

www.ablic.com

LOW CHARGE INJECTION 32-CHANNEL 8Ω HIGH-VOLTAGE ANALOG SWITCHES

© ABLIC Inc., 2021 Rev.1.0_00

The ABLIC S-UM6522E is a low charge injection 32-channel single-pole, single-throw (SPST) high-voltage analog switch IC operated only by a single 5V for ultrasound imaging applications.

Users can select either Serial Digital Interface (SDI) or Bank Interface.

The S-UM6522E has the same packaging and pinout as the HDL6M06522BN with improved Con/Coff and off isolation performance.

■ Functions

• 32-channel high-voltage SPST analog switches with user-selectable SDI or Bank interface

■ Features

- 0V to ±100V analog signal voltage range allowing ±150V voltage overshoot
- 10kHz to 85MHz analog signal frequency range
- 2A peak analog signal current per channel
- 8Ω switch on-resistance
- 40kΩ bleed resistor on probe side
- 32-bit shift registers
- Low on/off-capacitance
- 15pC charge injection to 1000pF
- -75dB off-isolation at analog small-signal 5MHz
- -60dB switch crosstalk
- Selectable Serial Digital Interface (32-bit shift registers) or Bank Interface (1 bank of 32-channel)
- 1.8V to 5V CMOS logic interface
- Single +5V power supply (NO HIGH-VOLTAGE POWER SUPPLY required)
- Low power dissipation (static 5mW)
- Embedded thermal protection flag indicator
- Unique pin configuration for easy PCB traces
- RoHS compliant 84-lead 10x10mm QFN

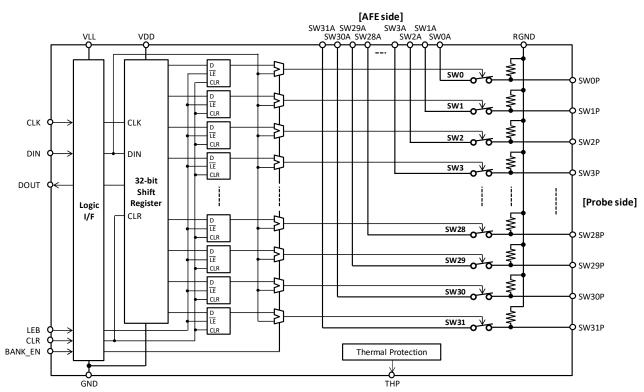


Figure 1 Block Diagram ABLIC Inc.

■ Absolute Maximum Ratings

T_A=25°C unless otherwise noted.

Table 1 Absolute Maximum Ratings

No.	Items	Symbol	Value	Units	Condition
1	Positive logic supply voltage	V_{LL}	-0.4 to +7	V	
2	Positive supply voltage	V _{DD}	-0.4 to +7	V	
3	Logic input voltage	DIN, LEB, CLK, CLR_BSEL, BANK_EN	-0.4 to +7	V	
4	Logic output voltage	DOUT, THP	-0.4 to +7	V	
5	Analog signal range (steady state voltage)	Vsig	-105 to +105	V	
6	Analog signal range (peak overshoot voltage)	Vsig_os	-150 to +150	V	Max. 500ns pulse width
7	Peak analog signal current per channel	Isw	2.5	Α	
8	Operating junction temperature	T _{Jop}	-20 to +150	°C	
9	Storage temperature	Тѕтс	-55 to +150	°C	
10	Maximum power dissipation	P _{Dmax}	4	W	

Remark Stresses beyond the absolute maximum ratings may cause permanent damage to the product.

■ Operating Supply Voltages, Logic Levels, and Application Circuits

1. Operating supply voltages, temperature, and logic levels

Table 2 Operating Supply Voltages and Logic Levels

No	Items	Symbol	Min	Тур	Max	Units	Condition
1	Logic supply voltage	V_{LL}	1.7	1.8 to 5	V_{DD}	V	
2	Positive supply voltage	V_{DD}	4.75	5	5.25	V	
3	IC substrate voltage *1	VsuB	-	0	-	V	
4	Operating free-air temperature	T _A	0	-	75	°C	
5	High-level logic input voltage	V _{IH}	0.8V _{LL}	-	V_{LL}	V	
6	Low-level logic input voltage	VIL	0	-	0.2V _{LL}	V	
7	High-level logic output voltage	V _{oH}	0.8V _{LL}	-	•	V	I _{SOURCE} = 1mA
8	Low-level logic output voltage	V_{oL}	-	-	0.2V _{LL}	V	I _{SINK} = 1mA
9	Logic input high current *2	Iн	-10	-	10	μΑ	DIN, LEB, CLK,
10	Logic input low current	lıL	-10	-	10	μΑ	CLR_BSEL,
11	Logic input capacitance	Cin	-	2	-	рF	BANK_EN
12	Set up time before LEB rises	t _{SD}	25	-	-	ns	
13	Time width of LEB	twleb	12	-	-	ns	
14	Clock delay time to data out	t_{DO}	7	10	24	ns	
15	Time width of CLR_BSEL	tolr	55	-	-	ns	
			-	-	50	MHz	V _{LL} =1.8V
16	Clock frequency	fclk	-	-	80	MHz	V _{LL} =2.5V
			-	-	95	MHz	V _{LL} =3.3V
17	Clock rise and fall times	t _{R,} t _F	-	-	50	ns	
18	Setup time data to clock	tsu	4	-	-	ns	
19	Hold time data from clock	thld	4	-	-	ns	
20	Bank interface setup time	tsd_BNK	100	-	-	ns	
21	BANKx minimum pulse width	twbank	4	-	-	μs	

