DATASHEET

MPE2000AC48_200AC24 medical power sup-

90-264VAC Input; Outputs: 48V/2100W; 24V/100W; 5VSB/0.25W

The MPE2000AC48_200AC24 is a multiple output, medical grade power supply that is fan cooled and designed for stand-alone use. The power supply has special design considerations for medical requirements, as well as three output voltages and constant current charging ability at the supplies output current limit. The supply is also designed for ease of use with enables for the main and secondary output as well as a global enable for all outputs.

Applications

The MPE2000AC48 rectifier is designed and tested for deployment into embedded medical DC power applications where patient safety is of the utmost importance. Designed with a rugged power train to support high transient demand laser devices, the MPE2000 is ideal for Industrial medical applications. As a system DC rectifier the MPE2000 can be designed into parallel for higher power applications as well as into distributed power architectures for divers applications. The MPE2000 is generally applicable across Bio-science and life science applications where patient safety and support for highly demanding DC loads are critical success factors.

Features

- Form factor: 11.0" (L) x 5.0" (W) x 5.0" (H)
- Compliant to RoHS Directive 2011/65/EU and amended Directive (EU) 2015/863
- Wide operating temperature range
- Universal input range
- Meeting medical approval ratings
- Meeting medical creepage and clearance requirements
- Low leakage current rating

- Class B EMI performance
- Two main outputs & one auxiliary output
- PMBUS communication protocol
- High MTBF design
- Easy connectivity

Technical Specifications

Absolute Maximum Ratings

Stresses over the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions over those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Min	Max	Unit
Input Voltage: Continuous	VIN	90	264	V_{AC}
Operating Ambient Temperature	T _A	-20	70	°C
Storage Temperature	T_{STG}	-40	85	°C
Humidity (non-condensing)		5	95	%
Altitude			3000	m

Electrical Specifications

Parameter	Device	Min	Тур	Max	Unit
Operational Range	V_{IN}	90	115/230	264	V_{AC}
Frequency range (ETSI 300-132-1 recommendation)	F _{IN}	45	50/60	65	Hz
Main Output Turn OFF	V_{IN}			80	V_{AC}
Main Output Turn ON	V_{IN}	85			V_{AC}
Hysteresis between turn OFF and turn ON	V_{IN}	5			V_{AC}
Efficiency ($T_a = 25$ °C, $V_{IN} = 230V_{AC}$, $V_1 = 48V \& V_2 = 24V$, inc. fan)					
20% load	h		90.0		%
50% load	h		93.5		%
100% load	h		92.0		%
Maximum Input Current					
V _{IN} =100V _{AC}	I _{IN}			20	A_AC
V _{IN} =180V _{AC}	I _{IN}			20	A_AC
Cold Start Inrush Current	I _{IN}			40	A_{PEAK}
Turn on delay time				3	sec
Power factor (V _{AC} =115/230V _{AC}),					
I _{out} =50% I _{O_max}	PF		0.96		
I_{0ut} =100% I_{0_max}	PF		0.99		
Holdup time (V _{out} ≥ 40V, T _{amb} =25°C)					
V _{IN} =115V _{AC} , 1500W load	T_hold	15			ms
V _{IN} =230V _{AC,} 2100W load		15			
Leakage current (V_{IN} =264 V_{AC} , F=60Hz)	I _{leakage}			300	uA_{RMS}
Isolation Input/Output		4000			V_{AC}
Isolation Input/Frame		1500			V_{AC}
Isolation Output/Frame		1500			V_{DC}
Isolation 48V _{out} /24V _{out} , 48V _{out} /5VSB, 24V _{out} /5VSB (between each output)		2321			V_{DC}

Technical Specifications (continued)

Electrical Specifications

48VDC MAIN OUTPUT

Parameter	Symbol	Min	Тур	Max	Unit
Output Power					
Low line 90-180V _{AC}				(8.88*V _{AC} + 501.6)	
High line 180-264V _{AC}	W		-	2100	W
Overall regulation (setpoint, line, load, temperature)	Vo	-1		+1	%
Ripple and noise					
(20MHz bandwidth, 0.1μF ceramic + 10μF aluminum connected)	Vo			480	mV _{P-P}
Turn-ON overshoot	Vo			+2	%
Turn-ON delay	Т			3	sec
Remote ON/OFF delay time	Т			30	ms
Turn-ON rise time (10 – 90% of V _{out})	Т			30	ms
Transient response 50% step [25%-75%] (di/ dt=0.1A/μs, recovery <2ms)	Т	-2		2	%Vo
Overvoltage protection, latched					
(recovery by recycling off/on via hardware or PMBUs®)	Vo	110		125	% V o
Output current	I _O	0		43.75	A_{DC}
Output external capacitance	С		18000		μF
Current limit	Io	105		110	%FL

