит}	27.9 20.6 31.8	28.1 20.8	28.4 21 36.6	A _{DC}
Low line Current share	I _{OUT}	23.6 -5		27.0 5	% of FL

General Specification

Parameter	Min	Тур	Max	Units	Notes
Reliability		300,000		hrs	Full load, 25°C per Bellcore RPP Full load, 50°C per Bellcore RPP
Service Life		100,000			Full load, excluding fans
Weight			2 (4.4)	Kgs (Lbs)	

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. All signals are referenced to Signal_Return unless otherwise noted. See Feature Descriptions for additional information. ($I_{OL} < 5mA$, $I_{OH} < 20\mu A$)

Parameter	Symbol	Min	Тур	Max	Unit
Remote ON/OFF (open collector) Logic HI – normal (or left open)	Vı	0.7VDD	_	3.3	V_{DC}
Logic – LO – output OFF	VI	0	_	0.4	V DC
AC Range (opto isolated open collector signal) Low range - Logic HI ⁵		0.7VDD	-	3.3	V_{DC}
High range – Logic LO	Vı	0	-	0.4	V_{DC}

 $^{^4}$ Measured across a 10 μf electrolytic and a 0.1 μf ceramic capacitors in parallel. 20 MHz bandwidth

 $^{^{5}}$ With a 1.5k Ω pull up to a 3.3V $_{DC}$ source, a logic level HI is equivalent to > 2.4V $_{DC}$

Environmental Specifications

Parameter		Min	Тур	Max	Units	Notes
Ambient Temp	perature	-5		50	°C	0-1,000m
Storage Temp	erature	-40		70	°C	
Operating Altit	tude			4,600/15,000	m/ft	
Non-operating) Altitude			15240/50k	m/ft	
Power deratin	g with temperature			2.5	%/℃	To 60°C
Temperature	derating with			3.0	C/1000 m	
Altitude				3.0	C/3280 ft	
Acoustic noise				55	dbA	25°C and Full load
OT		65			°C ambient	Auto-recoverable
Protection abo	ove NTC			100.3	°C	
Turn OFF poin	t NTC turn			74.7	°C	
ON point Hyste	eresis			25.6	°C	
Humidity	Operating	5		95	%	Relative humidity, non-
	Storage	5		95	70	condensing
Vibration				0.2	G	IEC 68-2-6, 5-500Hz; IEC 68-2-64
Shock				10	G	IEC 68-2-27, 10ms intervals 3 shocks per axis; IEC 68-2-31

EMC Compliance

Davameter	Criteria	Chandard	Level	Tost
Parameter	Criteria	Standard	Levei	Test
AC input	Conducted emissions	FCC and CISPR (EN55032A, VCCI-2)	A +6dB	0.15 – 30MHz
Radiated emissions		EN55032	A +6dB	30 – 10000MHz
Harmonic current	Emissions	EN-61000-3-2	Table 1	
Voltage	Fluctuations & Flicker	En-61000-3-3		
			Α	-30%, 10ms
	Voltage dips	EN61000-4-11	В	-60%, 100ms
			В	-100%, 5sec
	Low energy	EN61000-4-12		2kV differential
A C I may at i may may un its a	transients	IEEE C62.41 100kHz ring wave		4kV common mode
AC Input immunity	High energy	ENG1000 / F	А	1kV, 1.2 x 50µs, common mode
	transients	EN61000-4-5	А	500V, 8 x 20µs, differential mode
	Fast transients	EN61000-4-4	В	±1kV on power lines, 5kHz rate
	Conducted RF fields	EN61000-4-6	А	130dBµV, 0.15-80MHz, 80% AM
Enclosure	D- distant DE C. L.	EN61000-4-3	А	3V/m, 80-1000MHz, 80% AM
immunity	Radiated RF fields	ENV 50140	А	
	ESD	EN61000-4-2	В	±4kV contact, ±8kV air

Characteristic Curves

The following figures provide typical characteristics at 25°C.

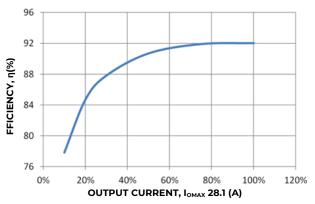


Figure 1. Efficiency V_{IN}: 220V, Freq: 50Hz, T: 25°C

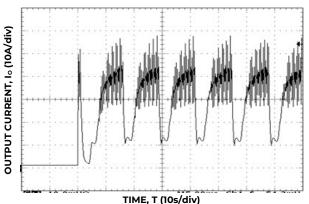


Figure 2. Short circuit Performance, V_{IN} 230 V_{AC}, T 25°C (reading: Max short circuit current – 57.8A, RMS – 23.1A)

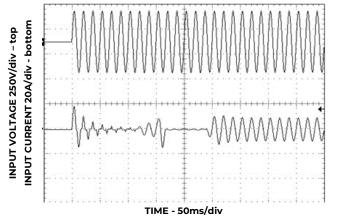


Figure 3. Cold Inrush, V_{IN} 220 V_{AC} (read 17.6A)

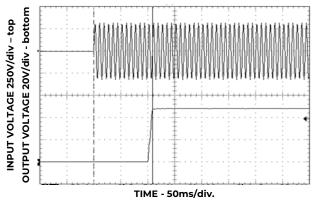


Figure 4. Turn ON delay, V_{IN} 230 V_{AC} (read 218ms)

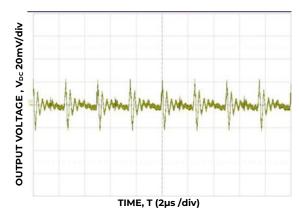


Figure 5. $48V_{DC}$ output PARD, full load, $V_{IN} = 230V_{AC}$.

