Is Now Part of

ON Semiconductor

To learn more about ON Semiconductor, please visit our website at www.onsemi.com
FAN7390
High-Current, High & Low-Side, Gate-Drive IC

Features

- Floating Channels for Bootstrap Operation to +600V
- Typically 4.5A/4.5A Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- Built-in Under-Voltage Lockout for Both Channels
- Matched Propagation Delay for Both Channels
- Logic (V\text{SS}) and Power (COM) Ground +/- 7V Offset
- 3.3V and 5V Input Logic Compatible
- Output In-phase with Input

Applications

- PDP Sustain Driver
- HID Lamp Ballast
- SMPS
- Motor Driver

Description

The FAN7390 is a monolithic high- and low-side gate-drive IC, which can drive high speed MOSFETs and IGBTs that operate up to +600V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction.

Fairchild’s high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level shift circuit offers high-side gate driver operation up to V_S=-9.8V (typical) for V_{BS}=15V.

The UVLO circuit prevents malfunction when V_{DD} and V_{BS} are lower than the specified threshold voltage.

The high current and low output voltage drop feature make this device suitable for the PDP sustain pulse driver, motor driver, switching power supply, and high-power DC-DC converter applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Operating Temperature Range</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN7390MX</td>
<td>8-SOP</td>
<td>-40°C ~ 125°C</td>
<td>Tape & Reel</td>
</tr>
<tr>
<td>FAN7390M1X</td>
<td>14-SOP</td>
<td></td>
<td>Tape & Reel</td>
</tr>
</tbody>
</table>
Typical Application Circuit

Figure 1. Application Circuit for Half-Bridge (Referenced 8-SOP)

Figure 2. Application Circuit for Half-Bridge (Referenced 14-SOP)
Internal Block Diagram

Figure 3. Functional Block Diagram (Referenced 8-SOP)

Figure 4. Functional Block Diagram (Referenced 14-SOP)
Pin Configurations

Figure 5. Pin Assignments (Top View)

Pin Definitions

<table>
<thead>
<tr>
<th>8-Pin</th>
<th>14-Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>HIN</td>
<td>Logic Input for High-Side Gate Driver Output</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>LIN</td>
<td>Logic Input for Low-Side Gate Driver Output</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>VSS</td>
<td>Logic Ground (FAN7390M1 only)</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>LO</td>
<td>Low-Side Driver Output</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>VDD</td>
<td>Low-Side and Logic Part Supply Voltage</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>VS</td>
<td>High-Voltage Floating Supply Return</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>HO</td>
<td>High-Side Driver Output</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>VB</td>
<td>High-Side Floating Supply</td>
</tr>
<tr>
<td>4, 8, 9, 10, 14</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^\circ C$, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S</td>
<td>High-Side Floating Supply Offset Voltage</td>
<td>V_B-25</td>
<td>$V_B+0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_B</td>
<td>High-Side Floating Supply Voltage</td>
<td>-0.3</td>
<td>625.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{HO}</td>
<td>High-Side Floating Output Voltage HO</td>
<td>$V_S-0.3$</td>
<td>$V_B+0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>Low-Side and Logic Fixed Supply Voltage</td>
<td>-0.3</td>
<td>25.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{LO}</td>
<td>Low-Side Output Voltage LO</td>
<td>-0.3</td>
<td>$V_{DD}+0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Logic Input Voltage (HIN and LIN)</td>
<td>$V_{SS}-0.3$</td>
<td>$V_{DD}+0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{SS}</td>
<td>Logic Ground (FAN7390M1 only)</td>
<td>$V_{DD}-25$</td>
<td>$V_{DD}+0.3$</td>
<td>V</td>
</tr>
<tr>
<td>dV_S/dt</td>
<td>Allowable Offset Voltage Slew Rate</td>
<td>50</td>
<td></td>
<td>V/ns</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>8-SOP: 0.625</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-SOP: 1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>8-SOP: 200</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-SOP: 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td></td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td></td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
2. Refer to the following standards:
 JESD51-2: Integral circuits thermal test method environmental conditions - natural convection
 JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages
3. Do not exceed P_D under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_B</td>
<td>High-Side Floating Supply Voltage</td>
<td>V_S+10</td>
<td>V_S+22</td>
<td>V</td>
</tr>
<tr>
<td>V_S</td>
<td>High-Side Floating Supply Offset Voltage</td>
<td>6-V_{DD}</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{HO}</td>
<td>High-Side Output Voltage</td>
<td>V_S</td>
<td>V_B</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>Low-Side and Logic Supply Voltage</td>
<td>10</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>V_{LO}</td>
<td>Low-Side Output Voltage</td>
<td>COM</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Logic Input Voltage (HIN and LIN)</td>
<td>V_{SS}</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating Ambient Temperature</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics

$V_{BIAS} (V_{DD}, V_{BS}) = 15.0V, V_S = V_{SS} = COM, T_A = 25^\circ C$, unless otherwise specified. The V_{IL}, V_{IH}, and I_{IN} parameters are referenced to V_{SS}/COM and are applicable to the respective input signals HIN and LIN. The V_O and I_O parameters are referenced to COM and V_S is applicable to the respective output signals HO and LO.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDUV+}, V_{BSUV+}</td>
<td>V_{DD} and V_{BS} Supply Under-Voltage Positive-going Threshold</td>
<td>8.0</td>
<td>8.8</td>
<td>9.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{DDUV-}, V_{BSUV-}</td>
<td>V_{DD} and V_{BS} Supply Under-Voltage Negative-going Threshold</td>
<td>7.4</td>
<td>8.3</td>
<td>9.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{LK}</td>
<td>Offset Supply Leakage Current $V_B = V_S = 600V$</td>
<td>50</td>
<td></td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_{OBS}</td>
<td>Quiescent V_{BS} Supply Current $V_{IN} = 0V$ or 5V</td>
<td>45</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ODD}</td>
<td>Quiescent V_{DD} Supply Current $V_{IN} = 0V$ or 5V</td>
<td>75</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{PBS}</td>
<td>Operating V_{BS} Supply Current $f_{IN} = 20kHz$, rms value</td>
<td>530</td>
<td>640</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_{PDD}</td>
<td>Operating V_{DD} Supply Current $f_{IN} = 20kHz$, rms value</td>
<td>530</td>
<td>640</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Note:
4. This parameter guaranteed by design.

Dynamic Electrical Characteristics

$V_{BIAS} (V_{DD}, V_{BS}) = 15.0V, V_S = V_{SS} = COM = 0V, C_L = 1000pF$ and $T_A = 25^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{on}</td>
<td>Turn-on Propagation Delay $V_S = 0V$</td>
<td></td>
<td>140</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{off}</td>
<td>Turn-off Propagation Delay $V_S = 0V$</td>
<td>140</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Delay Matching, HS & LS Turn-on/off</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Turn-on Rise Time</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Turn-off Fall Time</td>
<td>20</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Characteristics

Figure 6. Turn-on Propagation Delay vs. Temperature

Figure 7. Turn-off Propagation Delay vs. Temperature

Figure 8. Turn-on Rise Time vs. Temperature

Figure 9. Turn-off Fall Time vs. Temperature

Figure 10. Turn-on Delay Matching vs. Temperature

Figure 11. Turn-off Delay Matching vs. Temperature
Typical Characteristics (Continued)

Figure 12. Quiescent V_{DD} Supply Current vs. Temperature

Figure 13. Quiescent V_{BS} Supply Current vs. Temperature

Figure 14. Operating V_{DD} Supply Current vs. Temperature

Figure 15. Operating V_{BS} Supply Current vs. Temperature.

Figure 16. V_{DD} UVLO+ vs. Temperature

Figure 17. V_{DD} UVLO- vs. Temperature
Typical Characteristics (Continued)

Figure 18. \(V_{BS\ UVLO^+} \) vs. Temperature

Figure 19. \(V_{BS\ UVLO^-} \) vs. Temperature

Figure 20. High-Level Output Voltage vs. Temperature

Figure 21. Low-Level Output Voltage vs. Temperature

Figure 22. Logic High Input Voltage vs. Temperature

Figure 23. Low Input Voltage vs. Temperature
Typical Characteristics (Continued)

![Graph 1: Logic Input High Bias Current vs. Temperature](image1)

Figure 24. Logic Input High Bias Current vs. Temperature

![Graph 2: Allowable Negative V_S Voltage vs. Temperature](image2)

Figure 25. Allowable Negative V_S Voltage vs. Temperature
Switching Time Definitions

Figure 26. Switching Time Test Circuit (Referenced 8-SOP)

Figure 27. Input/Output Timing Diagram

Figure 28. Switching Time Waveform Definitions

Figure 29. Delay Matching Waveform Definitions
Physical Dimensions

Figure 30. 8-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
Figure 31. 14-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/
FAN7390 — High-Current, High & Low Side, Gate-Drive IC

TRADemarks
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
All-CAP™
Bisce™
Build It Now™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
F™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST™
FastCore™
FETBench™
FlashWriter™
FPS™
F-PFS™
FRFET™
Global Power Resources™
GreenBridge™
Green FPS™
Green FPS® e-Series™
Grmax™
GTO™
Intellic™
ISOLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroFak™
MillerDrive™
MotionMax™
mWesaver™
OptoHIT™
OPTOLOGIC™
OPTOPLANAR™
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET™
QS™
Quiet Series™
Radioset™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SupreSOT™-8
SupreMOS™
SyncFET™
Sync-Lock™
SYSTEM GENERAL™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREBIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HERIN. NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage, and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and its Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Definition of Terms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasheet Identification</td>
<td>Product Status</td>
</tr>
<tr>
<td></td>
<td>Formative / In Design</td>
</tr>
<tr>
<td>Advance Information</td>
<td>Preliminary</td>
</tr>
<tr>
<td></td>
<td>First Production</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not in Production</td>
</tr>
</tbody>
</table>

Rev. 162
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:
- FAN7390M
- FAN7390M1
- FAN7390M1X
- FAN7390N
- FAN7390MX