24VDC MAIN OUTPUT

Parameter	Symbol	Min	Тур	Max	Unit
Output Power	W	0	-	100	W
Overall Regulation (setpoint, line, load, temperature)	Vo	-1		+1	%
Ripple and noise					
(20MHz bandwidth, 0.1μF ceramic + 10μF aluminum connected)	Vo			240	mV_{P-P}
Turn-ON overshoot	Vo			+2	%
Turn-ON delay	Т			3	sec
Remote ON/OFF delay time	Т			30	ms
Turn-ON rise time (10 – 90% of V _{out})	Т			10	ms
Transient response 50% step [25%-75%] (di/dt=0.1A/μs, recovery <2ms)	Т	-2		+2	%Vo
Overvoltage protection, latched	Vo	110%		120%	%Vo
(recovery by recycling off/on via hardware or	• 0	110 70		12070	70 V O
PMBUs®)					
Output current	Io	0		4.16	A_{DC}
	Io	110		120	%FL

Technical Specifications (continued)

Electrical Specifications

STANDBY OUTPUT						
Parameter	Symbol	Min	Тур	Max	Unit	
Set point			5		V_{DC}	
Overall regulation (setpoint, line, load, temperature)	Vo	-5		5	%	
Ripple and noise (20MHz bandwidth, 0.1µF ceramic+10µF aluminum con- nected)	Vo			100	mV _{P-P}	
Output current	lo	0		0.5	A_{DC}	
Over-voltage Clamp				7	V	
Current Limit		110		175	%FL	

General Specifications

Parameter	Device	Symbol	Тур	Unit
Calculated Reliability based on Telcordia SR-332 Issue 3: Method 1 Case III ($V_{\rm IN}$ =230 $V_{\rm AC}$, full load, $T_{\rm A}$ = 25°C)	All	MTBF	450,000	Hours
Weight	All		3850 135.6	g oz.

Environmental Specifications

Parameter	Device	Specification	
Conducted Emissions	All	CISPR11/EN55011, FCC part15 Subpart B, Class B with 6dB margin	
Radiated Emissions	All	CISPR11/EN55011, FCC part15 Subpart B, Class B with 3dB margin	
ESD	All	EN 61000-4-2, Level 4 Performance Criteria	
Electric Fast Transient Common Mode	All	EN 61000-4-4, Level 3	
Surge Immunity	All	EN 61000-4-5, Level 3	
Conducted Immunity	All	EN 61000-4-6, Level 2	
Radiated Immunity	All	EN 61000-4-3, Level 3, IEC 60601-1-2 Table9	
Input Voltage Dips	All	EN 61000-4-11, Class 2	
Input Harmonics	All	IEC61000-3-2, Class A	
Shock and Vibration	All	Per IPC-9592B, Class II	

Safety Specifications

Parameter	Device	Specification	
Earth continuity	All	25A, max 0.1ohm, duration 3 sec	
Safety Standards	All	EN60601-1, IEC 60601-1, ES 60601-1, CAN/CSA-C22.2 No.60601-1:14 approvals	

ABB

Technical Specifications (continued)

Characteristic Curves

The following figures provide typical characteristics for the CMPE2000AC48 rectifier at 25 °C