Figure 6. Start up V_{IN} 230 V_{AC} , C_{OUT} 25,600 μF

Characteristic Curves (continued)

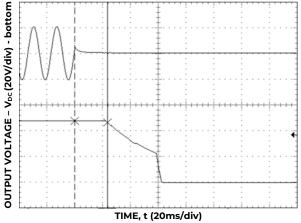


Figure 7. Holdup V_{IN} - 180V_{AC}, FL (23.6ms)

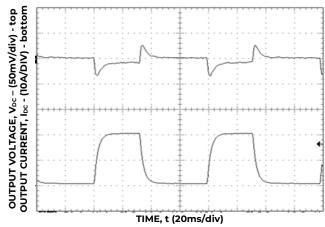


Figure 10. 115V_{AC}; Transient response 5 – 100% load step

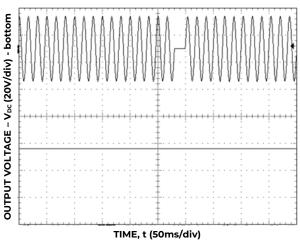


Figure 8. $\frac{1}{2}$ cycle ride-through V_{IN} 240 V_{AC}

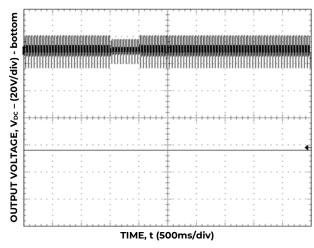


Figure 11. 30% dip ride-through V_{IN} 240 V_{AC}

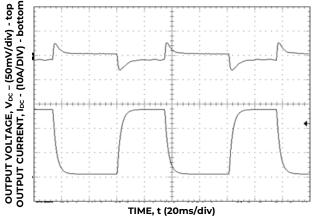
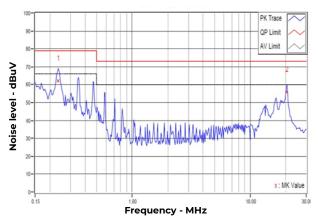
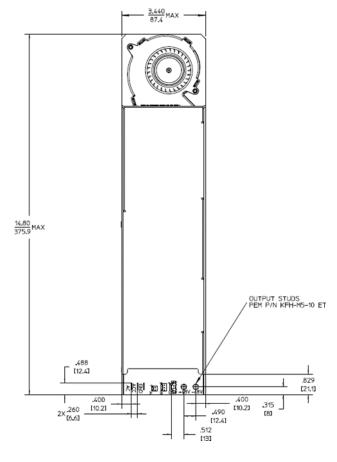
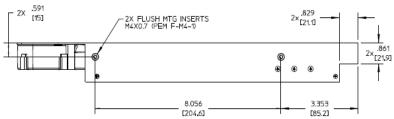
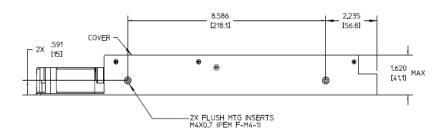
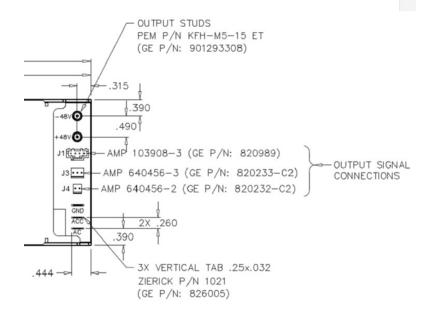


Figure 9. 230V_{AC}; Transient response 5 - 100% load step


Figure 12. Conducted Emissions

Outline Drawing



Connectors and Pin Assignments

Power Circuits

Mate	Function	Operation
Stud	-48V	When + side tied to GRD
Stud	+48V	When – side tied to GRD
FastON	GND	Protective input safety
FastON	ACC	Return side of AC input
FastON	AC	Hi – fused side – of AC input

Signal Circuits

	ונ		Ј3		J 4
Pin	Function	Pin	Pin Function		Function
1	+ Sense	1	Ishare	1	AC range
2	- Sense	2	Ishare rtn (-48)	2	AC range rtn ⁶
3	Remote	3	n/a		
4	Remote rtn (-)				

Ordering Information

Please contact your OmniOn Sales Representative for pricing, availability and optional features.

PRODUCT	DESCRIPTION	PART NUMBER
1350W Rectifier	Configurable 48V _{OUT} , as either +48V or -48V	MPR1348FPXXXZ01A

Contact Us

For more information, call us at

- +1-877-546-3243 (US)
- +1-972-244-9288 (Int'l)

Revision	Date	Description of the change
2.3	12/11/2021	Updated as per template
2.4	06/23/2023	Text alignment corrected in Technical specifications Table, Part Number and Version no added in Footer
2.5	10/26/2023	Updated as per OmniOn template

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

OmniOn Power:

MPR1348FPXXXZ01A