400G-SR8 QSFP-DD Finisar® Transceiver

FTCD8613E2PCM QSFP-DD SR8 transceiver modules are designed for use in Gigabit Ethernet links on up to 70m on OM3 MMF or 100m on OM4 MMF. They are compliant with the QSFP-DD MSA and portions of IEEE P802.3bs. Digital diagnostic functions are available via the I2C interface, as defined by the CMIS 4.0. The optical transceiver is RoHS compliant as described in Application Note AN-2038^{3.4.}

FTCD8613E2PCM QSFP-DD SR8 transceiver has 8 independent Tx lanes and 8 independent Rx lanes. It supports typical applications including:

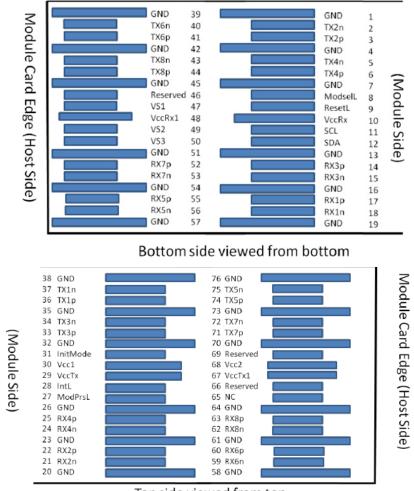
- 1. 1x 400GBASE-SR8 with 400GAUI-8
- 2. 2x 200GBASE-SR4 with 200GAUI-4
- 3. 4x 100GBASE-SR2 with 100GAUI-2
- 4.8x 50GBASE-SR with 50GAUI-1

FEATURES

- Hot-pluggable QSFP-DD form factor
- Power dissipation < 9W
- RoHS compliant
- Case temperature range of 0°C to +70°C
- Single 3.3V power supply
- Maximum link length of 100m onOM4 fiber with KP4 FEC
- 8x50G PAM4 VCSEL transmitter
- 8x50G PAM4 retimed 400GUAI-8 electrical interface aligned with IEEE 802.3bs
- MPO-16 APC connector
- I2C management interface10B

APPLICATIONS

• 400G 100m on OM4 with FEC



Product Selection

FTCD8613E2PCM

- E: Ethernet protocol
- P: Pull-tab type release
- C: Commercial temperature range
- M: MPO connector

I. Pin Descriptions

Top side viewed from top

Figure 1 – QSFP-DD -compliant 76-pin connector (per QSFP-DD MSA)

Pin	Logic	Symbol	Name/Description	Plug Sequence ^₄	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		Vcc Rx	+3.3 V Power supply receiver	2B	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-0	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-0	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-0	Rx2n	Receiver Inverted Data Output	3B	
22	CML-0	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-0	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		Vcc Tx	+3.3 V Power supply transmitter	2B	2
30		Vcc1	+3.3 V Power Supply	2B	2
31	LVTTL-I	InitMode	Low Power Mode	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1

43	CML-I	Tx8n	Transmitter Inverted Data Input	ЗА	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	ЗA	
45		GND	Ground	1A	1
46		Reserved For future use		ЗA	3
47		VS1	Module Vendor Specific 1	ЗA	3
48		VccRx1	3.3 V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	ЗA	3
50		VS3	Module Vendor Specific 3	ЗA	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Input	ЗA	
53	CML-O	Rx7n	Receiver Inverted Data Input	ЗA	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Input	ЗA	
56	CML-O	Rx5n	Receiver Inverted Data Input	ЗA	
57		GND Ground		1A	1
58		GND	GND Ground		1
59	CML-O	Rx6n	Receiver Non-Inverted Data Input	ЗA	
60	CML-O	Rx6p	Receiver Inverted Data Input	ЗA	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Non-Inverted Data Input	ЗA	
63	CML-O	Rx8p	Receiver Inverted Data Input	ЗA	
64		GND	Ground	1A	1
65		NC	No Connect	ЗА	3
66		Reserved	For Future Use	ЗА	3
67		VccTx1	3.3 V Power Supply	2A	2
68		Vcc2	3.3 V Power Supply	2A	2
69		Reserved	For Future Use	ЗA	3
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	ЗA	
72	CML-I	Tx7n	TransmitterInverted Data Input	ЗА	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	ЗА	
75	CML-I	Tx5n	Transmitter Inverted Data Input	ЗА	
76		GND	Ground	1A	1

Notes

Note 1: QSFP-DD uues common ground (GND) for all singnals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board sgnal-common ground plane.