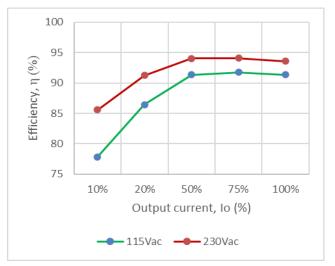


Figure 1. Rectifier Efficiency versus Output Current

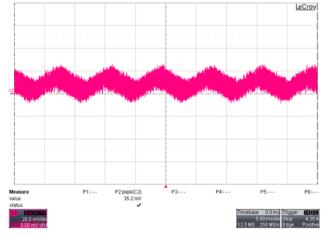


Figure 4. 24V_{DC} output ripple and noise, full load, V_{IN}=230V_{AC}, 20MHz

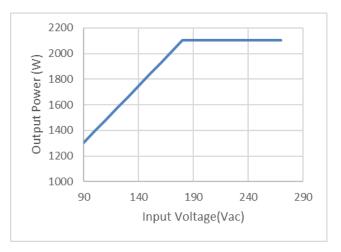


Figure 2. $48V_{DC}$ output power derating based on input voltage

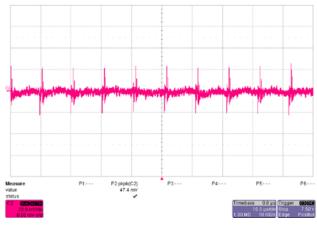


Figure 5. 5VSB output ripple and noise, full load, V_{IN} =230 V_{AC} , 20MHz

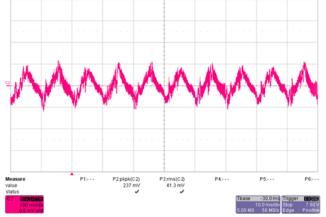


Figure 3. $48V_{DC}$ output ripple and noise, full load, V_{IN} =230 V_{AC} , 20MHz band-

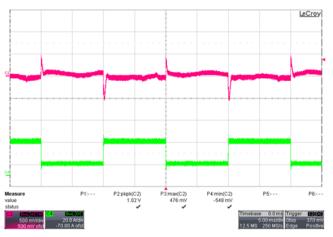


Figure 6. Transient response $48V_{DC}$ load step 25% - 75%, $V_{IN} = 230V_{AC}$

ABB

Technical Specifications (continued)

Characteristic Curves

The following figures provide typical characteristics for the CMPE2000AC48 rectifier at 25 °C

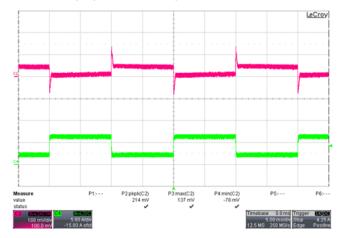


Figure 7. Transient response 24V_{DC} load step 25% −75%, V_{IN} = 230V_{AC}

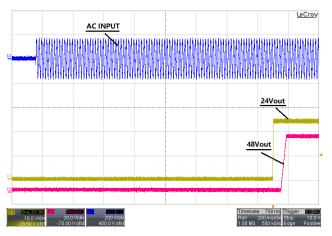


Figure 10. 24V_{DC} & 48V_{DC} turn on delay time, V_{IN} = 115V_{AC}

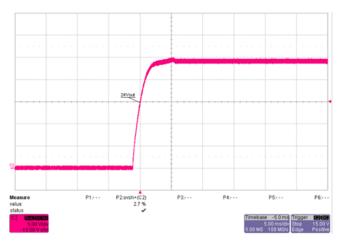


Figure 8. $24V_{DC}$ soft start, full load, V_{IN} = $230V_{AC}$

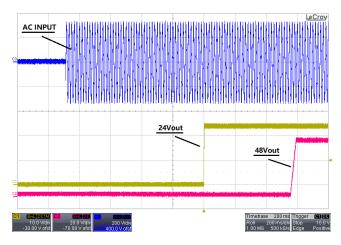


Figure 11. $24V_{DC}$ & $48V_{DC}$ turn on delay time, $V_{IN} = 230V_{AC}$

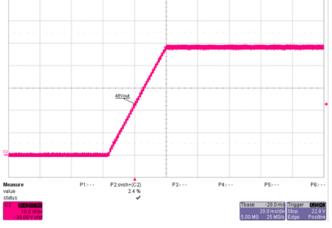


Figure 9. 48V_{DC} soft start, full load, V_{IN}=230V_{AC}

_

Technical Specifications (continued)

Signal status

All signal status outputs are open-collector type signal that go low when the unit at normal operation condition, the detail status of each signal refer to below Table 1.

Normal operation

	Normal Operation	Out of Spec
	48V/24V in regulation	48V/24V out of regulation
48V PG	L	Н
24V PG	L	Н
	VAC in range	VAC out of
	VAC III Talige	range
AC fail	L	Н
	fan good	fan fail
Fan fail	L	Н
	OTP not triggered	OTP triggered
OTP	L	Н

Table 1. Signal output status

Note:

Each signal status output is an open-collector type signal, and the max sink current is 4mA, and max collector volt-

LED indicator

Three LEDs for 48V, 24V and AC input, Normal LED green, and off when failed, refer to Table 2.