^{*1.} Thermal pad on the bottom of the package must be soldered to the ground.

2. Power supply sequencing

No power supply sequencing is required even if V_{LL} is different from V_{DD} . Please apply the V_{DD} voltage to the V_{LL} when operating with a single 5V.

^{*2.} BANK_EN has 100 μ A leakage at V_{LL}=5V due to 50k Ω internal pull-down resistor.

■ Electrical Characteristics

1. DC characteristics

Table 3 DC Characteristics

 V_{LL} =3.3V, V_{DD} =5V, LEB=0, BANK_EN=0/1, T_A =25°C, unless otherwise specified.

NIa	140	Symbol		Linita	Conditions			
No.	Items	Symbol	Min	Тур	Max	Units	Conditions	
1	Analog signal range (steady state voltage)	Vsig	-100	-	+100	V		
2	Analog signal range (peak overshoot voltage)	Vsig_os	-150	-	+150	V	Max. 500ns pulse width	
3	VLL quiescent current	Illq	-	0.2	-	μA	Quiescent current-1	
4	V _{DD} quiescent current	I _{DDQ}	-	1.5	-	mA	All switches off	
5	V _{LL} quiescent current	ILLQ	1	0.2	-	μΑ	Quiescent current-2	
6	V _{DD} quiescent current	I _{DDQ}	i	1.5	-	mA	All switches on	
7	V _{LL} dynamic current	ILL	ī	2	10	μA	Dynamic current	
8	V _{DD} dynamic current	I _{DD}	-	3.4	4.6	mA	All channels switching simultaneously at fsw=50kHz	
9	DC offset switch off	Vos	-	0	-	mV		
10	Small signal switch on-resistance	Rons	1	8	10	Ω	V_{SIG} =0.1 V pp to 5 V pp @5 M Hz, R_{S} =10 Ω	
11	Small signal switch on-resistance matching	ΔRons	1	2	5	%	Vsig=0V, Isig=5mA	
12	Large signal switch on-resistance	Ronl	-	8	-	Ω	V_{SIG} =20 V pp@5 M Hz, R_{S} =10 Ω	
13	Shunt resistance	R _{BLD}	30	40	50	kΩ	On probe side	
14	Switch output peak current	Isw	ı	2	-	Α	100ns pulse, 0.1% duty cycle	

2. Thermal protection

Table 4 Thermal Protection Characteristics

V_{LL}=3.3V, V_{DD}=5V, LEB=0, BANK EN=0/1, T_A=25°C, unless otherwise specified.

NIa	lt a man	Company of	Spec			Units	Conditions	
No.	Items	Symbol	Min	Тур	Max	Units	Conditions	
1	THP pull-up voltage	V _{PUTHP}	1	ı	5.25	V	Open drain	
2	THP output current	I _{THP}	1	1.0	ı	mA		
3	THP output low voltage	VOLTHP	ı	ı	0.5	V	THP active, VLL=3.3V, ITHP=1mA	
4	THP temperature threshold	Ттнр	90	110	130	°C	Thermal protection flag indicator by THP pin (open N-MOS drain, Low=THP activating)	
5	THP reset hysteresis	THYSTHP	-	10	-	°C		

4 ABLIC Inc.

3. AC Characteristics

Table 5 AC Characteristics

 V_{LL} =3.3V, V_{DD} =5V, LEB=0, BANK_EN=0/1, T_A =25°C, unless otherwise specified.

