

Rev. 2.0.1

GENERAL DESCRIPTION

The SPX431L is a 3-terminal adjustable shunt voltage regulator providing a highly accurate bandgap reference. The SPX431L acts as an open-loop error amplifier with a 2.5V temperature compensation reference. The SPX431L's thermal stability, wide operating current (100mA) and temperature range (0°C to 105°C) makes it suitable for a variety of applications that require a low cost, high performance solution. SPX431L tolerance of 0.5% is proven to be sufficient to overcome all of the other errors in the system to virtually eliminate the need for trimming in the power supply manufacturer's assembly line and contribute a significant cost savings.

The output voltage may be adjusted to any value between VREF and 20V with two external resistors. The SPX431L/is available in TO-92, and SOT-89 packages.

APPLICATIONS

- Battery Operating Equipment
- Adjustable Supplies
- Switching Power Supplies
- Error Amplifiers
- Single Supply Amplifier
- Monitors / VCRs / TVs
- Personal Computers

FEATURES

- Tight Voltage Tolerance 0.5% at 10mA
- Wide Operating Current 1mA to 100mA
- Extended Temperature Range: 0°C to 105°C
- Low Temperature Coefficient 30 ppm/°C
- Improved Replacement in Performance for TL431 and AS431

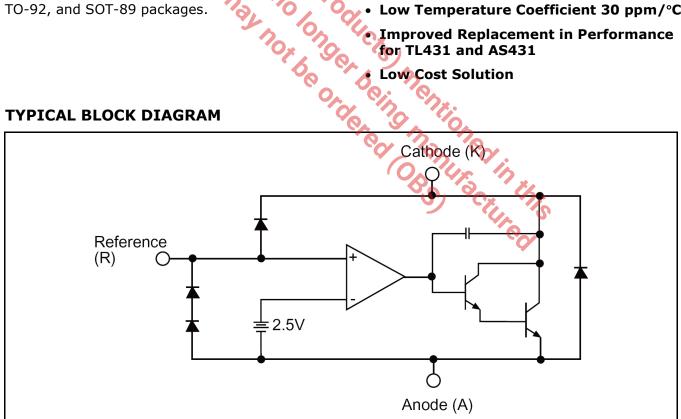


Fig. 1: SPX431L Precision Adjustable Shunt Regulator

TYPICAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

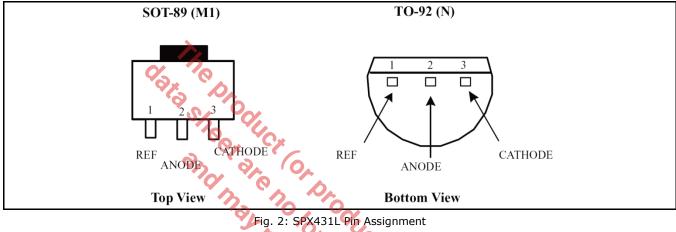
Cathode-Anode Reverse Breakdown V _{KA} 20V	/
Anode-Cathode Forward Current, (<10ms) I_{AK} 1A	
Operating Cathode Current I _{KA} 100mA	
Reference Input Current I _{REF} 10mA	١
Continuous Power Dissipation at 25°C PD	
TO-92 775mW	
SOT-89 1000mW	/

OPERATING RATINGS

Input Voltage Range V_{KA} V_{REF} to 20V Cathode Current I_K 10ma	,
Junction Temperature Range	
Thermal Resistance	
0 _{JA} (TO-92)160°C/W	1
0 _{JC} (TO-92)80°C/W	1
Typical Derating (TO-92)6.3 mW/°C	
0 _{1A} (SOT-89)110°C/W	
0 _{JC} (SOT-89)	1
Typical Derating (SOT-89)9.1 mW/°C	

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Junction Temperature of $T_A = 25$ °C only; limits applying over the full Operating Junction Temperature range are denoted by a "". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25$ °C, and are provided for reference purposes only. Unless otherwise indicated, $I_K = 10$ mA $V_K = V_{REF}$.