LED

	48V/24V in regulation	48V/24V out of regulation
48V LED	Green	dark (off)
24V LED	Green	dark (off)

	Vac in range	Vac out of range
AC LED	Green	dark (off)

Table 2. LED indicator

Enables (remote on/off)

- The PS has three enables: 48V_enable, 24V_enable and Global_enable.
- 48V_enable, (separate on/off) for 48V output, 24V_enable, (separate on/off) for 24V output, and Global_enable, (master on/off) for 48V and 24V outputs.

- The power supply feature a TTL-compatible enable (on/off) control input, each enable signal input has some logic, the power supply outputs turn on when the on/off input goes low, and turn off when the input goes high or floating.
- The specification of enable signals, refer to below Table

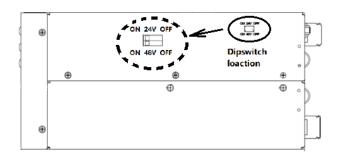
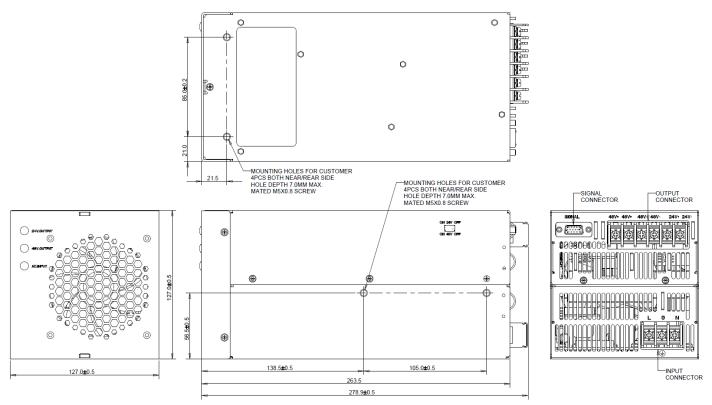

Parameter	Min	Тур	Max	Unit
On/Off Signal				
Logic Low (Power Supply ON)				
Input Low Current			0.2	mA
Input Low Voltage			0.5	V
Logic High (Power Supply OFF)				
Input High Current			1.1	mA
Input Voltage	2		5.5	V

Table 3. Enable signal logic spec

Two Dipswitches are added for the 24V and 48V outputs, and if the dipswitch is activated the output will turn on whenever the global enable is active to 'on', the dipswitch location refer to below picture.

1=off, or Disabled								
0=on, or	Enabled	- 0019	ОИТРИТ					
Global Enable	48V enable or 48V Dipswitch	24V enable or 24V Dipswitch	48V	24V	5VSB			
1	Х	Х	0	0	5V			
0	1	1	0	0	5V			
0	1	0	0	24V	5V			
0	0	1	48V	0	5V			
0	0	0	48V	24V	5V			

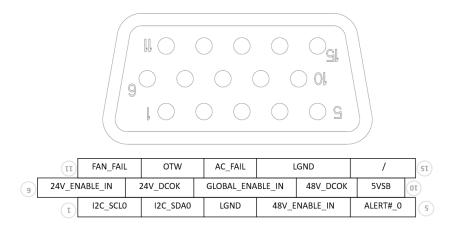
Table 4. Enable and Dipswitch VS Output



_

Technical Specifications (continued)

Mechanical Outline


• There have 8pcs M5x0.8 type thread holes with thread depth 7.0mm for mounting, which locations as upon drawing showing. Recommended torque: 2.0Nm

Connector Pin Assignments

Input Connector: DINKLE DT-66-C11W-03; M4, 300V, 40A; Wire UL/CUL: AWG #18~ #8

Output Connector: DINKLE DT-66-C11W-06; M4, 300V, 40A; Wire UL/CUL: AWG #18~ #8; (2POS for 24Vout , 4POS for 48Vout)

Signal Connector (D-Sub 15): TE Connectivity 1734530-3

Technical Specifications (continued)

Ordering Information

Please contact your ABB Sales Representative for pricing, availability and optional features (as PMbus information).

PRODUCT	OUTPUT	STANDBY	AIRFLOW	ORDERING PART NUMBER
MPE2000AC48_200AC24	2100W, +48Vout and 100W +24Vout AC Input front-end with 5Vsbaux	5V @0.5A	Standard (from Fan to AC in/DC out)	1600382394A

ABB

601 Shiloh Rd. Plano, TX USA

abbpowerconversion.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

Copyright© 2021 ABB All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

OmniOn Power:

MPE2000AC48_200AC24 RECTIFIER