

# **Customer Specification**

### **PART NO. 74006**

### **Construction**

|                     |                          |      |                        |                                                                                                                                       |                                     | Diameter ("in")                    |  |
|---------------------|--------------------------|------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|--|
| 1) Component 1      |                          |      |                        |                                                                                                                                       | 4 x 1 PAIR                          |                                    |  |
| a) Conductor        |                          |      |                        |                                                                                                                                       | 26 (19/38) AWG Bare Copper          | 0.020                              |  |
| b) Insulation       |                          |      |                        | 0.010" Wall, Nom. Polypropylene (PP)                                                                                                  | 0.040                               |                                    |  |
| (1) Color(s)        |                          |      |                        |                                                                                                                                       |                                     |                                    |  |
| Pair                | Color                    | Pair | Color                  | Pair                                                                                                                                  | Color                               |                                    |  |
| 1                   | WHITE/BLUE - BLUE        | 3    | WHITE/GREEN -<br>GREEN |                                                                                                                                       |                                     |                                    |  |
| 2                   | WHITE/ORANGE -<br>ORANGE | 4    | WHITE/BROWN -<br>BROWN |                                                                                                                                       |                                     |                                    |  |
| c) Pai              | r                        |      |                        |                                                                                                                                       |                                     | 2/Cond Cabled Together             |  |
| (1) Tv              | vists                    |      |                        |                                                                                                                                       |                                     | Staggered Lays                     |  |
| 2) Cal              | ble Assembly             |      |                        |                                                                                                                                       |                                     | 4 Components Cabled                |  |
| a) Twists           |                          |      |                        |                                                                                                                                       | 5.3 Twists/ft. min.                 |                                    |  |
| 3) Shield           |                          |      |                        |                                                                                                                                       | Alum/Mylar Tape, 25% Overlap (min.) |                                    |  |
| a) Foil Direction   |                          |      |                        |                                                                                                                                       | Foil Facing Out                     |                                    |  |
| b) Bra              | aid                      |      |                        |                                                                                                                                       |                                     | Tinned Copper, 80% Coverage (min.) |  |
| 4) Jacket           |                          |      |                        |                                                                                                                                       | 0.031" Wall, Nom., TPU (ZH)         | 0.252 (0.266 max.)                 |  |
| a) Color(s)         |                          |      |                        |                                                                                                                                       | BLACK                               |                                    |  |
| b) Jacket Separator |                          |      |                        | Nonwoven Polyester Tape, 25% Overlap, Min.                                                                                            |                                     |                                    |  |
| c) Print            |                          |      |                        | ALPHA WIRE-* P/N 74006 4PR 26 AWG INDUSTRIAL ETHERNET SHIELDED ANSI/TIA-568-C.2 CAT5E VERIFIED CE ROHS (SEQ FOOTAGE) * = Factory Code |                                     |                                    |  |

# **Applicable Specifications**

| 1) CSA International | FT2                                   |  |
|----------------------|---------------------------------------|--|
| 2) IEC               | EN 60811-2-1 Oil Resistance           |  |
|                      | EN 60754-1 Acid Gas Generation        |  |
| 3) Other             | ANSI/TIA-568-C.2 Category 5e          |  |
|                      | ISO/IEC 11801 Category 5e Patch Cable |  |
|                      | EN 50173-1                            |  |
| 4) CE                | EU Low Voltage Directive 2014/35/EC   |  |

### **Environmental**

| This product complies with European Directive 2011/65/EU (RoHS Directive) of the European Parliament and of the Council of 8 June 2011and the amending Directive 2015/863/EU of 4 June 2015. No exemptions are required for RoHS Compliance on this item. Refer to the RoHS Certificate of Compliance for more detail. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                        |
| This product does not contain Substances of Very High Concern (SVHC) listed on the European Union's REACH candidate list in excess of 0.1% mass of the item. For up-to-date information, please see Alpha's REACH SVHC Declaration.                                                                                    |
|                                                                                                                                                                                                                                                                                                                        |