No.	lt a man		Currele e l		Spec		1.1	O
NO.	Items		Symbol	Min	Тур	Max	Units	Conditions
1	Turn-on time		ton	1	2	4	μs	
1	rum-on ume		ton_bnk	ı	2	4	μs	
2	Turn-off time		toff	-	2	4	μs	
	Turri-on time		toff_bnk	-	2	4	μs	
3	Output switching fre	equency	fsw	-	-	50	kHz	Duty cycle=50%
4	Small signal frequer	ncy	fsig	0.01	-	85	MHz	C _L =220pF
5	Off isolation	small signal	Viso(RX)	-	-75	-	dB	f_{SIG} =5MHz, R_L =50 Ω
3	large signal		V _{ISO(TX)}	-	-67	-	dB	f_{SIG} =5MHz, R_L =50 Ω
6	Crosstalk		Vct	1	-60	-	dB	f_{SIG} =5MHz, R_L =50 Ω
7	On consistence	small signal	Con(RX)	-	25	-	pF	V _{SIG} =0V, f _{SIG} =1MHz
<i>'</i>	On capacitance	large signal	C _{ON(TX)}	-	15	-	pF	Vsig=10Vpp, fsig=1MHz
8	Off capacitance SW_P to GND	small signal	Coff(SWP_RX)	ı	20	-	pF	V _{SIG} =0V, f _{SIG} =1MHz
9	Off capacitance	small signal	Coff(SWA_RX)	-	18	-	pF	V _{SIG} =0V, f _{SIG} =1MHz
9	SW_A to GND	large signal	Coff(SWA_TX)	-	10	-	pF	V _{SIG} =10Vpp, f _{SIG} =1MHz
10	Output spike voltage	e (SW/ D)	VSPK_ON(SWP)	-	50	-	mV	50Ω load @switch on
10	Output spike voltage (SW_P)		VSPK_OFF(SWP)	-	50	-	mV	50Ω load @switch off
11	Output spike voltag	ρ(S)W Δ)	VSPK_ON(SWA)	-	50	-	mV	50Ω load @switch on
11	Output spike voitagi	e (3W_A)	VSPK_OFF(SWA)	-	50	-	mV	50Ω load @switch off
12	Charge injection		QC	-	10	-	рС	

■ Test Circuits

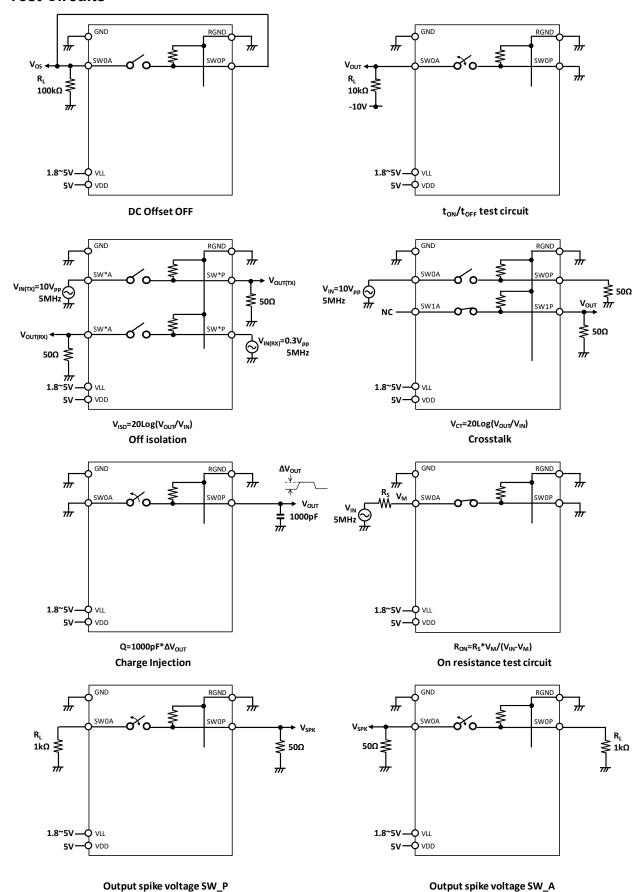


Figure 2 Test Circuits
ABLIC Inc.

■ Truth Table

Table 6 Truth Table

Logic Inputs									Analog Switch State			
LEB	CLR	BANK_EN	DIN						Aldiog Owner State			
LEB	CLK	DAINK_EIN	D0	D1		D30	D31	SW0	SW1		SW30	SW31
L	L	L	L	-		-	-	OFF	-		-	-
L	L	L	Н	-		-	-	ON	-		-	-
L	L	L	-	L	1	-	-	-	OFF		-	-
L	L	L	=	Н	1	-	-	-	ON		-	-
L	L	L	-	-		-	-	-	-		-	-
L	L	L	-	-		-	-	-	-		-	-
L	L	L	-	-	1	-	-	-	-		-	-
L	L	L	-	-	1	-	-	-	-		-	-
L	L	L	-	-		-	-	-	-	1	-	-
L	L	L	-	-	1	-	-	-	-		-	-
L	L	L	-	-		-	-	-	-		-	-
L	L	L	-	-		-	-	-	-		-	-
L	L	L	-	-		L	-	-	-		OFF	-
L	L	L	-	-		Н	-	-	-		ON	-
L	L	L	-	-		-	L	-	-		-	OFF
L	L	L	-	-		-	Н	-	-		-	ON
Н	L	L	Х	Х	Х	Χ	Х		Hold F	Previou	ıs State	
Х	Н	L	X X X X X					_ SWs				
Х	Х	Н	L					_ SWs				
Χ	Х	Н			Н				AL	L SWs	ON	