Parameter	Min.	Тур.	Max.	Units		Conditions
SPX431LA			< °.	9		
Reference Voltage	2.490	2.503	2.515	S V		
ΔVREF withTemp. ¹		0.07	0.20	mV/°C	9	
Ratio of Change in VREF to Cathode Voltage	-2.7 -2.0	-1.0 -0.4	0.3	mV/V	1	VREF to 10V VREF to 10V
Reference Input Current		0.7	4.0	Ο μΑ	2	
IREF Temp Deviation		0.4	1.2	μA	2	TJ = 0°C to 105°C
Min IK for Regulation		0.4	1.0	mA		15 12
Off State Leakage		0.04	1.0	μΑ 🤇	ľo.	VREF = 0V, VKA = 20V
Dynamic Output Impedance		0.15	0.5	Ω	シ	$fz \leq 1$ kHz Ik = 1 to 100mA
SPX431L						· •
Reference Voltage	2.470	2.495	2.520	V		V
ΔVREF withTemp. ¹		0.07	0.20	mV/°C		
Ratio of Change in VREF to Cathode Voltage	-2.7 -2.0	-1.0 -0.4	0.3	mV/V		VREF to 10V VREF to 10V
Reference Input Current		0.7	4.0	μA		
IREF Temp Deviation		0.4	1.2	μA		$TJ = 0^{\circ}C$ to $105^{\circ}C$
Min IK for Regulation		0.4	1.0	mA		
Off State Leakage		0.04	1.0	μA		VREF = 0V, VKA = 20V
Dynamic Output Impedance		0.15	0.5	Ω		$fz \le 1 \text{kHz}$ Ik = 1 to 100mA
SPX431LC						
Reference Voltage	2.445	2.495	2.520	V		
$\Delta VREF$ with Temp. ¹		0.07	0.20	mV/°C		
Ratio of Change in VREF to Cathode Voltage	-2.7 -2.0	-1.0 -0.4	0.3	mV/V		VREF to 10V VREF to 10V
Reference Input Current		0.7	4.0	μA		
IREF Temp Deviation		0.4	1.2	μA		TJ = 0°C to 105°C

Parameter	Min.	Тур.	Max.	Units	Conditions
Min IK for Regulation		0.4	1.0	mA	
Off State Leakage		0.04	1.0	μA	VREF = 0V, VKA = 20V
Dynamic Output Impedance		0.15	0.5	Ω	$fz \le 1 \text{kHz}$ Ik = 1 to 100mA

Note 1: See appropriate test circuit (Figures 25, 26, 27)

PIN ASSIGNMENT

PIN DESCRIPTION

Name	Pin Number		Description
NAME	1	Reference	
NAME	2	Anode	to the Dr.
NAME	3	Cathode	
ORDERING 1		ON	ed manus in
	—		

