QSC112, QSC113, QSC114
Plastic Silicon Infrared Phototransistor

Features
- Tight production distribution
- Steel lead frames for improved reliability in solder mounting
- Good optical-to-mechanical alignment
- Plastic package is infrared transparent black to attenuate visible light
- Can be used with QECXXX LED
- Black plastic body allows easy recognition from LED

Description
The QSC112/113/114 is a silicon phototransistor encapsulated in an infrared transparent, black T-1 package.

Package Dimensions

Notes:
1. Dimensions of all drawings are in inches (mm).
2. Tolerance is ±0.10 (.25) on all non-nominal dimensions unless otherwise specified.
Absolute Maximum Ratings \((T_A = 25^\circ C \text{ unless otherwise specified})\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{OPR})</td>
<td>Operating Temperature</td>
<td>-40 to +100</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>(T_{STG})</td>
<td>Storage Temperature</td>
<td>-40 to +100</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>(T_{SOL-I})</td>
<td>Soldering Temperature (Iron)(^{(2,3,4)})</td>
<td>240 for 5 sec</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>(T_{SOL-F})</td>
<td>Soldering Temperature (Flow)(^{(2,3)})</td>
<td>260 for 10 sec</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>(V_{CE})</td>
<td>Collector-Emitter Voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EC})</td>
<td>Emitter-Collector Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power Dissipation(^{(1)})</td>
<td>100</td>
<td>mW</td>
</tr>
</tbody>
</table>

Notes:
1. Derate power dissipation linearly 1.33 mW/°C above 25°C.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron 1/16" (1.6mm) minimum from housing.

Electrical/Optical Characteristics \((T_A = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{PS})</td>
<td>Peak Sensitivity Wavelength</td>
<td></td>
<td>880</td>
<td>nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Theta)</td>
<td>Reception Angle</td>
<td>±4</td>
<td>°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CEO})</td>
<td>Collector-Emitter Dark Current</td>
<td>(V_{CE} = 10\ V, E_e = 0)</td>
<td>100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BV_{CEO})</td>
<td>Collector-Emitter Breakdown</td>
<td>(I_C = 1\ mA)</td>
<td>30</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BV_{EO})</td>
<td>Emitter-Collector Breakdown</td>
<td>(I_E = 100\ \mu A)</td>
<td>5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{C(ON)})</td>
<td>On-State Collector Current QSC112</td>
<td>(E_e = 0.5 \text{ mW/cm}^2, V_{CE} = 5\ V^{(5)})</td>
<td>1</td>
<td>4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-State Collector Current QSC113</td>
<td>(E_e = 0.5 \text{ mW/cm}^2, I_C = 0.5 mA^{(5)})</td>
<td>2.40</td>
<td>9.60</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-State Collector Current QSC114</td>
<td>(V_{CC} = 5\ V, R_L = 100 \Omega, I_C = 2\ mA)</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CE(sat)})</td>
<td>Saturation Voltage</td>
<td>(E_e = 0.5 \text{ mW/cm}^2, I_C = 0.5mA^{(5)})</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_r)</td>
<td>Rise Time</td>
<td>(V_{CC} = 5\ V, R_L = 100 \Omega, I_C = 2\ mA)</td>
<td>5.0</td>
<td>(\mu s)</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

Note:
5. \(\lambda = 880\ nm, \text{ AlGaAs}\).
Typical Performance Curves

Figure 1. Light Current vs. Radiant Intensity

- $V_{CE} = 5V$
- GaAs Light Source

Figure 2. Angular Response Curve

- $V_{CE} = 5V$
- $I_e = 0.5mW/cm^2$
- $I_e = 0.2mW/cm^2$
- $I_e = 0.1mW/cm^2$

Figure 3. Dark Current vs. Collector - Emitter Voltage

- I_{CEO} - Normalized Dark Current
- $V_{CE} = 25V$
- $T_A = 25^\circ C$

Figure 4. Light Current vs. Collector - Emitter Voltage

- $I_e = 0.5mW/cm^2$
- $I_e = 0.2mW/cm^2$
- $I_e = 0.1mW/cm^2$

Figure 5. Dark Current vs. Ambient Temperature

- I_{CEO} - Normalized Dark Current
- $V_{CE} = 25V$
- $T_A = 25^\circ C$
- $V_{CE} = 10V$
- $T_A = 75^\circ C$
- $T_A = 100^\circ C$
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX®
Across the board. Around the world.™
ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CROSSVOLT™
CTL™
Current Transfer Logic™
DOME™
E’CMOS™
EcoSPARK™
EnSigna™
FACT Quiet Series™
FACT™
FAST®
FASTr™
FPS™
FRFET®
GlobalOptoisolator™
GTO™
HiSeC™
i-Lo™
Power-SPM™
Power-Saver™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConnect™
ScalarPump™
SMART START™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TCM™
The Power Franchise®

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF
THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE
UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF
FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE
PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or
(b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device, or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>