■ Logic Timing

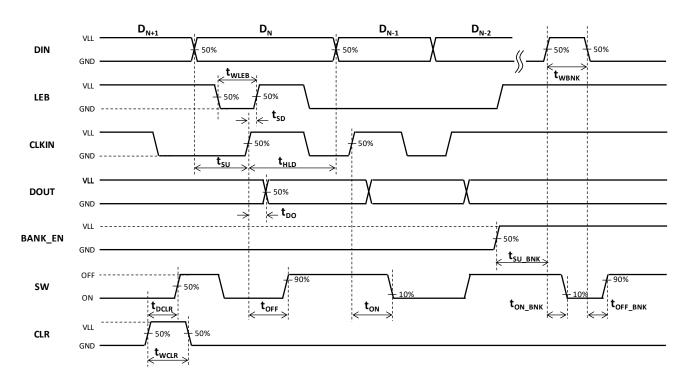


Figure 3 Logic Timing

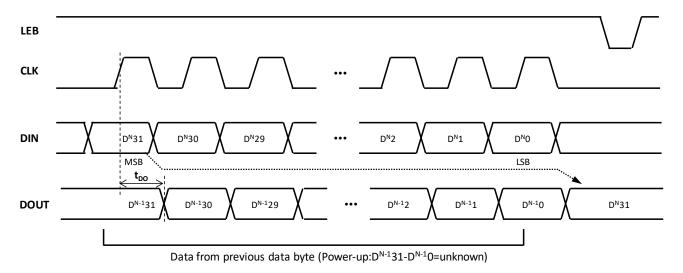


Figure 4 Latch Enable Interface Timing

8 ABLIC Inc.

■ Pin Configuration

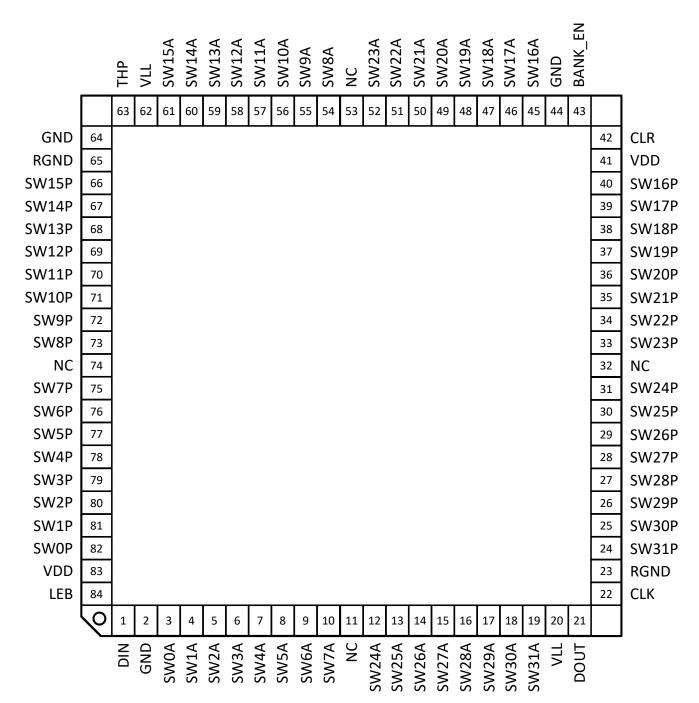


Figure 5 Pin Configuration

Table 7 Pin Configuration (1 / 2)

