

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

February 2002

IRFP460C

FAIRCHILD

SEMICONDUCTOR®

IRFP460C 500V N-Channel MOSFET

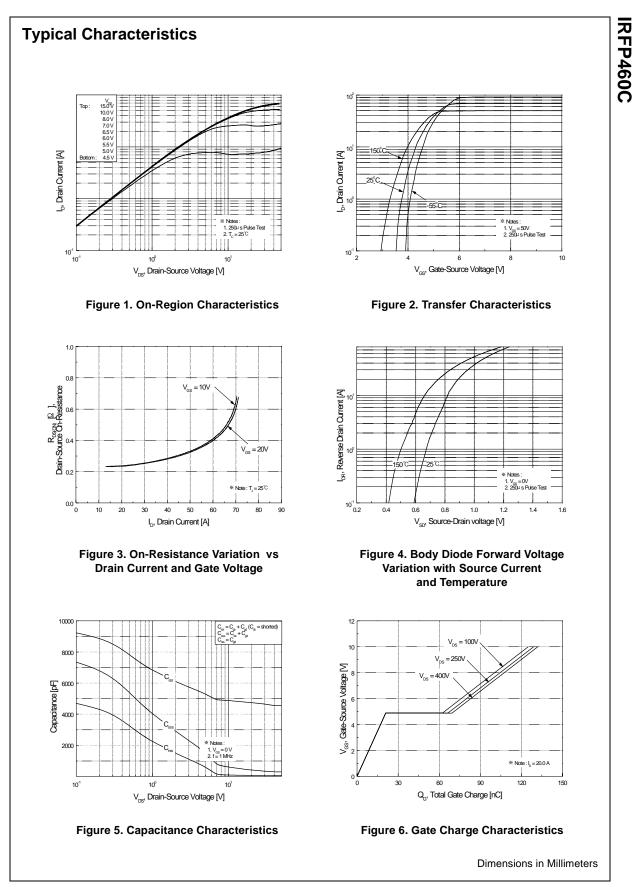
General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

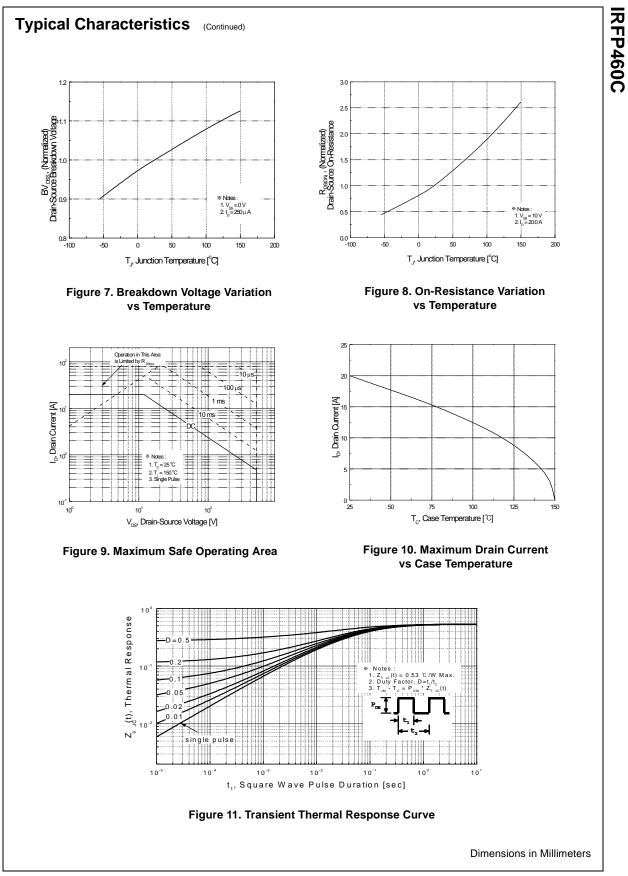
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies and power factor corrections.

