

Features

Self-contained photoelectric sensors

- · 24 to 240 V AC with solid-state outputs
- · Signal strength or output indicator
- 2 m or 9 m integral cable, 1/2 in-20UNF (1/2-in Dual Key) quick-disconnect fitting
- 18 mm threaded lens mount on some models

WARNING:

- · Do not use this device for personnel protection
- Using this device for personnel protection could result in serious injury or death.
- This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A device failure or malfunction can cause either an energized (on) or de-energized (off) output condition.

MINI-BEAM AC Models

Model ⁽¹⁾	Sensing Mode	Range	LED	
SMA31E	Opposed Emitter	3 m (10 ft)		
SM2A31R	Opposed Receiver	3 111 (10 11)	Infrared, 880 nm	
SMA31EL	Opposed Emitter - Long Range	30 m (100 ft)		
SM2A31RL	Opposed Receiver - Long Range	30 111 (100 11)		
SMA31EPD	Opposed Emitter Clear Plastic Detection	0 to 300 mm (0 to 12 in)		
SM2A31RPD	Opposed Receiver Clear Plastic Detection	Actual range varies, depending upon the light transmission properties of the plastic material being sensed.		
SM2A312LV	Non-Polarized Retroreflective	5 m (15 ft)	Visible red, 650 nm	
SM2A312LVAG	Polarized Retroreflective	50 mm to 2 m (2 in to 7 ft)		
SM2A312LP	Extended-Range Polarized Retroreflective	10 mm to 3 m (0.4 in to 10 ft)		
SM2A312D	Diffuse	380 mm (15 in)	Infrared, 880 nm	
SM2A312DBZ	Dilluse	300 mm (12 in)		
SM2A312W	Divergent Diffuse	130 mm (5 in)		
SM2A312C		16 mm (0.65 in) Focus	Infrared, 880 nm	
SM2A312C2		43 mm (1.7 in) Focus	minareu, oou min	
SM2A312CV	Convergent	16 mm (0.65in) Focus	Visible red 650 nm	
SM2A312CV2		43 mm (1.7 in) Focus	Visible red, 650 nm	
SM2A312CVG		16 mm (0.65 in) Focus	Visible green, 560 nm	
SM2A312F	Class Fiber Oatio		Infrared, 880 nm	
SM2A312FV	Glass Fiber Optic	Range varies, depending on sensing mode and fiber optics used.	Visible red, 650 nm	
SM2A312FP	Plastic Fiber Optic	·		

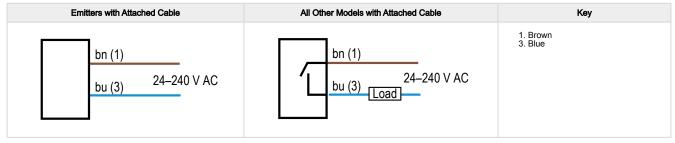
⁽¹⁾ Standard 2 m (6.5 ft) cable models are listed.

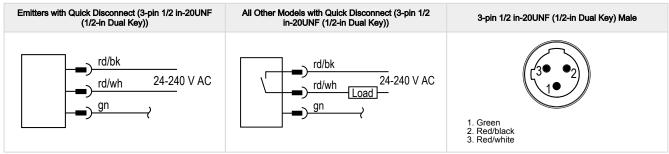
[•] To order the 9 m (30 ft) cable model, add the suffix "W/30" (for example, SMA31E W/30).

To order the 3-pin Micro-style QD model, add the suffix "QD" (for example, SMA31EQD).

Overview

- 1. Adjustment Indicator Device (AID)
- 2. Gain (sensitivity) adjustment screw
- 3. Light/dark operate select switch


Adjust clockwise for light operate (outputs conduct when sensing light is received) and counterclockwise for dark operate (outputs conduct when sensing light is not received).


Installation Instructions

MINI-BEAM AC Wiring Diagrams

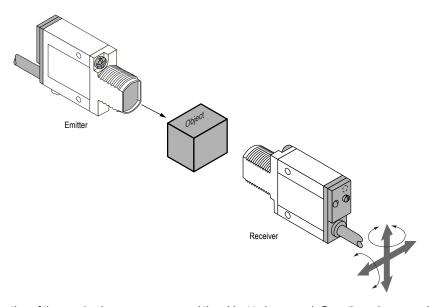
The output type for all models is SPST solid-state 2-wire.

Mount the Device

- 1. If a bracket is needed, mount the device onto the bracket.
- 2. Mount the device (or the device and the bracket) to the machine or equipment at the desired location. Do not tighten the mounting screws at this time.
- 3. Check the device alignment.
- 4. Tighten the mounting screws to secure the device (or the device and the bracket) in the aligned position.