Pin#	Pin Name	I/O	Function	
1	DIN	1/0	Serial-Data (BANK_EN=0) / Bank-Data (BANK_EN=1) input	
2	GND	'	Drive power ground (0V)	
3	SW0A	I/O	Analog switch terminal 0 (AFE side)	
4	SW1A	1/0	Analog switch terminal 0 (AFE side)	
5		1/0	Analog switch terminal 2 (AFE side)	
6	SW2A SW3A	1/0	Analog switch terminal 3 (AFE side) Analog switch terminal 3 (AFE side)	
7	SW4A	1/0		
			Analog switch terminal 4 (AFE side)	
8	SW5A	1/0	Analog switch terminal 5 (AFE side)	
9	SW6A	1/0	Analog switch terminal 6 (AFE side)	
10	SW7A	I/O	Analog switch terminal 7 (AFE side)	
11	NC OMO A A	-	No connection (Not internally connected)	
12	SW24A	1/0	Analog switch terminal 24 (AFE side)	
13	SW25A	1/0	Analog switch terminal 25 (AFE side)	
14	SW26A	I/O	Analog switch terminal 26 (AFE side)	
15	SW27A	I/O	Analog switch terminal 27 (AFE side)	
16	SW28A	I/O	Analog switch terminal 28 (AFE side)	
17	SW29A	I/O	Analog switch terminal 29 (AFE side)	
18	SW30A	I/O	Analog switch terminal 30 (AFE side)	
19	SW31A	I/O	Analog switch terminal 31 (AFE side)	
20	VLL	-	Positive voltage supply of low voltage interface (+1.8V~+5V)	
21	DOUT	0	Serial-Data output	
22	CLK	I	Serial-Clock input	
23	RGND	-	Bleed resistor ground (0V)	
24	SW31P	I/O	Analog switch terminal 31 (Probe side)	
25	SW30P	I/O	Analog switch terminal 30 (Probe side)	
26	SW29P	I/O	Analog switch terminal 29 (Probe side)	
27	SW28P	I/O	Analog switch terminal 28 (Probe side)	
28	SW27P	I/O	Analog switch terminal 27 (Probe side)	
29	SW26P	I/O	Analog switch terminal 26 (Probe side)	
30	SW25P	I/O	Analog switch terminal 25 (Probe side)	
31	SW24P	I/O	Analog switch terminal 24 (Probe side)	
32	NC	-	No connection (Not internally connected)	
33	SW23P	I/O	Analog switch terminal 23 (Probe side)	
34	SW22P	I/O	Analog switch terminal 22 (Probe side)	
35	SW21P	I/O	Analog switch terminal 21 (Probe side)	
36	SW20P	I/O	Analog switch terminal 20 (Probe side)	
37	SW19P	I/O	Analog switch terminal 19 (Probe side)	
38	SW18P	I/O	Analog switch terminal 18 (Probe side)	
39	SW17P	I/O	Analog switch terminal 17 (Probe side)	
40	SW16P	I/O	Analog switch terminal 16 (Probe side)	
41	VDD	-	Positive low voltage power supply (+5V)	
42	CLR	I	Shift register and latch clear input	

Table 7 Pin Configuration (2 / 2)

Pin#	Pin Name	I/O	Function	
43	BANK_EN	- 1	Logic interface control, Hi=Bank interface, Low=Serial data interface	
44	GND	-	Drive power ground (0V)	
45	SW16A	I/O	Analog switch terminal 16 (AFE side)	
46	SW17A	I/O	Analog switch terminal 17 (AFE side)	
47	SW18A	I/O	Analog switch terminal 18 (AFE side)	
48	SW19A	I/O	Analog switch terminal 19 (AFE side)	
49	SW20A	I/O	Analog switch terminal 20 (AFE side)	
50	SW21A	I/O	Analog switch terminal 21 (AFE side)	
51	SW22A	I/O	Analog switch terminal 22 (AFE side)	
52	SW23A	I/O	Analog switch terminal 23 (AFE side)	
53	NC	-	No connection (Not internally connected)	
54	SW8A	I/O	Analog switch terminal 8 (AFE side)	
55	SW9A	I/O	Analog switch terminal 9 (AFE side)	
56	SW10A	I/O	Analog switch terminal 10 (AFE side)	
57	SW11A	I/O	Analog switch terminal 11 (AFE side)	
58	SW12A	1/0	Analog switch terminal 12 (AFE side)	
59	SW13A	1/0	Analog switch terminal 13 (AFE side)	
60	SW14A	1/0	Analog switch terminal 14 (AFE side)	
61	SW15A	I/O	Analog switch terminal 15 (AFE side)	
62	VLL	-	Positive voltage supply of low voltage interface (+1.8V~+5V)	
63	THP	0	Thermal protection output flag, open N-MOS drain	
64	GND	-	Drive power ground (0V)	
65	RGND	-	Bleed resistor ground (0V)	
66	SW15P	I/O	Analog switch terminal 15 (Probe side)	
67	SW14P	I/O	Analog switch terminal 14 (Probe side)	
68	SW13P	I/O	Analog switch terminal 13 (Probe side)	
69	SW12P	I/O	Analog switch terminal 12 (Probe side)	
70	SW11P	I/O	Analog switch terminal 11 (Probe side)	
71	SW10P	I/O	Analog switch terminal 10 (Probe side)	
72	SW9P	I/O	Analog switch terminal 9 (Probe side)	
73	SW8P	I/O	Analog switch terminal 8 (Probe side)	
74	NC	-	No connection (Not internally connected)	
75	SW7P	I/O	Analog switch terminal 7 (Probe side)	
76	SW6P	I/O	Analog switch terminal 6 (Probe side)	
77	SW5P	I/O	Analog switch terminal 5 (Probe side)	
78	SW4P	I/O	Analog switch terminal 4 (Probe side)	
79	SW3P	I/O	Analog switch terminal 3 (Probe side)	
80	SW2P	I/O	Analog switch terminal 2 (Probe side)	
81	SW1P	I/O	Analog switch terminal 1 (Probe side)	
82	SW0P	I/O	Analog switch terminal 0 (Probe side)	
83	VDD	-	Positive low voltage power supply (+5V)	
84	LEB	I	Active-Low latch enable input, Hi=Hold data, Low=Latch data input	