| Properties |  |  |
|------------|--|--|
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Physical & Mecha         | nical Prop |                           |    |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|------------|---------------------------|----|----------------------------------------------------------|
| 3 Pull Tension   18 lbs. max.   4 Continuous Flex   2 million cycles   5 Torsional Flex   1 million cycles   1 million cycles   5 Torsional Flex   1 million cycles   1 million cycles   2 million cycles   1 million cycles   2 million cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1) Temperature Range |                          |            |                           |    | -40 to 80°C(static), -5 to 50°C (dynamic)                |
| A   Continuous Flex   2 million cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2) Bend Radius       |                          |            |                           |    | 5X Cable Diameter (static), 10X Cable Diameter (dynamic) |
| Electrical Properties   Engineering purposes only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3) Pull Tension      |                          |            |                           |    | 18 lbs. max.                                             |
| Electrical Properties   Engineering purposes only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4) Continuous Flex   | х                        |            |                           |    | 2 million cycles                                         |
| 1) Max. operating voltage UL 2) Dielectric strength cond. – cond. (2 sec.) 2) Dielectric strength cond. – cond. – cond. (2 sec.) 2) Dielectric strength cond. – cond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) Torsional Flex    |                          |            |                           |    | 1 million cycles                                         |
| 2) Dielectric strength cond. – cond. (2 sec.)  3) D.C. resistance conductor  4) Resistance unbalance  5) D.C. insulation resistance  5) D.C. insulation resistance  6) Mutual capacitance  7) Capacitance unbalance  8) Velocity of propagation @ 4 - 100MHz  9) Skew @ 1 - 100 MHz  10) Propagation delay @ 1 - 100 MHz  11) Mean characteristic impedance (Zcm) @ 100 MHz  12) Input impedance 4 - 100MHz  Frequency(MHz)  Max.  Attenuation(dB/100m)  Min.  NEXT(dB)  NEXT(dB)  NEXT(dB)  NEXT(dB/100m  1 3.2  65 62 64 4 6.2 56 53 52 10 9.5 50 47 44 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Electrical P             | roperties  | Engineering purposes only |    |                                                          |
| 2) Dielectric strength cond. – cond. (2 sec.)  3) D.C. resistance conductor  4) Resistance unbalance  5) D.C. insulation resistance  5) D.C. insulation resistance  6) Mutual capacitance  7) Capacitance unbalance  8) Velocity of propagation @ 4 - 100MHz  9) Skew @ 1 - 100 MHz  10) Propagation delay @ 1 - 100 MHz  11) Mean characteristic impedance (Zcm) @ 100 MHz  12) Input impedance 4 - 100MHz  Frequency(MHz)  Max.  Attenuation(dB/100m)  Min.  NEXT(dB)  NEXT(dB)  NEXT(dB)  NEXT(dB/100m  1 3.2  65 62 64 4 6.2 56 53 52 10 9.5 50 47 44 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1) Max. operating    | voltage UL               |            |                           |    | 300 V <sub>RMS</sub>                                     |
| 4) Resistance unbalance   < 2%     5) D.C. insulation resistance   > 5000 Mω.km     6) Mutual capacitance   < 56 nF/km     7) Capacitance unbalance   < 1600 pF/km     8) Velocity of propagation @ 4 - 100MHz   ≥ 60%     9) Skew @ 1 - 100 MHz   ≤ 40 ns/100m     10) Propagation delay @ 1 - 100 MHz   ≤ 534 + 36/√f ns/100m     11) Mean characteristic impedance (Zcm) @ 100 MHz   100 ± 15 ω     12) Input impedance 4 - 100MHz   100 ± 15 ω     12) Input impedance 4 - 100MHz   100 ± 15 ω     13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2) Dielectric streng | gth cond. – cond. (2 sec | C.)        |                           |    |                                                          |
| 5) D.C. insulation resistance  6) Mutual capacitance  7) Capacitance unbalance  8) Velocity of propagation @ 4 - 100MHz  9) Skew @ 1 - 100 MHz  10) Propagation delay @ 1 - 100 MHz  11) Mean characteristic impedance (Zcm) @ 100 MHz  12) Input impedance 4 - 100MHz  Frequency(MHz)  Max.  Attenuation(dB/100m)  Min.  Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3) D.C. resistance   | conductor                |            |                           |    | <140 ω/km                                                |
| 6) Mutual capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4) Resistance unb    | alance                   |            |                           |    | < 2%                                                     |
| 7) Capacitance unbalance  8) Velocity of propagation @ 4 - 100MHz  9) Skew @ 1 - 100 MHz  10) Propagation delay @ 1 - 100 MHz  11) Mean characteristic impedance (Zcm) @ 100 MHz  12) Input impedance 4 - 100MHz  12) Input impedance 4 - 100MHz  Frequency(MHz) Max. Attenuation(dB/100m) NEXT(dB) NEXT(dB) ELFEXT(dB/100m  1 3.2 65 62 64  4 6.2 56 53 52  10 9.5 50 47 44  16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5) D.C. insulation   | resistance               |            |                           |    | > 5000 Mω.km                                             |