Sensor Alignment

NOTE: Follow proper electronic shock discharge (ESD) precautions when adjusting the Gain potentiometer or the LO/DO switch.


NOTE: When turning the Light/Dark Operate Select switch, be careful not to damage the small tabs on the switch.

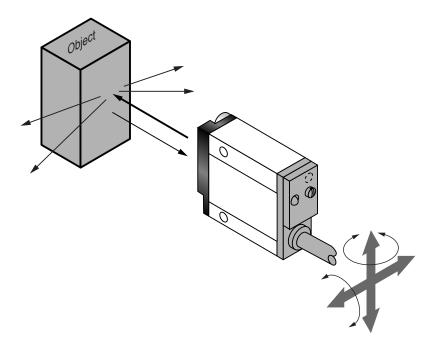
- Using line-of-sight, position the MINI-BEAM sensor to its emitter (opposed-mode sensing) or to its target (all other sensing modes).
 When using a retroreflective sensor, the target is the retroreflector ("retro target"). For diffuse or convergent sensing modes, the target is the object to be detected.
- 2. Apply power to the sensor (and to the emitter, if using the opposed mode).
- 3. Using a small, flat-blade screwdriver, turn the 15-turn Gain control to maximum (the clockwise end of rotation).
 The Gain control is clutched at both ends to avoid damage, and will "free-wheel" when either endpoint is reached.
 If the MINI-BEAM sensor is receiving its light signal, the red LED Alignment indicator is ON and flashing at a rate proportional to the signal strength (a faster flash rate = more signal).

- 4. Move the sensor (or move the retro target, if applicable) up-down-right-left, including angular rotation, to find the center of the movement zone within which the LED indicator remains ON.
 - Reducing the Gain setting reduces the size of the movement zone and enables more precise alignment.
- 5. Repeat the alignment motions after each Gain reduction.
- 6. When optimum alignment is achieved, mount the sensor, and the emitter or retro target, if applicable, securely in that position.
- 7. Increase the Gain to the maximum.
- 8. Test the sensor by placing the object to be detected in the sensing position, then removing it.

 The Alignment indicator LED turns ON when the sensing beam is established (Light condition), and turns OFF when the beam is broken (Dark condition). If the Alignment indicator LED stays ON for both sensing conditions, see the following tips for each sensing mode

Opposed Mode Alignment

Flooding occurs when a portion of the sensing beam passes around the object to be sensed. Burn-through occurs when a portion of the emitter's light energy passes through a thin or translucent object, and is sensed by the receiver.

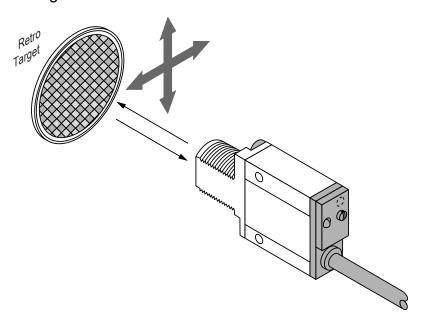

To correct either problem, do one or more of the following to reduce the light energy:

- · Reduce the Gain adjustment on the receiver
- · Add an aperture to one or both lenses (MINI-BEAM apertures, available from Banner, fit neatly inside the lens assembly)
- · Intentionally misalign the emitter and receiver

NOTE:

- Light condition: sensor output is ON when there is no object in the beam
- · Dark condition: sensor output is ON when there is an object in the beam

Diffuse Mode Alignment

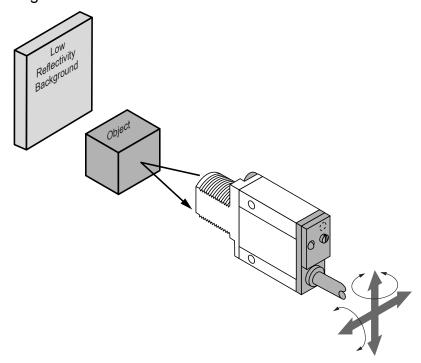

If the Alignment LED does not turn OFF when the object is removed from the beam, the sensor is probably detecting light reflected from some background object. To remedy this problem:

- Reduce the reflectivity of the background by painting the surface(s) flat-black, scuffing any shiny surface, or drilling a large hole, directly opposite the diffuse sensor
- Move the sensor closer to the object to be detected and reduce the Gain adjustment. Rule of thumb for diffuse sensing: The distance
 to the nearest background object should be at least three times the sensing distance

NOTE:

- Light condition: sensor output is ON when there is no object in the beam
- Dark condition: sensor output is ON when there is an object in the beam