■ Package

Table 8 Package Drawing Codes

Package Name	Dimension	Tray	Marking	Land	Packing
QFN-84(1010)B	QN084-B-P-SD	QN084-B-T-SD	QN084-B-M-SD	QN084-B-L-SD	QN084-B-K-SD

■ Storage, Mounting

1. Storage conditions

- **1.1** The storage location should be kept at 5 to 35°C and 40 to 70% relative humidity. Keeping in a dry box is recommended. Moisture-proof property is assured for 12 months from delivery date for sealed moisture-proof packing, while it is guaranteed for 7 days from unpacked date under the condition above.
- 1.2 When the storage conditions do not conform to those above or other conditions occur indicating moisture exposure, the ICs should be dried to avoid package cracks. A baking process at 125°C lasting for 24 hours results in sufficient dehumidification. The baking is not allowed more than twice, and the ICs should be mounted within 7 days after initial baking or within 10 days of total exposure after the second dehumidification.

2. Reflow soldering

The temperature rise may be different in the resin and a terminal part due to the reflow soldering. It is necessary to check the package surface temperature (resin) before setting the temperature profile. **Figure 6** shows the resistance to soldering heat condition for package (Reflow method). Confirm the heat resistance of the package shown below. (Based on JEDEC J-STD-020).

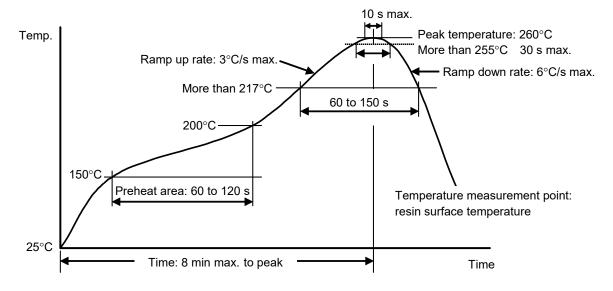
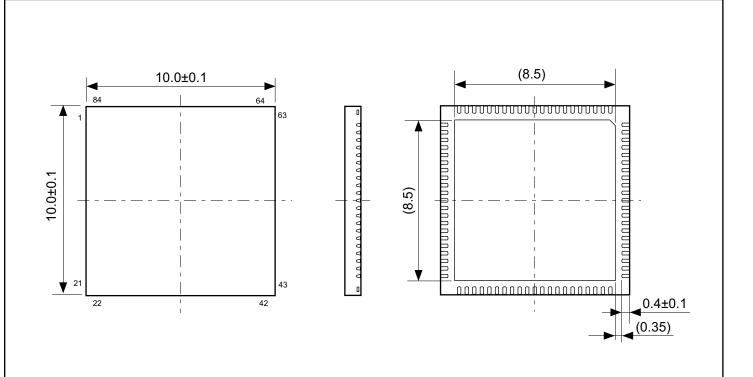
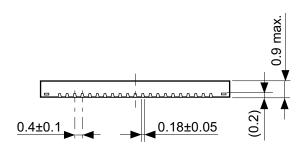


Figure 6 Resistance to Soldering Heat Condition for Package (Reflow Method)

12 ABLIC Inc.

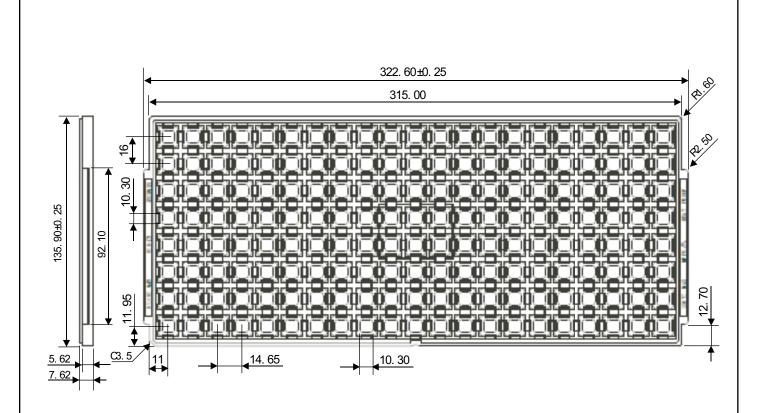
LOW CHARGE INJECTION 32-CHANNEL 8 Ω HIGH-VOLTAGE ANALOG SWITCHES Rev.1.0 $_{00}$ S-UM6522E