| 8) Velocity of propagation @ 4 - 100MHz ≥ 60%  9) Skew @ 1 - 100 MHz ≤ 40 ns/100m  10) Propagation delay @ 1 - 100 MHz ≤ 534 + 36/√f ns/100m  11) Mean characteristic impedance (Zcm) @ 100 MHz 100 ± 15 ω  12) Input impedance 4 - 100MHz 100 ± 15 ω  Frequency(MHz) Max. Attenuation(dB/100m) NEXT(dB) NEXT(dB) ELFEXT(dB/100m  1 3.2 65 62 64  4 6.2 56 53 52  10 9.5 50 47 44  16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6) Mutual capacita   | ance                     |            |                           |    | < 56 nF/km                                               |
| 9) Skew @ 1 - 100 MHz ≤ 40 ns/100m  10) Propagation delay @ 1 - 100 MHz ≤ 534 + 36/√f ns/100m  11) Mean characteristic impedance (Zcm) @ 100 MHz 100 ± 15 ω  12) Input impedance 4 - 100MHz 100 ± 15 ω  Frequency(MHz) Max. Attenuation(dB/100m) NEXT(dB) NEXT(dB) ELFEXT(dB/100m  1 3.2 65 62 64  4 6.2 56 53 52  10 9.5 50 47 44  16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7) Capacitance un    | balance                  |            |                           |    | < 1600 pF/km                                             |
| 10) Propagation delay @ 1 - 100 MHz   $\leq 534 + 36/\sqrt{f} \text{ ns/100m}$   11) Mean characteristic impedance (Zcm) @ 100 MHz   $100 \pm 15 \omega$   $100 \pm 15 \omega$ | 8) Velocity of prop  | pagation @ 4 - 100MHz    | <u>z</u>   |                           |    | ≥ 60%                                                    |
| 11) Mean characteristic impedance (Zcm) @ 100 MHz  12) Input impedance 4 - 100MHz  Frequency(MHz)  Max. Attenuation(dB/100m)  1 3.2 65 62 64  4 6.2 56 53 52  10 9.5 50 47 44  16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9) Skew @ 1 - 100    | ) MHz                    |            |                           |    | ≤ 40 ns/100m                                             |
| 12) Input impedance 4 - 100MHz  Frequency(MHz) Max. Attenuation(dB/100m) NEXT(dB) NEXT(dB) ELFEXT(dB/100m  1 3.2 65 62 64  4 6.2 56 53 52  10 9.5 50 47 44  16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10) Propagation d    | lelay @ 1 - 100 MHz      |            |                           |    | ≤ 534 + 36/√f ns/100m                                    |
| Frequency(MHz) Max. Attenuation(dB/100m) Min. Min. PS- Min. NEXT(dB) ELFEXT(dB/100m  1 3.2 65 62 64  4 6.2 56 53 52  10 9.5 50 47 44  16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11) Mean characte    | eristic impedance (Zcm)  | ) @ 100 MI | Hz                        |    | 100 ± 15 ω                                               |
| Frequency(MHz)         Attenuation(dB/100m)         NEXT(dB)         NEXT(dB)         ELFEXT(dB/100m)           1         3.2         65         62         64           4         6.2         56         53         52           10         9.5         50         47         44           16         12.1         47         44         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12) Input impedar    | nce 4 - 100MHz           |            |                           |    | 100 ± 15 ω                                               |
| Frequency(MHz) Attenuation(dB/100m) NEXT(dB) NEXT(dB) ELFEXT(dB/100m  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                          |            |                           |    |                                                          |
| 4     6.2     56     53     52       10     9.5     50     47     44       16     12.1     47     44     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Frequency(MHz)       |                          |            |                           |    |                                                          |
| 10     9.5     50     47     44       16     12.1     47     44     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                    | 3.2                      | 65         | 62                        | 64 |                                                          |
| 16 12.1 47 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                    | 6.2                      | 56         | 53                        | 52 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                   | 9.5                      | 50         | 47                        | 44 |                                                          |
| 31.25   17.9   43   40   34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                   | 12.1                     | 47         | 44                        | 40 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.25                | 17.9                     | 43         | 40                        | 34 |                                                          |
| 62.5 24.8 38 35 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62.5                 | 24.8                     | 38         | 35                        | 28 |                                                          |
| 100 32.0 35 32 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                  | 32.0                     | 35         | 32                        | 24 |                                                          |

### **Other**

| Packaging | Flange x Traverse x Barrel (inches) | Flange x Traverse x Barrel (inches) |  |
|-----------|-------------------------------------|-------------------------------------|--|
| a) 500 FT | 12 x 6 x 3.5 Continuous Length      |                                     |  |
|           | Spool dimensions may vary slightly. |                                     |  |
|           |                                     |                                     |  |

### www.alphawire.com

Alpha Wire 2200 US Highway 27 South Richmond, IN 47374

Tel: 1-800-52 ALPHA

Although Alpha Wire ("Alpha") makes every reasonable effort to ensure there accuracy at the time of publication, information and specifications described herein are subject to errors or omissions and to changes without notice, and the listing of such information and specifications does not ensure product availability.

Alpha provides the information and specifications herein on an "AS IS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Alpha be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary) whatsoever, even if Alpha had been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.

ALPHA WIRE - CONFIDENTIAL AND PROPRIETARY Notice to persons receiving this document and/or technical information. This document is confidential and is the exclusive property of ALPHA WIRE, and is merely on loan and subject to recall by ALPHA WIRE at any time. By taking possession of this document, the recipient acknowledges and agrees that this document cannot be used in any manner adverse to the interests of ALPHA WIRE, and that no portion of this document may be copied or otherwise reproduced without the prior written consent of ALPHA WIRE. In the case of conflicting contractual provisions, this notice shall govern the status of this document. <br/>br /> <br/>©2019 ALPHA WIRE - all rights reserved.



## **EU/UK/China ROHS CERTIFICATE OF COMPLIANCE**

To Whom It May Concern:

Alpha Wire Part Number: 74006

74006, RoHS-Compliant Commencing With 9/30/2013 Production

Note: all colors and put-ups

This document certifies that the Alpha part number cited above, including all packaging materials, is manufactured in accordance with Directive 2011/65/EU of the European Parliament, better known as the RoHS Directive (commonly known as RoHS 2), with regards to restrictions of the use of certain hazardous substances used in the manufacture of electrical and electronic equipment. This certification extends to amending Directive 2015/863/EU which expanded the list of restricted substances to 10 items (commonly known as RoHS 3). This product also complies with UK - RoHS. The reader is referred to these Directives for the specific definitions and extents of the Directives. **No Exemptions are required for RoHS Compliance on this item**. Additionally, Alpha certifies that the listed part number is in compliance with China RoHS "Marking for Control of Pollution by Electronic Information Products" standard SJ/T 11364-2014. This product is also in compliance with China RoHS 2 per GB/T 26572-2011.

| Substance                               | <b>Maximum Control Value</b> |
|-----------------------------------------|------------------------------|
| Lead                                    | 0.1% by weight (1000 ppm)    |
| Mercury                                 | 0.1% by weight (1000 ppm)    |
| Cadmium                                 | 0.01% by weight (100 ppm)    |
| Hexavalent Chromium                     | 0.1% by weight (1000 ppm )   |
| Polybrominated Biphenyls (PBB)          | 0.1% by weight (1000 ppm)    |
| Polybrominated Diphenyl Ethers (PBDE) , |                              |
| Including Deca-BDE                      | 0.1% by weight (1000 ppm)    |
| Bis(2-ethylhexyl) phthalate (DEHP)      | 0.1% by weight (1000 ppm)    |
| Butyl benzyl phthalate (BBP)            | 0.1% by weight (1000 ppm)    |
| Dibutyl phthalate (DBP)                 | 0.1% by weight (1000 ppm)    |
| Diisobutyl phthalate (DIBP)             | 0.1% by weight (1000 ppm)    |

The information provided in this document and disclosure is correct to the best of Alpha Wire's knowledge, information and belief at the date of its release. The information provided is designed only as a general guide for the safe handling, storage, and any other operation of the product itself or the one that it will become part of. The intent of this document is not to be considered a warranty or quality specification. Regulatory information is for guidance purposes only. Product users are responsible for determining the applicability of legislation and regulations based on their individual usage of the product.

Authorized Signatory for the Alpha Wire:

Dave Watson, Director of Engineering

12/13/2024

Alpha Wire 2200 US Highway 27 South Richmond, IN 47374 Tel: 1-908-925-8000

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Alpha Wire:

74006 BK002