Retroreflective Mode Alignment

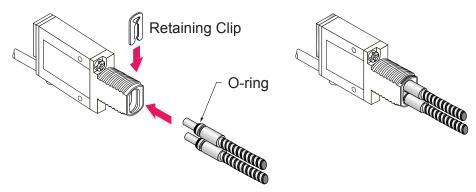

A highly reflective object may reflect enough light back to a retroreflective sensor to allow that object to slip through the beam, without being detected. This problem is called *proxing*, and the following methods may be used to correct it:

- · Position the sensor and retro target so the beam will not strike a shiny surface perpendicular to the sensor lens
- · Reduce the Gain adjustment
- · Add a polarizing filter (for model SM2A312LV)

NOTE:

- · Light condition: sensor output is ON when there is no object in the beam
- · Dark condition: sensor output is ON when there is an object in the beam

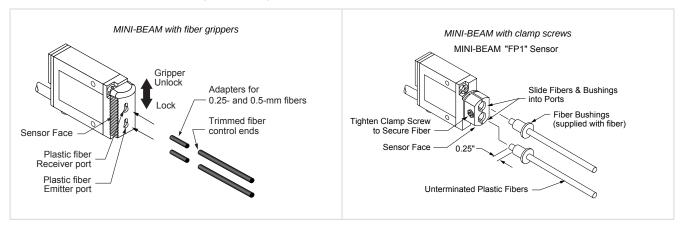
Convergent Mode Alignment


The sensing energy of a convergent mode sensor is concentrated at the specified focus point. Convergent mode sensors are less sensitive to background reflections than diffuse mode sensors. However, if background reflections are a problem:

- Skew the sensor position at a 10° to 25° angle to eliminate direct reflections from shiny background surfaces
- Reduce the reflectivity of the background by painting the surface(s) flat-black, scuffing any shiny surface, or drilling a large hole, directly opposite the sensor
- · Reduce the Gain adjustment

NOTE:

- · Light condition: sensor output is ON when there is no object in the beam
- Dark condition: sensor output is ON when there is an object in the beam


Installing the Glass Fibers in MINI-BEAMs

- 1. Install the O-ring (supplied with the fiber) on each fiber end, as shown in the drawing.
- 2. While pressing the fiber ends firmly into the ports on the sensor front, slide the U-shaped retaining clip (supplied with the sensor) into the slot in the sensor's barrel, until it snaps into place.

Installing Plastic Fibers on a MINI-BEAM

Follow these instructions to install plastic fibers into your sensor. MINI-BEAMS may have either a fiber gripper or a clamp screw. **MINI-BEAM** and **ECONO-BEAM** sensors for use with plastic fiber optic assemblies include sensors with the letters **FP** in their model number.

- 1. Prepare the sensor ends of the fibers (see "Cut the Plastic Fiber" on page 7).
- 2. Prepare the sensor for the fibers.
 - For models with a fiber gripper: Unlock the fiber gripper as shown in the figure and apply the appropriate fiber adaptors to the fiber, if needed.
 - For models with a clamp screw: Loosen the clamp screw on the sensor face.
- 3. Insert the plastic fibers.
 - · For models with a fiber gripper: Gently insert the prepared fiber ends into the ports as far as they will go.
 - For models with a clamp screw: Align the fiber ends flush with the ends of the bushings as shown. Hold the bushings to the
 fibers and slide both into the sensor ports. Push the fiber an additional 1 inch through the bushing.
- 4. Lock in the fibers
 - For models with a fiber gripper: Slide the fiber gripper back to lock, as shown in the figure.
 - For models with a clamp screw: Tighten the clamp screw to secure the fibers.

Cut the Plastic Fiber

An unterminated plastic fiber is designed to be cut by the customer to the length required for the application. To facilitate cutting, a Banner model PFC-4 cutting device is supplied with this fiber.

- Locate the non-terminated end, and determine the length of fiber required for the application.
- 2. Lift the top of the cutter to open the cutting ports.
- Insert the non-terminated end through one of the four large cutting ports on the PFC-4 cutter so that the excess fiber protrudes from the back of the cutter.
- 4. Double-check the fiber length, and close the cutter until the fiber is cut.
- 5. Gently wipe the cut ends of the fiber with a clean, dry cloth to remove any contamination.

NOTE: Do not use solvents or abrasives on any exposed optical fiber. Do not use a cutting port more than once. The blade may tend to dull after one cut.

MINI-BEAM AC Specifications

Supply Voltage and Current

24 to 240 V AC (50/60 Hz), 250 V AC maximum

Supply Protection Circuitry

Protected against transient voltages

Output Configuration

SPST SCR solid-state relay with either normally closed or normally open contact (light/dark operate selectable); 2-wire wiring

Output Rating

Minimum load current 5 mA; maximum steady-state load capability 300 mA to 50 °C ambient (122 °F) 100 mA to 70 °C ambient (158 °F)

Inrush capability: 3 amps for 1 second (non repetitive); 10 amps for 1 cycle (non repetitive)

OFF-state leakage current: less than 1.7 mA rms

ON-state voltage drop: \leq 5 V at 300 mA load, \leq 10 V at 15 mA load

Output Protection Circuitry

Protected against false pulse on power-up

Output Response Time

Opposed: 2 millisecond on and 1 millisecond off

Non-Polarized and Polarized Retro, Convergent, and Plastic Fiber Optic: 4 milliseconds on and off

Diffuse and Glass Fiber Optic: 8 milliseconds on and off

OFF response time specification does not include load response of up to 1/2 ac cycle (8.3 milliseconds). Response time specification of load should be considered when important.

NOTE: 300 millisecond delay on power-up.

Repeatability

Opposed: 0.3 milliseconds

Non-Polarized and Polarized Retro, Convergent, and Plastic Fiber Optic: 1.3 milliseconds

Diffuse and Glass Fiber Optic: 2.6 milliseconds

Response time and repeatability specifications are independent of signal strength.

Indicators

Red indicator LED on rear of sensor is ON when the load is energized

Construction

Reinforced thermoplastic polyester housing, totally encapsulated, o-ring sealing, acrylic lenses, stainless steel screws

Connections

PVC-jacketed 2-conductor 2 m (6.5 ft) or 9 m (30 ft) cables, or 3-pin Micro-style QD fitting; QD cables available separately

Application Notes

Overload conditions can destroy ac MINI-BEAM sensors. Directly wiring sensor without load series, across hot and neutral will damage sensor (except emitter models).

Low-voltage use requires careful analysis of the load to determine if the sensor's leakage current or on-state voltage will interfere with proper operation of the load.

The false-pulse protection feature may cause momentary drop-out of the load when the sensor is wired in series or parallel with mechanical switch contacts.

Operating Conditions

-20 °C to +70 °C (-4 °F to +158 °F)

90% at +50 °C maximum relative humidity (non-condensing)

Environmental Rating

Meets NEMA standards 1, 2, 3, 3S, 4, 4X, 6, 12, and 13; IP67

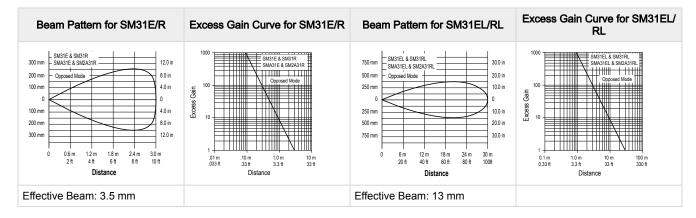
Certifications

Banner Engineering BV Park Lane, Culliganlaan 2F bus 3 1831 Diegem, BELGIUM

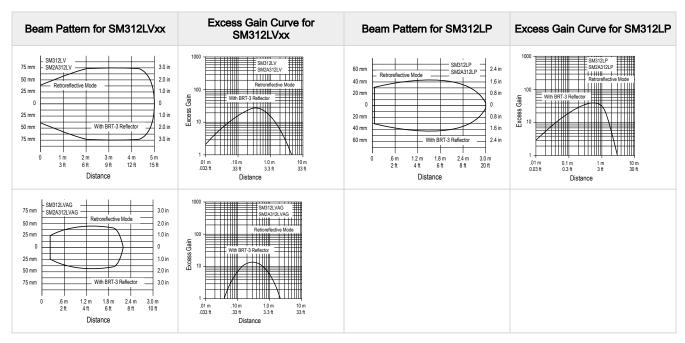
Turck Banner LTD Blenheim House Blenheim Court Wickford, Essex SS11 8YT GREAT BRITAIN

Required Overcurrent Protection

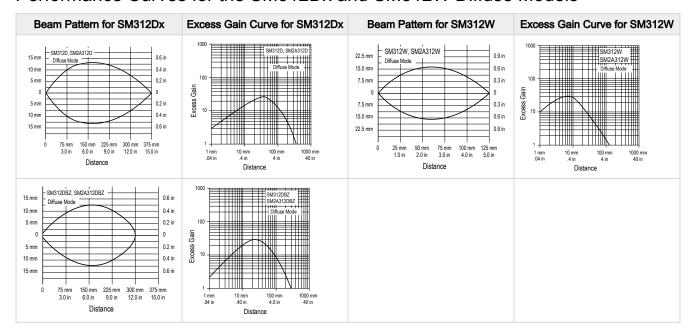
WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations.

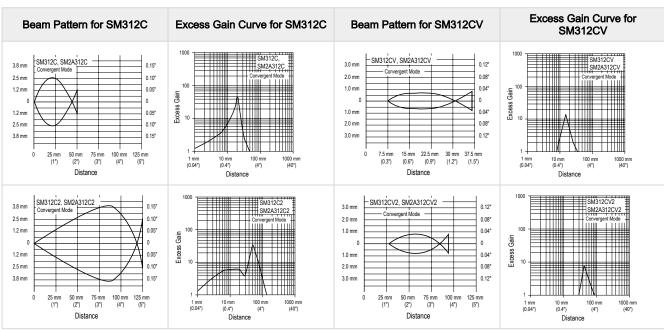

Overcurrent protection is required to be provided by end product application per the supplied table.

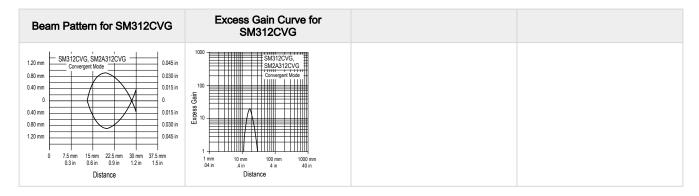
Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply.

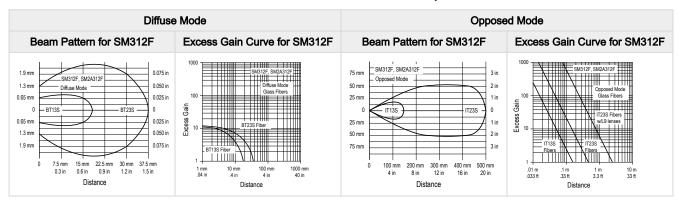

Supply wiring leads < 24 AWG shall not be spliced. For additional product support, go to www.bannerengineering.com.

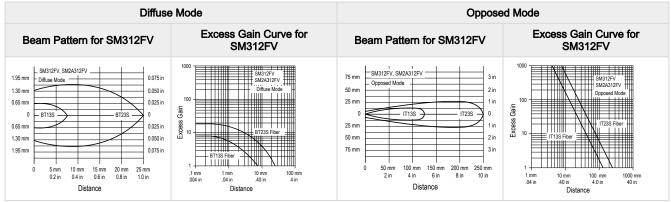
Supply Wiring (AWG)	Required Overcurrent Protection (A)	Supply Wiring (AWG)	Required Overcurrent Protection (A)
20	5.0	26	1.0
22	3.0	28	0.8
24	1.0	30	0.5


Performance Curves for SM31Ex Emitter and SM31Rx Receiver Models

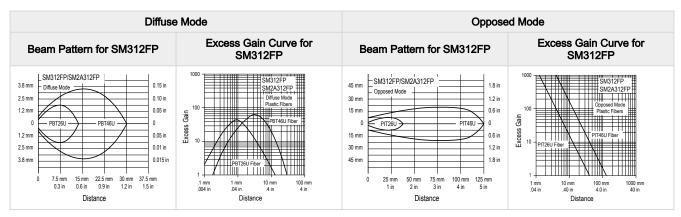

Performance Curves for the SM312Lx Retroreflective Models


Performance Curves for the SM312Dx and SM312W Diffuse Models

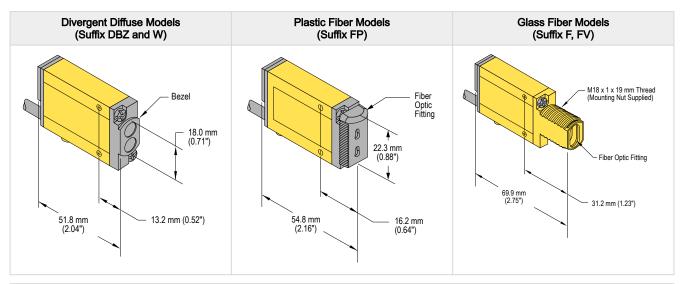

Performance Curves for the SM312Cx Convergent Models

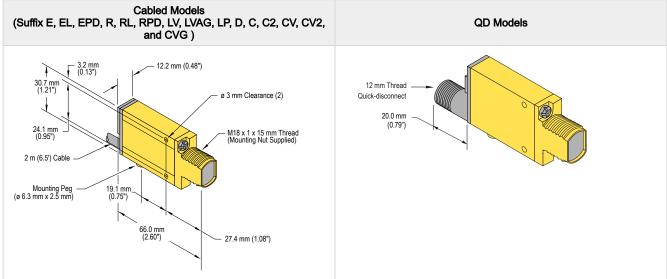


Performance is based on a 90% reflectance white test card.