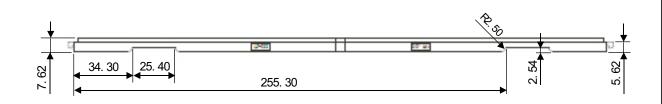

■ Important Notice

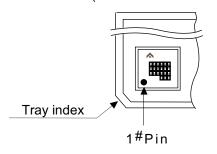

- 1. ABLIC Inc. warrants performance of its hardware products (hereinafter called "products") to the specifications applicable at the time of sale in accordance with the Product Specification. Testing and other quality control techniques are utilized to the extent ABLIC Inc. needs to meet specifications described in the Product Specification. Specific testing of all parameters of each device is not necessarily performed, except those mandated by related laws and/or regulations.
- 2. Should any claim be made within one month of product delivery about products' failure to meet performance described in the Product Specification, all the products in relevant lot(s) shall be re-tested and re-delivered. Products delivered more than one month before such claim shall not be counted for such response.
- 3. ABLIC Inc. assumes no obligation or any way of compensation should any fault about customer products and applications using ABLIC Inc. products be found in marketplace. Only in such a case fault of ABLIC Inc. is evident and products concerned do not meet the Product Specification, compensation shall be conducted if claimed within one year of product delivery up to in the way of product replacement or payment of equivalent amount.
- **4.** ABLIC Inc. reserves the right to make changes to the Product Specification at any time and to discontinue mass production of the relevant products without notice. Customers are advised before placing orders to confirm that the Product Specification of inquiry is the latest version and that the relevant product is currently on mass production status.
- 5. In no event shall ABLIC Inc. be liable for any damage that may result from an accident or any other cause during operation of the user's units according to the Product Specification. ABLIC Inc. assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the Product Specification.
- 6. No license is granted by the Product Specification under any patents or other rights of any third party or ABLIC Inc.
- 7. The Product Specification may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of ABLIC Inc.
- **8.** Resale of ABLIC Inc. products with statements different from or beyond the parameters described in the Product Specification voids all express and any implied warranties for the products, and is an unfair and deceptive business practice. ABLIC Inc. is not responsible or liable for any such statements.
- **9.** Products (technologies) described in the Product Specification are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting those products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

LOW CHARGE INJECTION 32-CHANNEL 8 Ω HIGH-VOLTAGE ANALOG SWITCHES S-UM6522E Rev.1.0 $_{00}$

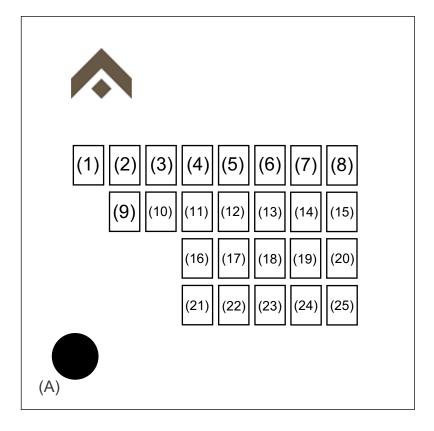
■ Cautions


- 1. Customers are advised to follow the cautions below to protect products from damage caused by electrical static discharge (ESD).
 - 1. 1 Material of container or any device to carry products should be free from ESD, which may be caused by vibration while transportation. It is recommended that electric-conductive container or aluminum sheet be used as an effective countermeasure.
 - **1.2** Those that touch products, such as work platform, machine, or measurement/test equipment, should be grounded.
 - 1. 3 Those who deal with products should be grounded through a large series impedance around $100k\Omega$ to $1M\Omega$.
 - **1.4** Prevent friction with other materials made with high polymer.
 - **1. 5** Prevent vibration or friction when carrying the printed circuit board (PCB) where products are mounted. To short circuit terminals is a recommended countermeasure to keep the same electric potential on the PCB.
 - **1.6** Avoid dealing with or storing products in an extremely arid environment.
- 2. "Absolute maximum ratings" should never be exceeded during use regardless of any change in external conditions. Otherwise, products may be damaged or destroyed. In no event shall ABLIC Inc. be liable for any failure in products or any secondary damage resulting from use at a value exceeding the absolute maximum ratings.
- 3. Products may experience failures due to accident or unexpected surge voltages. Accordingly, adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure. (If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst.)
- 4. Products may experience failures or malfunction in poor surroundings, such as electrical leakage in products due to long-term use in high humidity, malfunctioning or permanent damage due to chemical reaction of products in corrosive environment or due to discharge by strongly charged object near products or due to excessive mechanical shock. To use products in radiation environment is not assumed. To use products near material easy to ignite may cause a fire due to its flammable package. Avoid using products in such environment or take appropriate countermeasures depending on the environment.
- 5. Products are not designed, manufactured, or warranted to be suitable for use where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment). Inclusion of products in such application shall be fully at the risk of customers. ABLIC Inc. assumes no liability for applications assistance, customer product design, or performance.