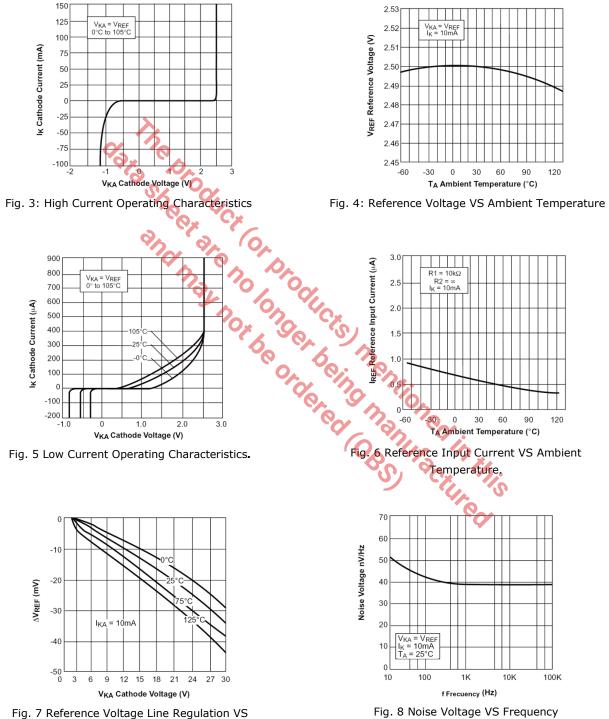
ORDERING INFORMATION

Part Number	Temperature Range	Marking	Package	Packing Quantity	Note 1	Note 2
SPX431LAN-L	0°C to 105°C	Sipex 431LAN	1311 AN	Bulk	Halagon Eroo	2.503V 0.5% Acc
SPX431LAN-L/TR	0°C to 105°C	25 YYWWLX	10-92-3	TO-92-3 Tape & Reel		
SPX431LM1-L		■ P011	SOT-89-3	Bulk	Halogen Free, bar on left side of marking	2.495V 1.0% Acc
SPX431LM1-L/TR	0°C to 105°C	YWWXXX		Tape & Reel	denotes "-L" lead free product	
SPX431LN-L		Sipex 431LN	TO-92-3	Bulk		2.495V 1.0% Acc
SPX431LN-L/TR	0°C to 105°C	25 YYWWLX		Tape & Reel		

"YY" = Year (Last 2 digits) - "Y" = Year (Last Digit)

"WW" = Work Week

L'' = Lead free designator


"X" = Lot Number (example <u>A</u>A234567) - "XXX" = Lot Number (example <u>A</u>A2345<u>67</u>)

No bottom marking

TYPICAL PERFORMANCE CHARACTERISTICS

Schematic and BOM from Application Information section of this datasheet. Resistor values are chosen such that the effect to I_{REF} is negligible.