Features

- 20A, 500V, $R_{DS(on)} = 0.24\Omega @V_{GS} = 10 V$ Low gate charge (typical 130nC)
- Low Crss (typical 60 pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability

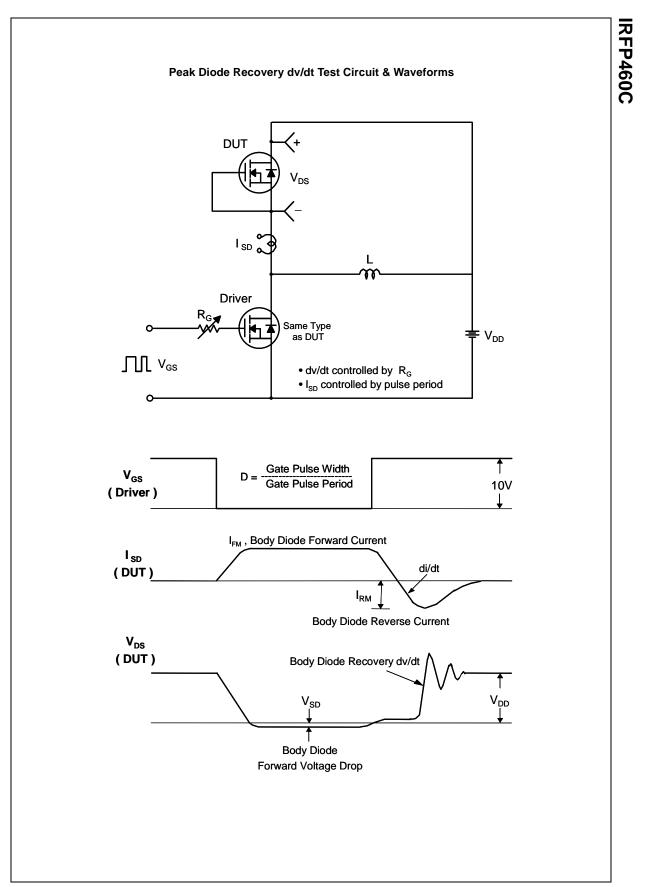

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

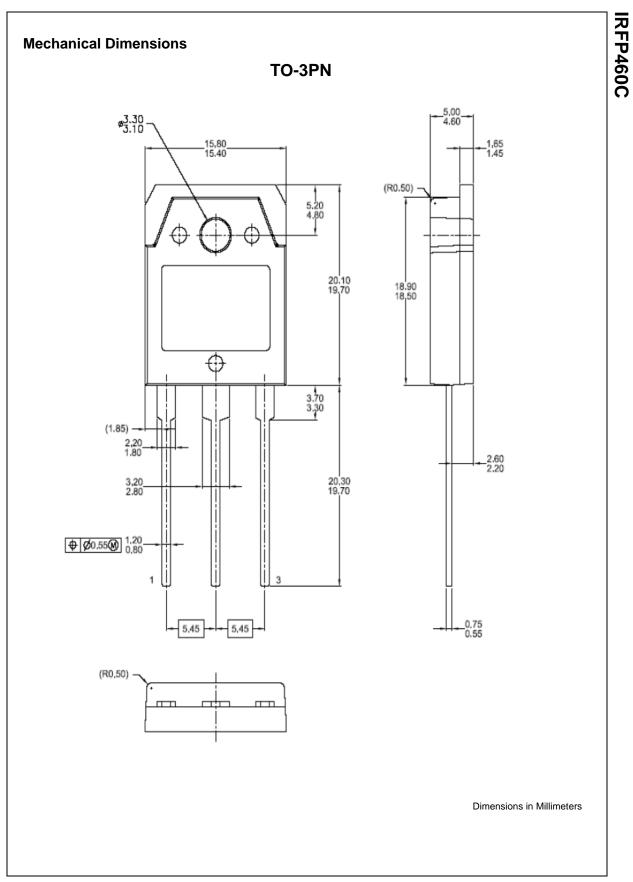
Symbol	Parameter		IRFP460C	Units
V _{DSS}	Drain-Source Voltage		500	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		20	Α
			12.5	A
I _{DM}	Drain Current - Pulsed	(Note 1)	80	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	1050	mJ
I _{AR}	Avalanche Current	(Note 1)	20	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	23.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation (T _C = 25°C)		235	W
	- Derate above 25°C		1.88	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		0.53	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.24		°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