No. QN084-B-P-SD-1.0

TITLE	QFN84-B-PKG Dimensions			
No.	QN084-B-P-SD-1.0			
ANGLE	lack			
UNIT	mm			
ABLIC Inc.				



(Direction of IC in tray)

No. QFN84-B-T-SD-1.0

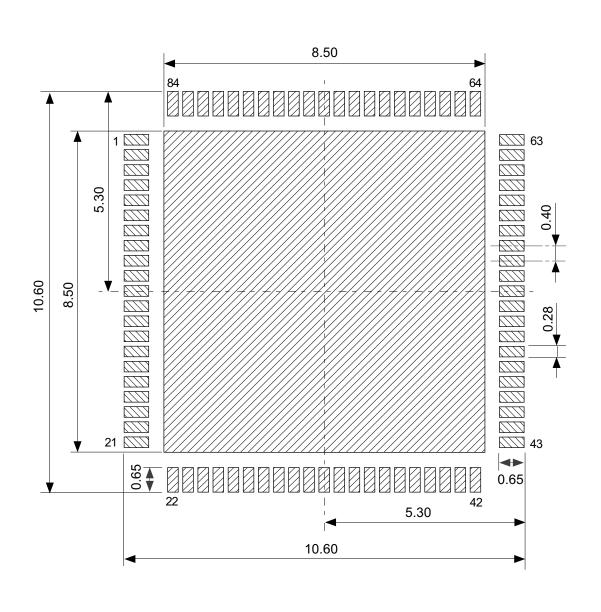
TITLE	QFN84-B-Tray				
No.	Q1	N084-B-T-	SD-1.0		
ANGLE		QTY.	168		
UNIT	mm				
ABLIC Inc.					

(1) to (10) : Product code

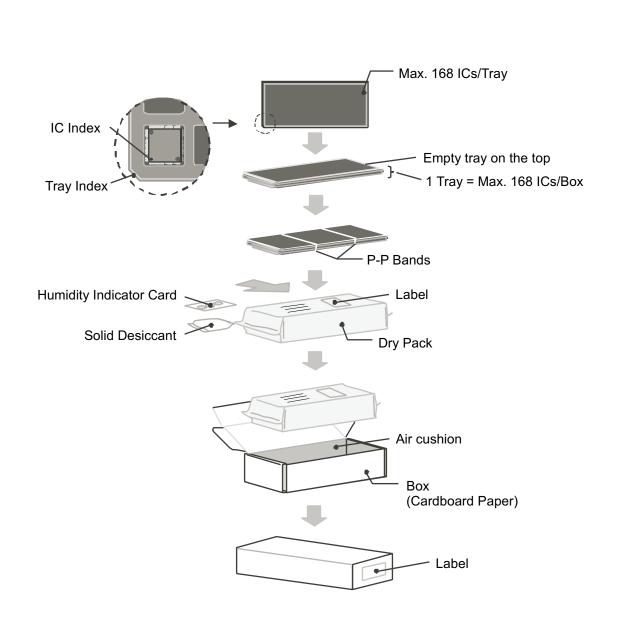
(11), (12) : Quality control code

(13) : Year of assembly

(14) : Month of assembly


(15) : Week of assembly

(16) to (25): Quality control code


(A) : 1-pin mark

No. QFN84-B-M-SD-1.0

TITLE	QFN84-B-Markings						
No.	QN0	84-B-M-	SD-1.0				
ANGLE							
UNIT	TYPE LASER						
ABLIC Inc.							

TITLE	QFN84-B -Land Recommendation
No.	QN084-B-L-SD-1.0
ANGLE	
UNIT	mm
ABLIC Inc.	

TITLE	QFN84-B -Packing Procedure	
No.	QN084-B-K-SD-1.0	
ANGLE		
UNIT		
ABLIC Inc.		

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.
 - The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.
- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ABLIC:

S-UM6522E