Precision Adjustable Shunt Regulator

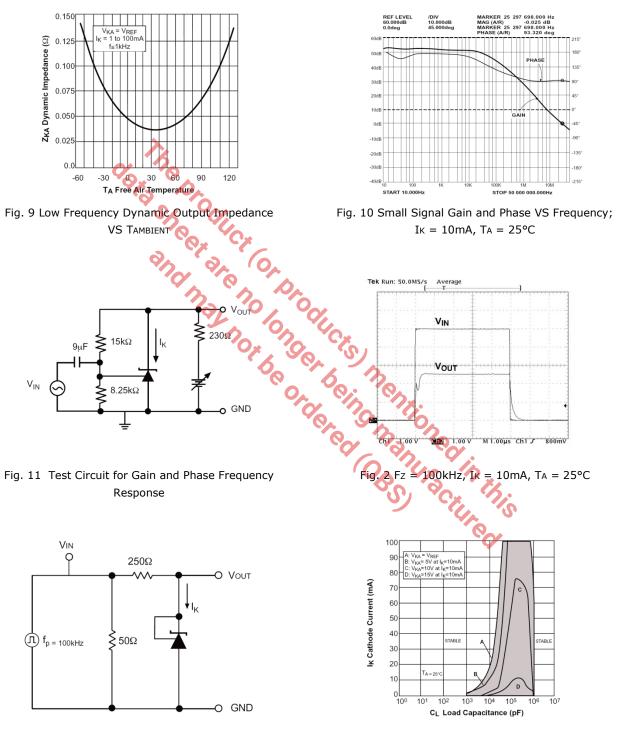


Fig. 33 Test Circuit for Pulse Response

Fig. 44 Stability Boundry Conditions

Precision Adjustable Shunt Regulator

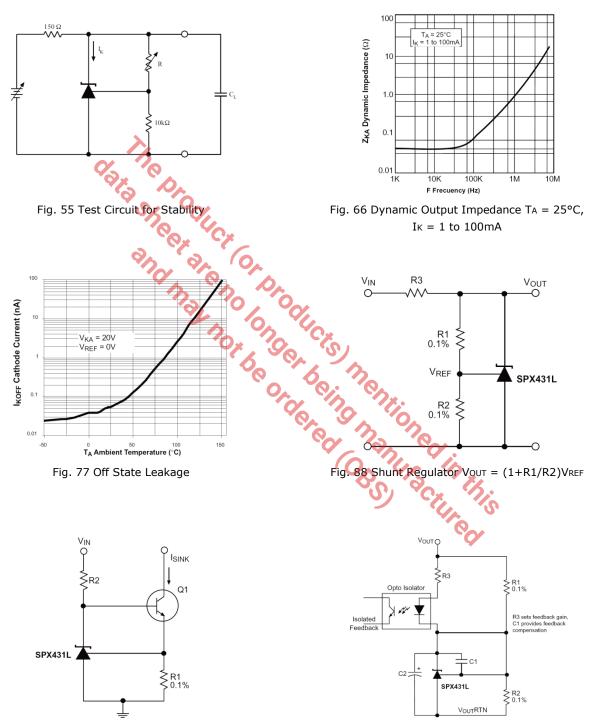
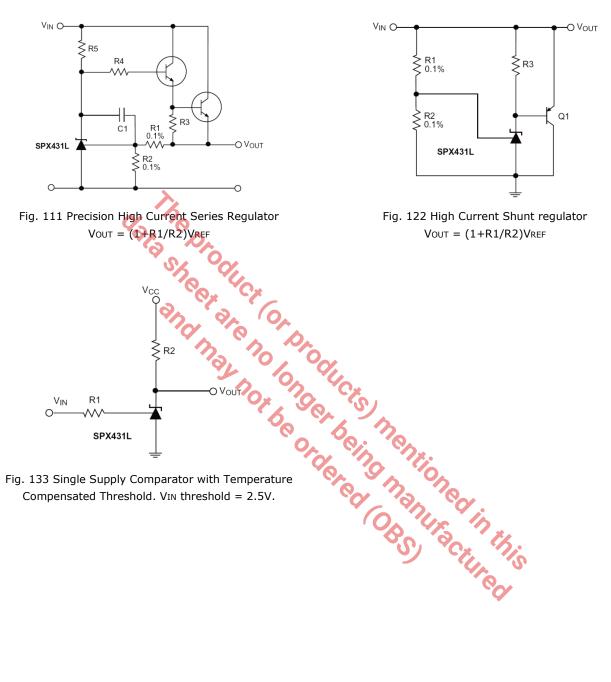



Fig. 199 Constant Current Sink, ISINK = VREF/R1

Fig. 100 Reference Amplifier for Isolated Feedback in Off-Line DC-DC Converters

Precision Adjustable Shunt Regulator

APPLICATION INFORMATION

CALCULATING AVERAGE TEMPERATURE COEFFICIENT (TC)

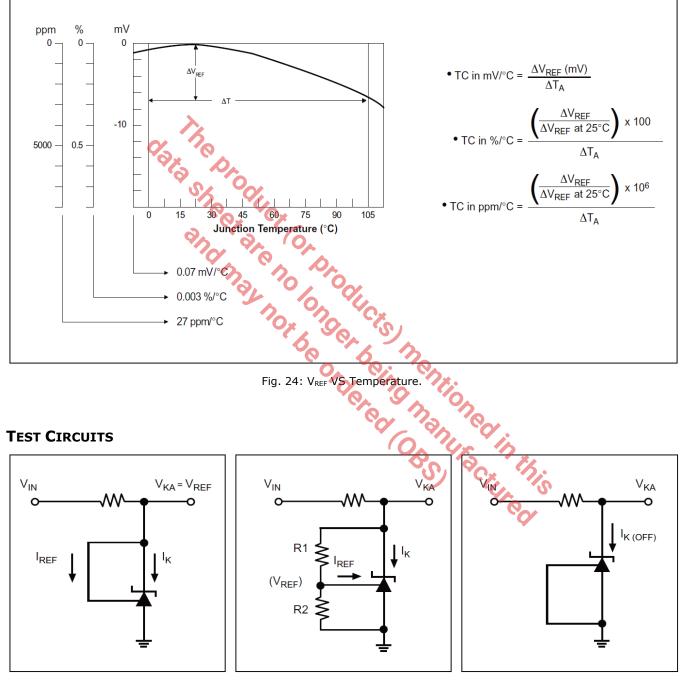
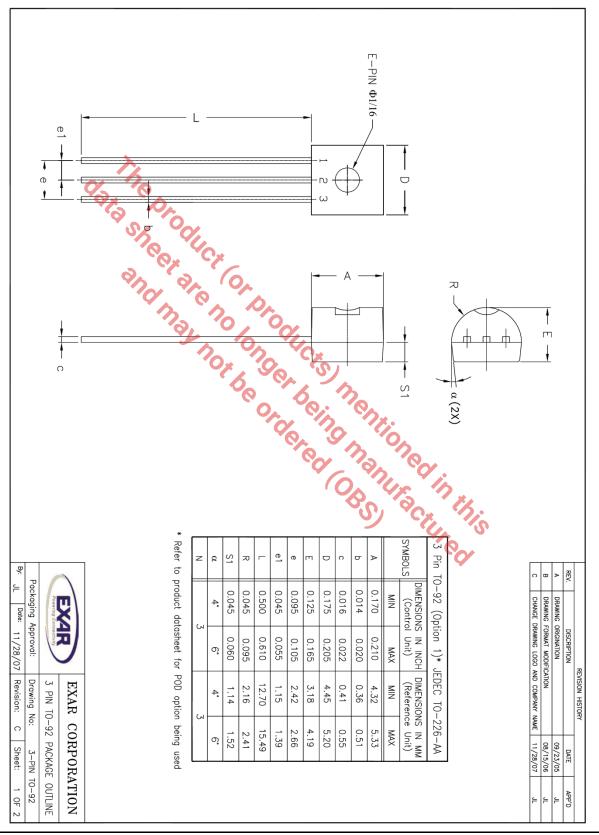


Fig. 25: Test Circuit for $V_{KA} = V_{REF}$

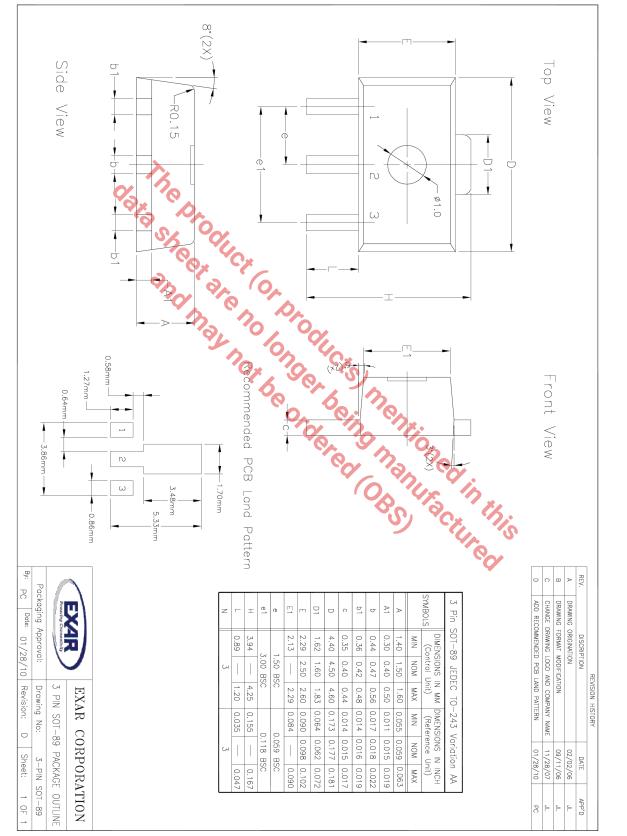
Fig. 26: Test Circuit for $V_{KA} > V_{REF}$


Fig. 27: Test Circuit for $I_{\mbox{\scriptsize KOFF}}$

Precision Adjustable Shunt Regulator

PACKAGE SPECIFICATION

3 PIN TO-92



Precision Adjustable Shunt Regulator

PACKAGE SPECIFICATION

3 PIN SOT-89

REVSION HISTORY

Revision	Date	Description
2.0.0	06/12/2012	Reformatted Datasheet. Corrected Package Drawing
2.0.1	07/19/2013	Update package marking information and updated corporate logo.

HEADQUARTERS AND SALES OFFICES

48720 Kato Road Fremont, CA 94538 - US Tel.: +1 (510) 668-7000 Fax: +1 (510) 668-7030

```
www.exar.com
```

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MaxLinear:

SPX431LM1-L SPX431LAN-L SPX431LAN-L/TR SPX431LM1-L/TR SPX431LN-L/TR