Performance Curves for the SM312F Glass Fiber Optic Models





Performance Curves for the SM312FP Plastic Fiber Models

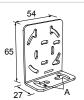
MINI-BEAM AC Dimensions

Accessories

Quick Disconnect Cordsets — AC Sensors

3-pin Single-Ended 1/2-in Dual Key Female Cordsets								
Model Length Style Dimensions Pin								
MQDC-306	2 m (6.56 ft)		42 Typ. ———					
MQDC-315	5 m (16.40 ft)							
MQDC-330	9 m (29.53 ft)	Straight	1/2-20 UNF-2B 0 14.5	3 - 2 1 = Green 2 = Red/Black				
Continued on page 12 3 = Red/White								

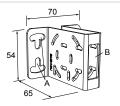
Continued from page 11


3-pin Single-Ended 1/2-in Dual Key Female Cordsets							
Model	Pinout (Female)						
MQDC-306RA	1.83 m (6 ft)						
MQDC-315RA	4.57 m (15 ft)		32 Typ —				
MQDC-330RA	9.14 m (30 ft)	Right-Angle	28 Typ 1/2-20 UNF-2B Ø 14.5				

Mounting Brackets

SMB46L

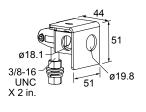
- · Right-angle
- L bracket
- 14-ga. 316 stainless steel


Hole center spacing: A = 16.0 Hole size: A = 16.5 × 18.7

SMB46U

- Right-angleU bracket for sensor protection
- 14-ga. 316 stainless steel

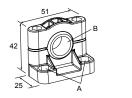
Hole center spacing: A = 16.0Hole size: $A = 16.5 \times 18.7$, $B = 34.0 \times 13.0$


SMB18AFA..

- · Protective, swivel bracket with tilt and pan movement for precision adjustment
- · Easy sensor mounting to extruded rail T-slots
- · Metric and inch size bolts available
- · Mounting hole for 18 mm sensors

Hole size: B = Ø 18.1

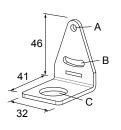
Bolt Thread (A):


SMB18AFA = 3/8 - 16 × 2 in SMB18AFAM10 = M10 - 1.5 × 50

SMB18SF

- 18 mm swivel bracket with M18 × 1 internal thread
- Black thermoplastic polyester
- Stainless steel swivel locking hardware included

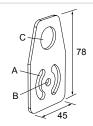
Hole center spacing: A = 36.0 **Hole size:** A = Ø 5.3, B = Ø 18.0


SMB312PD

- Right-angle mounting bracket with a curved slot for versatile orientation

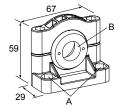
- 12-ga. stainless steel
 18 mm sensor mounting hole
 Clearance for M4 (#8) hardware

Hole center spacing: A to B = 24.2 Hole size: A = \emptyset 4.6, B = 17 × 4.6, C = \emptyset 18.5


NOTE: Not for use with plastic fiber optic sensors

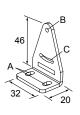
SMBAMS18P

- Flat SMBAMS series bracket with 18 mm hole
- Articulation slots for 90+° rotation
- 12-ga. (2.6 mm) cold-rolled steel


Hole center spacing: A = 26.0, A to B = 13.0 Hole size: A = 26.8 \times 7.0, B = Ø 6.5, C = Ø 19.0

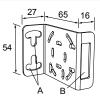
SMB3018SC

- 18 mm swivel side or barrel-mount bracket
- Black reinforced thermoplastic polyester
 Stainless steel swivel locking hardware included


Hole center spacing: A = 50.8 **Hole size:** A = Ø 7.0, B = Ø 18.0

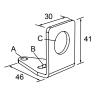
SMB312S

· Stainless steel 2-axis, side-mount bracket


 $A = 4.3 \times 7.5$, B = diam. 3, $C = 3 \times 15.3$

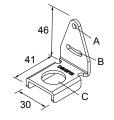
SMB46S

- · Right-angle
- S bracket
- 14-ga. 316 stainless steel


Hole center spacing: A = 16.0 Hole size: A = 16.5 × 18.7, B = 34.0 × 10.0

SMB18A

- Right-angle mounting bracket with a curved slot for versatile orientation
- 12-ga. stainless steel
- 18 mm sensor mounting hole
- · Clearance for M4 (#8) hardware


Hole center spacing: A to B = 24.2 **Hole size:** A = \emptyset 4.6, B = 17.0 × 4.6, C = \emptyset 18.5

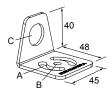
SMB18Q

- Right-angle flanged bracket 18 mm sensor mounting hole
- · 12-ga. stainless steel

Hole center spacing: A to B = 24.2 Hole size: A = \emptyset 4.6, B = 17.0 × 4.6, C = \emptyset 19.0

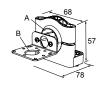
SMB18UR

- · 2-piece universal swivel bracket
- 300 series stainless steel
- · Stainless steel swivel locking hardware included
- · Mounting hole for 18 mm sensor


Hole center spacing: A = 25.4, B = 46.7 Hole size: B = 6.9×32.0 , C = Ø 18.3

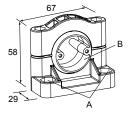
SMBAMS18RA

- · Right-angle SMBAMS series bracket with 18 mm hole
- Articulation slots for 90+° rotation
- 12-ga. (2.6 mm) cold-rolled steel


Hole center spacing: A = 26.0, A to B = 13.0 Hole size: A = 26.8 \times 7.0, B = Ø 6.5, C = Ø 19.0

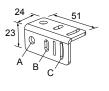
SMB30SK

- Flat-mount swivel bracket with extended range of motion
- Black reinforced thermoplastic polyester and 316 stainless steel
- Stainless steel swivel locking hardware included


Hole center spacing: A = 50.8 Hole size: A = Ø 7, B = Ø 18

SMB30SUS

- · Side-mount swivel with extended range of motion
- · Black reinforced thermoplastic polyester
- Stainless steel swivel locking hardware included


Hole center spacing: A = 50.8, B = 24.1Hole size: A = \emptyset 7, B = \emptyset 7.6

SMB312B

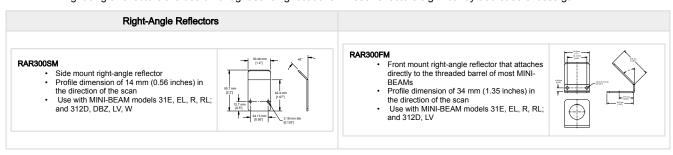
- Stainless steel 2-axis, bottom-mount bracket
- Includes mounting foot

A = diam. 6.9, B = 4.3×10.5 , C = 3.1×15.2

Miscellaneous Accessories and Replacement Parts

MINI-BEAM lens assemblies are field-replaceable.

Replacement Lens Model	Replacement Lens for MINI-BEAM Model	Possible Sensing Mode or Range Changes
UC-300AG	LVAG	LV to LVAG
UC-300BZ	W and DBZ	D to DBZ and F to DBZ
UC-300C7	C, CV, and CVG	CV2 to CV
UC-300C2	C2 and CV2	CV to CV2
UC-300E	E and R	-
UC-300EL	EL and RL	Extends the range of the E/R models
UC-300EPD	EPD	-
UC-300F	F and FV	D to F and DBZ to F
UC-300FP	FP (old style)	-



Continued on page 15

Continued from page 14

Replacement Lens Model	Replacement Lens for MINI-BEAM Model	Possible Sensing Mode or Range Changes
UC-300FP2	FP	-
UC-300L	LV and D	F to D, LVAG to LV, and DBZ to D
UC-300LP	LP	-
UC-300RPD	RPD	-

MINI-BEAM right-angle reflectors are useful for tight sensing locations. These reflectors significantly decrease excess gain.

Opposed-mode MINI-BEAM sensors may be fitted with apertures that narrow or shape the effective beam of the sensor to more closely match the size or profile of the object to be sensed, for example, the use of "line" (or "slit") apertures for sensing wire or thread. Each model contains 20 apertures.

MINI-BEAM Opposed-Mode Aperture Kits				
Model	Description	Qty		
Circular				
AP31-020	0.5 mm dia.	20		
AP31-040	1.0 mm dia.	20		
AP31-100	2.5 mm dia.	20		
	Horizontal Slot			
AP31-020H	0.5 x 6.4 mm	20		
AP31-040H	1.0 x 6.4 mm	20		
AP31-100H	2.5 x 6.4 mm	20		
AP31-200H	5.1 x 6.4 mm	20		
	Vertical Slot			
AP31-020V	0.5 x 12.7 mm	20		
AP31-040V	1.0 x 12.7 mm	20		
AP31-100V	2.5 x 12.7 mm	20		
AP31-200V	5.1 x 12.7 mm	20		
Kit				
AP31-DVHX2	2 of each aperture	2		

Aperture		Range (Standard Group I and II Sensor Pairs)				Range (Group I Sensor Pairs with UC-300EL	
	Aperture on Both E	Aperture on Both Emitter and Received		Aperture on Receiver Only		Upper Covers Substituted)	
·	Group I Sensors	Group II Sensors	Group I Sensors	Group II Sensors	Aperture on Both Emitter and Received	Aperture on Receiver Only	
AP31-020	89 mm	102 mm	457 mm	1.5 m	127 mm	914 mm	
AP31-040	330 mm	457 mm	940 mm	3.2 m	183 mm	2 m	
AP31-100	1.5 m	3 m	2.5 m	8.2 m	2.1 m	5.8 m	
AP31-020H	406 mm	1.8 m	965 mm	9.1 m	864 mm	3.4 m	
AP31-040H	914 mm	4 m	1.8 m	12.5 m	1.8 m	5.2 m	
AP31-100H	2.3 m	10.4 m	2.9 m	20.7 m	5.2 m	8.5 m	
AP31-200H	2.8 m	21.3 m	3 m	24.4 m	8.2 m	11 m	

Continued on page 16

Continued from page 15

Aperture	Range (Standard Group I and II Sensor Pairs)				Range (Group I Sensor Pairs with UC-300EL	
	Aperture on Both Emitter and Received		Aperture on Receiver Only		Upper Covers Substituted)	
	Group I Sensors	Group II Sensors	Group I Sensors	Group II Sensors	Aperture on Both Emitter and Received	Aperture on Receiver Only
AP31-020V	457 mm	1.7 m	1 m	8.2 m	1 m	3.4 m
AP31-040V	1 m	5.5 m	1.8 m	15.8 m	2.1 m	5.5 m
AP31-100V	2.3 m	10.7 m	2.9 m	22.9 m	6.1 m	8.5 m
AP31-200V	2.8 m	22.9 m	3 m	25.9 m	8.5 m	11 m

GROUP I Emitter/ Receiver Pairs (see Range): SMA31E/SM2A31R

GROUP II Emitter/ Receiver Pairs (see Range): SMA31EL/SM2A31RL

Example: A MINI-BEAM sensor pair is in Group I. With an AP31-040 circular aperture on the receiver only, range is 940 mm (37 in). With AP31-040 apertures on both emitter and receiver, range is 330 mm (13 in). Group I range with AP31-040 apertures and UC-300EL upper covers on both units is 183 mm; range with receiver aperture only is 2 m (80 in).

Clean with Compressed Air Then Isopropyl Alcohol

Handle the sensor with care during installation and operation. Sensor windows soiled by fingerprints, dust, water, oil, etc. may create stray light that may degrade the peak performance of the sensor. Blow dust from the sensor using filtered, compressed air. If the sensor is still dirty, gently wipe the sensor with a dry optical cloth. If the dry optical cloth does not remove all residue, use 70% isopropyl alcohol on a clean optical cloth, then dry with a clean dry optical cloth and blow with filtered, compressed air.

Banner Engineering Corp Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product warranties and intended for such purposes will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to:

www.bannerengineering.com.

For patent information, see www.bannerengineering.com/patents.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Banner Engineering:

 SM2A312CV2QD
 SM2A312D
 SM2A312F
 SM2A312FPQD
 SM2A312LV
 SM2A312LVAGQD
 SM2A312LVQD

 SM2A31R
 SMA31EL
 SM2A312CV
 SM2A312CV2
 SM2A312CV2QDP
 SM2A312CVG
 SM2A312CVGQD

 SM2A312CVQD
 SM2A312CVQDP
 SM2A312D W/15
 SM2A312D W/30
 SM2A312DBZ
 SM2A312DBZQD

 SM2A312DQD
 SM2A312DQDP
 SM2A312FP
 SM2A312FP1
 SM2A312FPQDP
 SM2A312FQD
 SM2A312FQD

 SM2A312FV
 SM2A312FVG
 SM2A312FVQQD
 SM2A312FVQD
 SM2A312LVQDP
 SM2A312LVQDP
 SM2A312LVQDP
 SM2A312LVQDP
 SM2A312LVQDP
 SM2A312LVQDP
 SM2A31RQD

 SM2A312WQD
 SM2A312WQDP
 SM2A31RDLBQD
 SM2A31RL
 SM2A31RQD
 SM2A31RQDP
 SM2A312CV

 W/30
 SM2A312F W/30
 SM2A312LQD
 SM2A312W W/30
 SM2A31RW/30
 SM2A31RF
 SMA31E W/30