Note 2: VccRx, VccRx1, Vcc;, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 4. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins and each rated for a maximum current of 1000 mA.

Note 3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF. Note 4: Plug Sequence specifies the mating sequence of the host connector and module. The sequence specifies the mating sequence of the host connector and module, The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B followed by 3A, 3B.

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T _s	-40		+85	°C	
Case Operating Temperature	T _{OP}	0		+70	°C	
Relative Humidity	RH	15		85	%	1
Receiver Damage Threshold, per Lane	P _{Rdmg}	5			dBm	
Notes:						

1. Non-condensing.

III. Electrical Characteristics (EOL, TOP = 0 to 70 °C, V_{cc} = 3.135 to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	lcc			2.87	А	
Module total power	Р			9	W	1
Transmitter						
Signaling rate per lane			26.5625±100	ppm.	Gbd	
Differential data input voltage per lane	Vin,pp,diff	900			mV	2
Differential input return loss		Per eq	uation (83E–5)	IEEE802.3bm	dB	
Differential to common mode input re-turn loss		Per eq	uation (83E–6)	IEEE802.3bm	dB	
Differential termination mismatch				10	%	
Module stress input test		Per	r 120E.3.4.1 IEE	E802.3bs		3
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4
Receiver						·
Signaling rate per lane			26.5625±100	ppm.	Gbd	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265		UI		
Near-end Eye height, differential (min)		70			mV	
Far-end ESMW (Eye symmetry mask width)			0.2		UI	
Far-end Eye height, differential (min)		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	dB	
Differential output return loss		Per ec	quation 83E-2 l	EEE802.3bm		
Common to differential mode con-version return loss		Per ec	quation 83E-3 l	EEE802.3bm		
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		9.5			ps	
DC common mode voltage (min)		-350		2850	mV	4

Notes:

1. Maximum total power value is specified across the full temperature and voltage range.

2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.

3. Meets specified BER

4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

IV. Optical Characteristics (EOL, T_{op} = 0 to 70 °C, V_{cc} = 3.135 to 3.465 Volts)

Meets 400GBASE-DR4 as being defined by IEEE P802.3bs

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling rate (each lane (range)		26.5	5625 ± 100	ppm	GBd	
Modulation format			PAM4			
Lane wavelength (range)			840 to 860			
RMS spectral width			0.6	nm	1	
Average launch power, each lane			4	dBm		
Average launch power, each lane	-6.5			dBm		1
Outer Optical Modulation Amplitude (OMAouter), each lane	-4.5		3	dBm	2	2
Launch power in OMAouter minus TDECQ, each lane	-5.9			dBm		
Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane			4.5	dB		
TDECQ – 10 $\log_{10}(C_{eq})$, each lane			4.5	dB	3	
Average launch power of OFF transmitter, each lane			-30	dBm		
Extinction ratio	3			dB		
Transmitter transition time, each lane			34	pS		
RIN ₁₂ OMA			-128	dB/Hz		
Optical return loss tolerance			12	dB		
Encircled flux		36% at 19 μm 30% at 4.5 μm				4

Notes:

1. RMS spectral width is the standard deviation of the spectrum.

2. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed this value. 3. C_{eq} is a coefficient defined in 121.8.5.3, which accounts for the reference equalizer noise enhancement. 4. If measured into type A1a.2 or type A1a.3, or A1a.4, 50 µm fiber, in accordance with IEC 61280-1-4.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver						
Signaling rate (each lane (range)	ling rate (each lane (range) 26.5625 ± 100 ppm GBd				GBd	
Modulation format			PAM4			
Lane wavelength (range)			840 to 860	C	nm	
Damage threshold, each lane		5			dBm	1
Average receive power, each lane		-8.4		4	dBm	2
Receive power (OMAouter), each lane				3	dBm	
Receiver reflectance				-12	dBm	
Receiver sensitivity (OMAouter), each lane				Equation (138–1)	dB	3
Stressed receiver sensitivity (OMAouter), each lane				-3.4	dBm	4
Conditions of stressed receiver sensitivity test:	nditions of stressed receiver sensitivity test:					
Stressed eye closure for PAM4 (SECQ), lane under test		4.5 dB				6
SECQ – 10log10(C _{eq}), each lane (max)		4.5 dB				
OMAouter of each aggressor lane			3		dBm	
LOS De-Assert				-9	dBm	
LOS Assert		-30		-10	dBm	
LOS Hysteresis		0.5			dB	

Notes:

1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.

2. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

3. Receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 4.5 dB

4. Measured with conformance test signal at TP3 (see 138.8.10) for the BER specified in 138.1.1.

5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

6. Ceq is a coefficient defined in 121.8.5.3, which accounts for the reference equalizer noise enhancement.

V. General Specifications

Parameter	Symbol	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR		425	Gb/s	1
Bit Error Ratio	BER		2.4E-4		2
Maximum Supported Distances					
Fiber Type					
OM3 MMF OM4 MMF	Lmax1 Lmax2		70 100	m	

Notes:

1. Supports 400GBASE-SR8 per IEEE P802.3cm.

2. As defined by IEEE P802.3cm.

VI. Environmental Specifications

Finisar® FTCD8613E2PCM SR8 QSFP-DD transceivers have an operating case temperature range of 0°C to +70°C.

Environmental Specifications	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	0		70	°C	
Storage Temperature	T _{sto}	-40		85	°C	

VII. Regulatory Compliance

The Finisar® FTCD8613E2PCM transceivers are RoHS compliant. Copies of certificates are available from II-VI Incorporated upon request.

Finisar® FTCD8613E2PCM SR8 QSFP-DD transceivers are Class 1M Laser Products. They are certified per the following standards:

Feature	Agency	Standard
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040.10 and Laser Notice 56
	UL/CSA/TÜV	IEC/EN 60825-1:2014 IEC/EN 60825-2: 2004+A1+A2
Electrical Safety	UL/CSA/TÜV	IEC/UL/EN 62368-1:2014

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

VIII. Memory Map

Compatible with QSFP-DD CMIS rev 4.0.

XI. Mechanical Specifications

Finisar® FTCD8613E2PCM SR8 QSFP-DD transceivers are compatible with the QSFP- DD Type 2 Specification for pluggable form factor modules.

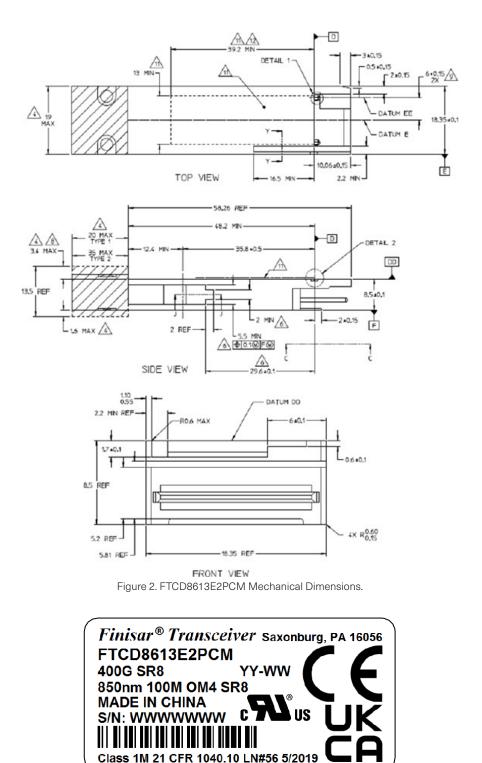


Figure 3. Product Label

C
 HERENT

The optical port is a male MPO connector receptacle, with fiber lane assignments as shown in Figure 4.

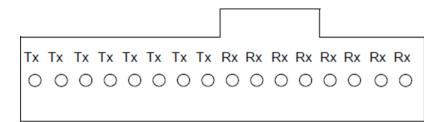


Figure 4. FTCD8613E2PCM optical lane assignment (Front view of MPO receptacle)

X. References

1. QSFP-DD Hardware Specification for QSFP DOUBLE DENSITY 8X PLUGGABLE TRANSCEIVER Rev 5.0

2. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 and associated SFF documents referenced therein:

i. SFF-8661

ii. SFF-8679

iii. SFF-8662

iv. SFF-8663

v. SFF-8672

3. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment" as well as Commission Delegated Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU. Certain products may use one or more exemptions as allowed by the Directive. 4. Application Note AN-2038: "II-VI Implementation of RoHS Compliant Transceivers".

5. Common Management Interface Specification (CMIS) Rev 4.0.

6. IEEE P802.3bs, 400GAUI-8 Interface.

7. IEEE P802.3cm.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Coherent:

FTCD8613E2PCM-1A FTCD8613E2PCM