	Parameter Test Conditions		S	Min	Тур	Max	Units
	naracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		500			V
ABV _{DSS}	Breakdown Voltage Temperature			000			
ΔT _J	Coefficient	$I_D = 250 \ \mu A$, Referenced	d to 25°C		0.55		V/°C
I _{DSS}	Zana Oata Malta na Duain Ourreat	$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$				10	μA
	Zero Gate Voltage Drain Current	$V_{DS} = 400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			100	μΑ	
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate-Body Leakage Current, Reverse	V_{GS} = -30 V, V_{DS} = 0 V				-100	nA
on Ch	aracteristics						
	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA		2.0		4.0	V
R _{DS(on)}	Static Drain-Source			2.0			
00(01)	On-Resistance	V _{GS} = 10 V, I _D = 10.0 A			0.2	0.24	Ω
FS	Forward Transconductance	V _{DS} = 50 V, I _D = 10.0 A	(Note 4)		18		S
_							
-	nic Characteristics				4500	6000	
Ciss	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,			4590 380	6000 460	pF
iss oss rss		V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			4590 380 60	6000 460 80	pF pF pF
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance				380	460	pF
C _{iss} C _{oss} C _{rss} Switc d(on)	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz V _{DD} = 250 V, I _D = 20 A,			380 60 50 150	460 80 120 310	pF pF
Ciss Coss Crss Switc d(on) r d(off)	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz			380 60 50 150 380	460 80 120 310 770	pF pF ns ns
Ciss Coss Crss Switcl d(on) r d(off) f	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz V _{DD} = 250 V, I _D = 20 A,	(Note 4, 5)		380 60 50 150 380 180	460 80 120 310 770 370	pF pF ns ns ns ns
Ciss Coss Crss Switc d(on) r d(off) f Qg	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	f = 1.0 MHz V _{DD} = 250 V, I _D = 20 A,	(Note 4, 5)	 	380 60 50 150 380 180 130	460 80 120 310 770 370 170	pF pF ns ns ns ns nc
Ciss Coss Crss Switc d(on) r d(off) f Q _g Q _g	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	f = 1.0 MHz V _{DD} = 250 V, I _D = 20 A, R _G = 25 Ω		 	380 60 50 150 380 180 130 20	460 80 120 310 770 370 170 	pF pF ns ns ns nc nC
C_{iss} C_{oss} C_{rss} Switcl d(on) r d(off) f Q_{g} Q_{gs} Q_{gd}	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	f = 1.0 MHz $V_{DD} = 250 \text{ V}, \text{ I}_D = 20 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 400 \text{ V}, \text{ I}_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$	(Note 4, 5)	 	380 60 50 150 380 180 130	460 80 120 310 770 370 170	pF pF ns ns ns ns nc
$\frac{\text{Ciss}}{\text{Coss}}$ $\frac{\text{Coss}}{\text{Crss}}$ $\frac{\text{Switc}}{\text{d}(on)}$ $\frac{\text{d}(off)}{\text{f}}$ $\frac{\text{d}(off)}{\text{g}}$ $\frac{\text{g}}{\text{g}}$ $\frac{\text{Q}_{gs}}{\text{Q}_{gd}}$ $\frac{\text{Drain-S}}{\text{Coss}}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	f = 1.0 MHz $V_{DD} = 250 \text{ V}, \text{ I}_D = 20 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 400 \text{ V}, \text{ I}_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Rating	(Note 4, 5)	 	380 60 50 150 380 180 130 20 45	460 80 120 310 770 370 170 	pF pF ns ns ns nc nC nC
Ciss Coss Crss Switc d(on) f d(off) f d Qg Qg Qgs Qgd Drain-S S	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Diode	f = 1.0 MHz V_{DD} = 250 V, I_D = 20 A, R_G = 25 Ω V_{DS} = 400 V, I_D = 20 A, V_{GS} = 10 V Add Maximum Rating ode Forward Current	(Note 4, 5)	 	380 60 50 150 380 180 130 20	460 80 120 310 770 370 170 20	pF pF ns ns ns nC nC nC
Ciss Coss Crss Switc d(on) f d(off) f Qg Qgs Qgd Drain-S s SM	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	f = 1.0 MHz V_{DD} = 250 V, I_D = 20 A, R_G = 25 Ω V_{DS} = 400 V, I_D = 20 A, V_{GS} = 10 V Add Maximum Rating ode Forward Current Forward Current	(Note 4, 5)	 	380 60 50 150 380 130 20 45	460 80 120 310 770 370 170 	pF pF ns ns ns nc nC nC
Ciss Coss Crss Switc d(on) r d(off) f Qg Qgs Qgd Drain-S s	Input Capacitance Output Capacitance Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Diode F	f = 1.0 MHz V_{DD} = 250 V, I_D = 20 A, R_G = 25 Ω V_{DS} = 400 V, I_D = 20 A, V_{GS} = 10 V Add Maximum Rating ode Forward Current	(Note 4, 5)	 	380 60 50 150 380 130 20 45 	460 80 120 310 770 370 170 20 80	pF pF ns ns ns nC nC nC A A




Rev. A, February 2002

Rev. A, February 2002

Rev. A, February 2002

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E^2 CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MicroPak[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SLIENT SWITCHER[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: