

 Getting Started with M.2 Modules and i.MX 6/7/8

Copyright 2020 © Embedded Artists AB

Getting Started with
M.2 Modules and i.MX 6/7/8

from Linux v5.4

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 2

Copyright 2020 © Embedded Artists AB Rev A

Embedded Artists AB
Jörgen Ankersgatan 12
SE-211 45 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2020 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 3

Copyright 2020 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 5

2 Introduction ... 6

2.1 Conventions .. 6

3 QuickStart Guide ... 7

3.1 Follow "Getting Started" Guide ... 7

3.2 Mount M.2 Module .. 7

3.3 Power-up Board .. 9

3.3.1 iMX uCOM Boards with On-Board Solutions 10

3.4 Linux Console – Search for available networks 10

3.5 Access and Configure Bluetooth Devices 11

3.5.1 Additional Links ... 14

3.6 Wi-Fi: iperf3 Test .. 14

3.7 Wi-Fi: Check the Linux Boot Log .. 15

3.8 Wi-Fi: HostAP ... 16

3.8.1 Setup hostapd for 1CX, 1DX, 1LV, 1MW, 1XA 16

3.8.2 Setup for 1YM-PCIe, 1ZM ... 16

3.8.3 Connecting with a client... 17

3.8.4 Example - iperf3 on Android .. 19

3.8.5 Where to go from here?... 20

3.9 Bluetooth: keyboard .. 22

4 COM Carrier Board V2 Advanced Features 24

4.1 VBAT Current Measurement .. 24

4.2 VBAT 3.3V or 3.6V .. 25

4.3 Support for 3.3V IO logic level (if M.2 module supports it) 25

4.4 Bluetooth UART Interception .. 25

4.5 Dual UART Debug Channels and JTAG...................................... 27

4.6 Audio Codec Multiplexing ... 27

5 Software Update .. 28

5.1 Linux Host Setup .. 28

5.1.1 Introduction .. 28

5.1.2 Required Packages ... 28

5.1.3 Install the repo tool ... 28

5.1.4 Download Yocto recipes .. 29

5.2 Building Images .. 30

5.2.1 Available Images ... 30

5.2.2 Machine Configurations ... 30

5.2.3 Initialize Build .. 30

5.2.4 Starting the Build ... 31

5.3 Deploying Images ... 31

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 4

Copyright 2020 © Embedded Artists AB Rev A

5.3.1.1 Download the Tool ... 32

5.3.1.2 Prepare hardware .. 32

5.3.1.3 OTG boot mode – J2 jumper ... 32

5.3.1.4 Configurations ... 33

5.3.1.5 Download Your Own Images ... 33

5.3.1.6 Run the Tool in Ubuntu .. 33

5.3.1.7 Run the Tool in Windows ... 34

5.3.1.8 Troubleshoot ... 34

5.4 Building without Yocto .. 36

5.4.1 Stand-alone Toolchain .. 36

5.4.2 Build Linux kernel from source code ... 37

5.4.3 Build u-boot from source code ... 38

5.5 NVRAM .. 39

5.6 Firmware ... 39

6 Appendix - Updating Files on Target 40

6.1 U-boot USB Mass Storage Gadget .. 40

6.2 Secure Copy from Target... 41

6.3 Secure Copy To Target - WinSCP ... 42

6.3.1 Download and Install ... 42

6.3.2 Connect to Target .. 42

6.3.3 Copy Files ... 45

6.4 USB Memory Stick ... 45

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 5

Copyright 2020 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

A 2020-10-30 Initial release

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 6

Copyright 2020 © Embedded Artists AB Rev A

2 Introduction
This document describes how to add wireless functionality with M.2 modules to an iMX Developer’s Kit
V2. Linux commands for controlling wireless functionality are also presented.

This document is only valid for our Linux v5.4 release, and further. There is a similar document that
is valid up to, and including our Linux v4.14 release.

There are several different iMX Developer’s Kits V2 and this document refers to all of these kits
collectively as iMX Developer’s Kits. Please note that all available iMX Developer’s Kits may not
support all the presented wireless technologies or more specifically the interface used to communicate
with a hardware module. The PCIe interface is for example not supported by all i.MX processors.

All interfaces, needed tools and kernel configurations described in this document have been added /
enabled in the prepared images available at http://imx.embeddedartists.com/. To make changes to
your own build, see the iMX Working with Yocto document which can be downloaded on each COM
board’s product page.

Additional documentation you might need is.

 The Getting Started document for the iMX Developer's Kit you are using

 COM Board Datasheet for the specific COM board you are using

 COM Carrier Board Datasheet

 M.2 Module Datasheet for the specific M.2 module you are using

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

This field is used to highlight important information

http://imx.embeddedartists.com/
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 7

Copyright 2020 © Embedded Artists AB Rev A

3 QuickStart Guide
This chapter is a step-by-step guide to get Wi-Fi and Bluetooth connections up in shortest possible
time:

1. The first step address basic steps like powering the board and getting access to the console.

2. The second step describes where and how to physically mount the M.2 module.

3. The third step describes how to power up the system and boot with correct setting (given the
M.2 module that is mounted).

4. The fourth step describe how to manually setup the Wi-Fi interface from the Linux console.

5. The fifth step describe how to access and configure the Bluetooth interface.

Above are the five simple steps to get up-and-running immediately!

There are a couple of more sections describing different aspects, like performance measurements with
iperf and how to connect specific Bluetooth devices, like a keyboard.

3.1 Follow "Getting Started" Guide

Follow the instructions in the getting started guide https://www.embeddedartists.com/getting-started-
with-imx-developers-kit-v2/ to get access to the console and to connect the power supply but keep the
board powered off for now.

3.2 Mount M.2 Module

Make sure the iMX Developer's Kit is powered off and then mount the M.2 Module, as illustrated in the
picture below:

Figure 1 – M.2 Module on COM Carrier Board V2

https://www.embeddedartists.com/getting-started-with-imx-developers-kit-v2/
https://www.embeddedartists.com/getting-started-with-imx-developers-kit-v2/

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 8

Copyright 2020 © Embedded Artists AB Rev A

Do not put too much force/pressure on the M2 screw (into the M.2 connector stand-off) so that the
PCB is bent. Bending the PCB too much will damage the board!
Use your fingers on the bottom side (while screwing) to give a counter-force, keeping the PCB
straight.

The picture below illustrates the typical angle (about 25 degrees) to use when inserting the M.2 moudle
into the connector.

Figure 2 – M.2 Module on COM Carrier Board V2

The picture below illustrates how to use two funders, placed under the grounding stand-off, to avoid
bending the board. Make sure to always use this method to avoid damaging the board.

Figure 3 – M.2 Module on COM Carrier Board V2

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 9

Copyright 2020 © Embedded Artists AB Rev A

3.3 Power-up Board

Set the Power on/off switch to On state to power up the board. When the boot process is complete you
will be presented with a login prompt. Enter the login credentials below to log in:

Username: root

Password: pass

The M.2 modules use one of two possible interfaces, as listed below

 SDIO interface: 1DX, 1LV, 1MW, 1WZ, 1YM-SDIO, 1ZM

 PCIe interface: 1CX, 1XA, 1YM-PCIE

Prior to Linux 5.4.24 the configuration of interface had to be done by selecting the correct device tree
file in the u-boot but that has been simplified with a couple of scripts in Linux 5.4.24.

The first script is switch_module.sh that will select device tree file, configure libraries/utilities

and enable the correct systemd service based on which M.2 module will be used.

Run the script without parameters to see the full list of available module names

switch_module

Version: 1.0

Usage:

 /usr/sbin/switch_module.sh <module>

Where:

 <module> is one of (case insensitive):

 CYW-SDIO, CYW-PCIe, 1CX, 1DX, 1LV, 1MW, 1XA, 1ZM, 1WZ

 1YM-SDIO, 1YM-PCIe, CURRENT or OFF

CYW-SDIO is an alias for 1DX,1LV,1MW and 1WZ modules. CYW-PCIE is an alias for 1CX and 1XA.
The OFF parameter will disable the systemd service so that it will not automatically start after a reboot
but it will keep the rest of the system configuration.

As an example, to enable the 1ZM M.2 module:

switch_module 1ZM

The only thing left is to enter the SSID and password information. Open the

/etc/wpa_supplicant.conf file in an editor (e.g. vi or nano) and replace the part marked in

yellow below:

ccttrrll__iinntteerrffaaccee==//vvaarr//rruunn//wwppaa__ssuupppplliiccaanntt

ccttrrll__iinntteerrffaaccee__ggrroouupp==00

uuppddaattee__ccoonnffiigg==11

nneettwwoorrkk=={{

 kkeeyy__mmggmmtt==NNOONNEE

}}

If the SSID is Hello World and the password is MyPassword then change the file to

ccttrrll__iinntteerrffaaccee==//vvaarr//rruunn//wwppaa__ssuupppplliiccaanntt

ccttrrll__iinntteerrffaaccee__ggrroouupp==00

uuppddaattee__ccoonnffiigg==11

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 10

Copyright 2020 © Embedded Artists AB Rev A

nneettwwoorrkk=={{

 ssssiidd==””HHeelllloo WWoorrlldd””

 ppsskk==””MMyyPPaasssswwoorrdd””

}}

Now that the network configuration is completed, reboot to test the new settings. The M.2 module
should automatically connect to the desired network.

3.3.1 iMX uCOM Boards with On-Board Solutions

At the time of writing this document, Embedded Artists supplied three iMX uCOM boards with onboard
chips. These boards requires extra configuration to use as they use different device tree files.

iMX7 ULP uCOM with onboard 1LV

switch_module 1LV

fw_setenv fdt_file imx7ulpea-ucom-kit_v2-1lv.dtb

iMX8M Mini uCOM with onboard 1MW

switch_module 1MW

fw_setenv fdt_file imx8mm-ea-ucom-kit_v2-1mw.dtb

iMX8M Nano uCOM with onboard 1MW

switch_module 1MW

fw_setenv fdt_file imx8mn-ea-ucom-kit_v2-1mw.dtb

3.4 Linux Console – Search for available networks

When the boot process is complete you will be presented with a login prompt. Enter the login
credentials below to log in:

Username: root

Password: pass

The Wi-Fi modules use different device names. Most of them use wlan0 which is what all examples
in this document will use. If you have a 1ZM, 1YM-PCIE or 1YM-SDIO then replace wlan0 with
mlan0. The places will be marked with cyan.

Run a scan of networks in range:

iw dev wlan0 scan

Or

iwlist wlan0 scan

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 11

Copyright 2020 © Embedded Artists AB Rev A

Both commands are very verbose so it is probably a good idea to limit the result like this:

iw dev wlan0 scan | grep SSID

 SSID: EA Guest

 SSID: VSG1

 SSID: COMHEM_73ee11

 SSID: DIRECT-4C-HP ENVY Photo 6200

 ...

Test the network connection with ping (stop with Ctrl+C):

ping www.sunet.se

PING www.sunet.se (192.36.171.231): 56 data bytes

64 bytes from 192.36.171.231: seq=0 ttl=56 time=16.412 ms

64 bytes from 192.36.171.231: seq=1 ttl=56 time=18.279 ms

64 bytes from 192.36.171.231: seq=2 ttl=56 time=19.125 ms...

If your router is not connected to Internet then ping the IP number of the router instead. The IP number
can be found like this:

ip route

default via 192.168.0.1 dev wlan0 metric 10

192.168.0.0/24 dev wlan0 proto kernel scope link src 192.168.0.4

ping 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 data bytes

64 bytes from 192.168.0.1: seq=0 ttl=56 time=16.412 ms

64 bytes from 192.168.0.1: seq=1 ttl=56 time=18.279 ms

64 bytes from 192.168.0.1: seq=2 ttl=56 time=19.125 ms...

The wireless connection will now work until next reboot. As the wireless network name and password
has been saved, all that is needed to connect to the network after a reboot is this:

#wpa_supplicant -B -i wlan0 -D nl80211 -c /etc/wpa_supplicant.conf

udhcpc -i wlan0

There are several ways to see the status of your connection and the network it is connection to. Here
is one example (not showing the output):

iw dev wlan0 link

3.5 Access and Configure Bluetooth Devices

All the Bluetooth devices use the UART interface but the device name for that interface is different
depending on the COM Board. The M.2 modules require some device specific instructions to initialize

and that has been simplified with the addition of the /opt/ea/Bluetooth_up.sh script in

Linux 5.4.24.

You must follow the instructions in 3.3 and select the correct M.2 module before trying anything in
this section.

To bring up the Bluetooth interfaces run this command:

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 12

Copyright 2020 © Embedded Artists AB Rev A

/opt/ea/bluetooth_up.sh

Setting TTY to N_HCI line discipline

Device setup complete

< HCI Command: ogf 0x3f, ocf 0x0009, plen 4

 C0 C6 2D 00

> HCI Event: 0x0e plen 4

 01 56 0C 00

[3065.661301] Bluetooth: hci0: sending frame failed (-49)

Setting TTY to N_HCI line discipline

Device setup complete

Scanning ...

To run a scan again, use hcitool scan

The output from the command is different and depends on which module is being used.

Note that there are two error messages that can appear for the 1ZM and 1YM-PCIe modules that can
be safely ignored (the second one is found in the output above):

“ Can't init device hci0: Invalid argument (22) “ or

“ Bluetooth: hci0: sending frame failed (-49) ”

The module should now be up and running and to scan for other Bluetooth devices in range:

hcitool scan

Scanning ...

 94:87:0B:35:F2:19 Samsung Galaxy S7

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 13

Copyright 2020 © Embedded Artists AB Rev A

Use the interactive bluetoothctl command line tool to search for devices, pair with a device (the

Galaxy Nexus phone), connect to it and then find some information about it:

bluetoothctl

[bluetooth] power on

[bluetooth] agent on

[bluetooth] scan on

Discovery started

[CHG] Controller D8:FC:93:E4:1E:A6 Discovering: yes

[NEW] Device B0:D0:00:38:00:C6 Galaxy Nexus

[NEW] Device 40:2B:A1:5F:7F:46 MW600

[bluetooth] pair B0:D0:00:38:00:C6

Attempting to pair with B0:D0:00:38:00:C6

[CHG] Device B0:D0:00:38:00:C6 Connected: yes

[CHG] Device B0:D0:00:38:00:C6 Modalias: bluetooth:v000Fp1200d1436

[CHG] Device B0:D0:00:38:00:C6 UUIDs:

 00001105-0000-1000-8000-00805f9b34fb

 0000110a-0000-1000-8000-00805f9b34fb

 0000110c-0000-1000-8000-00805f9b34fb

 00001112-0000-1000-8000-00805f9b34fb

 00001115-0000-1000-8000-00805f9b34fb

 00001116-0000-1000-8000-00805f9b34fb

 0000111f-0000-1000-8000-00805f9b34fb

 0000112f-0000-1000-8000-00805f9b34fb

 00001200-0000-1000-8000-00805f9b34fb

[CHG] Device B0:D0:00:38:00:C6 Paired: yes

Pairing successful

[bluetooth] scan off

[bluetooth] devices

Device B0:D0:00:38:00:C6 Galaxy Nexus

[bluetooth]# connect B0:D0:9C:38:84:C6

Attempting to connect to B0:D0:9C:38:84:C6

[CHG] Device B0:D0:9C:38:84:C6 Connected: yes

Connection successful

[bluetooth]# info B0:D0:00:38:00:C6

Device B0:D0:00:38:00:C6

 Name: Galaxy Nexus

 Alias: Galaxy Nexus

 Class: 0x5a020c

 Icon: phone

 Paired: yes

 Trusted: yes

 Blocked: no

 Connected: yes

 LegacyPairing: no
 UUID: OBEX Object Push (00001105-0000-1000-8000-00805f9b34fb)

 UUID: Audio Source (0000110a-0000-1000-8000-00805f9b34fb)

 UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)

 UUID: Headset AG (00001112-0000-1000-8000-00805f9b34fb)

 UUID: PANU (00001115-0000-1000-8000-00805f9b34fb)

 UUID: NAP (00001116-0000-1000-8000-00805f9b34fb)

 UUID: Handsfree Audio Gateway (0000111f-0000-1000-8000-00805f9b34fb)

 UUID: Phonebook Access Server (0000112f-0000-1000-8000-00805f9b34fb)

 UUID: PnP Information (00001200-0000-1000-8000-00805f9b34fb)

 Modalias: bluetooth:v000Fp1200d1436

[bluetooth] quit

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 14

Copyright 2020 © Embedded Artists AB Rev A

Using the sdptool command it is possible to find even more information (only showing first part

here):

sdptool browse B0:D0:00:38:00:C6

Browsing B0:D0:00:38:00:C6 ...

Service Name: Headset Gateway

Service RecHandle: 0x10000

Service Class ID List:

 "Headset Audio Gateway" (0x1112)

 "Generic Audio" (0x1203)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 2

Profile Descriptor List:

 "Headset" (0x1108)

 Version: 0x0102

3.5.1 Additional Links

https://wiki.archlinux.org/index.php/Bluetooth_headset

https://wiki.archlinux.org/index.php/Bluetooth

3.6 Wi-Fi: iperf3 Test

Ping is a great way to test if the hardware is connected to the network, or not, but to really test the

network interface it is better to use a program like iperf3. The program works with a client and a

server. The client is typically run on the COM board and the server software can either be installed on
a computer on the local network (https://iperf.fr/iperf-download.php) or one of the online servers can be
used (https://iperf.fr/iperf-servers.php).

To run the test first start the server by running the program with the -s switch. On a server running
Linux the command looks like this:

$ iperf3 -s

Server listening on 5201

To improve the performance of iperf3, run the helper script /opt/ea/optimize_for_iperf.sh:

/opt/ea/optimize_for_iperf.sh

Done with configuration

Run performance test with:

iperf3 -c 192.168.50.2 -i 5 -t 20 -P 4

iperf3 -c bouygues.iperf.fr -i 5 -t 20 -P 4

iperf3 -c ping.online.net -i 5 -t 20 -P 4

iperf3 -c speedtest.serverius.net -p 5002 -i 5 -t 20 -P 4

iperf3 -c iperf.eenet.ee -p 5201 -i 5 -t 20 -P 4

iperf3 -c iperf.volia.net -p 5201 -i 5 -t 20 -P 4

or another server from https://iperf.fr/iperf-servers.php

https://wiki.archlinux.org/index.php/Bluetooth_headset
https://wiki.archlinux.org/index.php/Bluetooth
https://iperf.fr/iperf-download.php
https://iperf.fr/iperf-servers.php

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 15

Copyright 2020 © Embedded Artists AB Rev A

It will change the CPU frequency governor to performance mode to achieve maximum performance. It
will also (for supported M.2 modules) set the minimum power consumption mode, set the driver power
management mode to constantly awake, enable frame burst and prevent all scans. The changes are
not permanent.

The next step is to run the client on the target hardware:

iperf3 -c 192.168.1.128 -p 5201 -i 1 -P 4

The most important parameter is the url or ip number of the server, in this case 192.168.1.128 and the
port number reported by the server, in this case 5201. There are a lot of options that can be given to

the program. Use the --help option to see them all.

The client prints a lot during the test phase and in the end it prints a summary like this:

[ID] Interval Transfer Bitrate Retr

[5] 0.00-10.00 sec 8.76 MBytes 7.35 Mbits/sec 1 sender

[5] 0.00-10.00 sec 8.67 MBytes 7.27 Mbits/sec receiver

[7] 0.00-10.00 sec 10.5 MBytes 8.81 Mbits/sec 1 sender

[7] 0.00-10.00 sec 10.2 MBytes 8.54 Mbits/sec receiver

[9] 0.00-10.00 sec 8.36 MBytes 7.02 Mbits/sec 4 sender

[9] 0.00-10.00 sec 8.20 MBytes 6.88 Mbits/sec receiver

[11] 0.00-10.00 sec 8.55 MBytes 7.17 Mbits/sec 1 sender

[11] 0.00-10.00 sec 8.47 MBytes 7.11 Mbits/sec receiver

[SUM] 0.00-10.00 sec 36.2 MBytes 30.4 Mbits/sec 7 sender

[SUM] 0.00-10.00 sec 35.5 MBytes 29.8 Mbits/sec receiver

The last two lines display the bandwidth for send (30.4Mbit/sec) and receive (29.8Mbit/sec). Note that
this number is limited by several factors: max bandwidth of the COM board's CPU, any network
switches, network card in the PC and the PC performance. The summary above is actually from a test
against an online server so the internet connection also limits the speed.

3.7 Wi-Fi: Check the Linux Boot Log

Start by checking that the module has been detected. For 1CX, 1DX, 1LV, 1MW, 1XA and 1WZ:

dmesg | grep brcm

brcmfmac: brcmf_c_preinit_dcmds: Firmware version = wl0: May 14

2018 04:48:55 version 13.10.271.107 (r689896) FWID 01-9d634183

For 1YM-PCIe, 1YM-SDIO and 1ZM:

dmesg |grep -i "wlan"

wlan: Loading MWLAN driver

wlan: Enable TX SG mode

wlan: Enable RX SG mode

Wlan: FW download over, firmwarelen=537492 downloaded 537492

WLAN FW is active

wlan: version = SD8987---16.92.10.p73-MX4X16169-GPL-(FP92)

wlan: Driver loaded successfully

If the command does not return something similar to the lines above then make sure that 1) the
module is inserted correctly and 2) that the correct device was chosen when running
switch_module.sh.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 16

Copyright 2020 © Embedded Artists AB Rev A

3.8 Wi-Fi: HostAP

Previous sections have described how to connect to a wireless network as a client. In this section we
will instead create our own network that other clients can connect to. The way to do this depends on
which M.2 module is being used so the instructions have been split into separate chapters below (3.8.1
and 3.8.2).

The chapters about connecting with a client and using iperf3 are the same for all modules.

3.8.1 Setup hostapd for 1CX, 1DX, 1LV, 1MW, 1XA

For these modules we use hostapd (host access point daemon) which enables a network interface

card to act as an access point and authentication server. We will also use udhcpd (a DHCP daemon)
to assign IP addresses to connecting clients.

The code below will be for the 1CX module so replace 1CX with your module. The instructions will
result in an unprotected wireless network called test and the client will be assigned an IP number in
the 192.168.5.100 to 192.168.5.150 range.

switch_module 1CX

/opt/ea/autostart_hostapd.sh enable

reboot

The new wireless network will automatically be available after the reboot.

To stop using hostapd and go back:

/opt/ea/autostart_hostapd.sh disable

switch_module 1CX

reboot

What happens in the background?

 The /etc/hostapd.conf file is modified to use wlan1 as network interface. You can

modify the ssid=test line in this file to set a different network name.

 The /etc/udhcpd.conf file is copied and modified to use wlan1 as network interface

and to change to the wanted IP range

 An hostapd@wlan1 systemd service is enabled (will start after a reboot) that will handle
starting of hostapd as well as udhcpd

3.8.2 Setup for 1YM-PCIe, 1ZM

For these modules we use uaputl which enables a network interface card to act as an access point

and authentication server. We will also use udhcpd (a DHCP daemon) to assign IP addresses to
connecting clients.

The code below will be for the 1ZM module so replace 1ZM with your module. The instructions will
result in an unprotected wireless network called Test_SSID and the client will be assigned an IP
number in the 192.168.5.100 to 192.168.5.150 range.

switch_module 1ZM

/opt/ea/autostart_hostapd.sh enable

reboot

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 17

Copyright 2020 © Embedded Artists AB Rev A

The new wireless network will automatically be available after the reboot.

To stop using hostapd and go back:

/opt/ea/autostart_hostapd.sh disable

switch_module 1ZM

reboot

What happens in the background?

 The /etc/udhcpd.conf file is copied and modified to use uap0 as network interface

and to change to the wanted IP range

 An hostapd@uap0 systemd service is enabled (will start after a reboot) that will handle
starting of uaputl as well as udhcpd

 To change network name replace Test_SSID in /opt/ea/start_hostapd.sh

3.8.3 Connecting with a client

Use a phone/laptop/tablet to search for available networks and the "test"/”Test_SSID” (or the ssid you
entered above) network should appear. It might look like this on a phone:

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 18

Copyright 2020 © Embedded Artists AB Rev A

Note that the status "Connected, no internet" appears as there is no route for the traffic from the phone
to Internet. It is possible (but out of scope for this document) to route the traffic to, for example, a wired
network connection on iMX COM Boards with wired network interface(s).

Some phone models/version show the assigned IP number in this dialog but the example phone does
not. If the default settings are used then the assigned IP number will be 192.168.5.100.

To check which IP addresses have been assigned run the following command:

dumpleases

Mac Address IP Address Host Name Expires in

aa:5f:1b:40:22:ad 192.168.1.100 Samsung-Galaxy-S7 expired

A bit more information can be found in the system log (here the first 4 lines come when connecting and
the last line when the client leaves):

cat /var/log/messages|grep -E "hostapd|udhcpd"

Oct 31 13:41:52 imx8mmea-ucom daemon.info hostapd: wlan1: STA

aa:5f:1b:40:22:ad IEEE 802.11: associated

Oct 31 13:41:52 imx8mmea-ucom daemon.info hostapd: wlan1: STA

aa:5f:1b:40:22:ad RADIUS: starting accounting session

7A3D9F4430B5BFA0

Oct 31 13:41:52 imx8mmea-ucom daemon.err udhcpd[3458]: sending

OFFER of 192.168.5.100

Oct 31 13:41:53 imx8mmea-ucom daemon.err udhcpd[3458]: sending ACK

to 192.168.5.100

Oct 31 13:46:03 imx8mmea-ucom daemon.info hostapd: wlan1: STA

ac:5f:3e:40:1e:ad IEEE 802.11: disassociated

One more way to get information about a connected client:

hostapd_cli all_sta

Selected interface 'wlan1'

aa:5f:1b:40:22:ad

flags=[AUTH][ASSOC][AUTHORIZED]

aid=0

capability=0x0

listen_interval=0

supported_rates=

timeout_next=NULLFUNC POLL

rx_packets=1015

tx_packets=193

rx_bytes=62988

tx_bytes=37595

inactive_msec=5000

connected_time=216

The last few lines give some statistics for the connection.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 19

Copyright 2020 © Embedded Artists AB Rev A

3.8.4 Example - iperf3 on Android

In this example your phone/tablet must have iperf3 software (this example uses the free Magic iPerf
app for Android, https://play.google.com/store/apps/details?id=com.nextdoordeveloper.miperf.miperf).

Start the iperf3 server on the target:

iperf3 -s

Server listening on 5201

Start the app on the phone. It will look like this the first time:

Click the iPerf2 button to change into iperf3 mode then click the text line with "-s -I 1" and change it to
"-c 192.168.5.1". It should now look like this:

https://play.google.com/store/apps/details?id=com.nextdoordeveloper.miperf.miperf

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 20

Copyright 2020 © Embedded Artists AB Rev A

Click the Stopped button (which will slide to the right and change into a blue Started button) to start the
test run:

When the test run ends it will print a summary like this:

The iperf3 server can be stopped with Ctrl+C on the target.

3.8.5 Where to go from here?

 Adding a web server to provide a user interface to the services running on the target. There
are several web servers available in yocto, each with their strengths and weaknesses. One
interesting feature is a "Captive Portal" which Wikipedia describes as

 a web page accessed with a web browser that is displayed to newly
 connected users of a Wi-Fi network before they are granted broader
 access to network resources.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 21

Copyright 2020 © Embedded Artists AB Rev A

There are several guides on how to setup a Captive Portal available on the Internet
depending on your choice of web server.

 Look into using iptables (available on the ea-image-base file system) to set up some firewall
rules to protect the system from malicious attacks.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 22

Copyright 2020 © Embedded Artists AB Rev A

3.9 Bluetooth: keyboard

This chapter will show how to connect to a Bluetooth keyboard and how to automatically connect to it
after a reboot. Note that the keyboard will appear as an input device and it will not actually work to type
in the terminal on the PC. The initialization is the same as explained in section 3.5 but will be repeated
for completeness.

Start by initializing Bluetooth (example is for 1ZM):

/opt/ea/Bluetooth_up.sh

Setting TTY to N_HCI line discipline

Device setup complete

< HCI Command: ogf 0x3f, ocf 0x0009, plen 4

 C0 C6 2D 00

> HCI Event: 0x0e plen 4

 01 56 0C 00

Setting TTY to N_HCI line discipline

Device setup complete

Scanning ...

To run a scan again, use hcitool scan

Use the interactive bluetoothctl command line tool to search for devices:

bluetoothctl

[bluetooth] power on

[bluetooth] agent on

[bluetooth] scan on

Discovery started

[CHG] Controller 44:91:60:9A:7B:3D Discovering: yes

[NEW] Device 5B:09:CC:56:F9:2B 5B-09-CC-56-F9-2B

[NEW] Device 54:1B:BC:EF:AF:5B 54-1B-BC-EF-AF-5B

[CHG] Device 24:4B:03:74:42:FE Name: [TV] UE55JS8505

[NEW] Device 76:09:06:02:00:75 76-09-06-02-00-75

[CHG] Device 76:09:06:02:00:75 LegacyPairing: no

[CHG] Device 76:09:06:02:00:75 Name: Bluetooth 3.0 Keyboard

[CHG] Device 76:09:06:02:00:75 Alias: Bluetooth 3.0 Keyboard

[NEW] Device 5D:B3:02:D1:F9:FC 5D-B3-02-D1-F9-FC

[CHG] Device 76:09:06:02:00:75 LegacyPairing: yes

...

The device we are interested in is the 76:09:06:02:00:75 "Bluetooth 3.0 Keyboard". Pair with it:

[bluetooth]# pair 76:09:06:02:00:75

Attempting to pair with 76:09:06:02:00:75

[CHG] Device 76:09:06:02:00:75 Connected: yes

[agent] PIN code: 067627

In this case the keyboard sends a pass code "067627" that has to be typed on the Bluetooth keyboard
followed by the Enter key in order to pair successfully. Check that the pairing was successful:

[bluetooth]# paired-devices

Device 76:09:06:02:00:75 Bluetooth 3.0 Keyboard

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 23

Copyright 2020 © Embedded Artists AB Rev A

To allow the device to establish the connection by itself it needs to be trusted:

[bluetooth]# trust 76:09:06:02:00:75

[CHG] Device 76:09:06:02:00:75 Trusted: yes

Changing 76:09:06:02:00:75 trust succeeded

As the last step connect to the keyboard:

[bluetooth]# connect 76:09:06:02:00:75

Attempting to connect to 76:09:06:02:00:75

[CHG] Device 76:09:06:02:00:75 Connected: yes

Connection successful

[CHG] Device 76:09:06:02:00:75 ServicesResolved: yes

[Bluetooth 3.0 Keyboard]#

Exit the tool:

[bluetooth]# quit

To test the keyboard:

evtest

No device specified, trying to scan all of /dev/input/event*

Available devices:

/dev/input/event0: 30370000.snvs:snvs-powerkey

/dev/input/event1: Bluetooth 3.0 Keyboard

Select the device event number [0-1]:

Type 1 and then Enter to start the tool. All key presses on the keyboard will be reported. End with
Ctrl+C.

The keyboard remains paired until that pairing is broken for example with the remove command in

bluetothctl. However, the Bluetooth controller will be turned off after a reboot.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 24

Copyright 2020 © Embedded Artists AB Rev A

4 COM Carrier Board V2 Advanced Features
There are several advanced and unique features of the COM Carrier Board V2 that has been added to
be able to professional evaluation/benchmarking and also debugging. This chapter describes these
features.

The picture below illustrates the different connectors and jumpers located on the lower left corner of
the COM Carrier Board V2.

Figure 4 – Lower Left Corner of COM Carrier Board V2

4.1 VBAT Current Measurement

It is possible to measure the VBAT current to the M.2 module exactly.

 Option #1, lift the short jumper (in 1-2 position) and use an external current meter to measure
the current exactly, with the resolution possible with the selected meter.

VBAT Current Measurement, J24
Default: 1-2 pos.
2-3 pos. Measure current over
50milliOhm resistor over 1-3 pos.

J36, isolation jumpers
for Bluetooth UART
and control signals.

Indicator LEDs for
control signals.

Wi-Fi/BT module
JTAG connector, J28

FTDI cable
connectors,
Left to right:
J29: BT UART
J26: WL Debug
J23: BT Debug

Location where M.2
module is mounted

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 25

Copyright 2020 © Embedded Artists AB Rev A

Note: make sure the current meter does not add a voltage drop more than 50-100mV
maximum.

 Option #2, move the short jumper to position 2-3. This will add a 50 milliOhm series resistor
and it is possible to measure the voltage over this series resistor on pos 1 and 3.

Do not forget to move the short jumper back to position 1-2 after a measurement session.

4.2 VBAT 3.3V or 3.6V

It is possible to set VBAT to either 3.3V or 3.6V during run time. This is controlled via a I2C mapped
GPIO. Setting VBAT to 3.6V can improve radio performance on the M.2 module. Note that setting
VBAT to 3.6V is outside of the M.2 specification, but if the radio chip/module on the M.2 module is
known to handle VBAT set to 3.6V then it can be an option to measure the added performance.

4.3 Support for 3.3V IO logic level (if M.2 module supports it)

The M.2 standard defines the IO voltage logic levels to a mixture of 1.8V and 3.3V. It is possible to set
the 1.8V logic signals to 3.3V logic level during run time. This is controlled via a I2C mapped GPIO.
Note that before doing this make sure the M.2 module used supports this feature. Not all of them do
this.

Also not that this control only affects the controls signals that have 1.8V logic level, not the SDIO bus.
The SDIO bus voltage level is controlled via other means.

4.4 Bluetooth UART Interception

It is possible to intercept/overtake the Bluetooth UART communication via connector J29. Insert a
UART-to-USB bridge cable from FTDI (TTL-232R-3V3) into J29 and use a PC application to
communicate directly with the Bluetooth part of the M.2 module.

Cypress has a tool called CyBluetool that can be used to debug Bluetooth communication problems.
The program and instructions on how to use it can be downloaded here:
https://community.cypress.com/docs/DOC-16475.

CyBluetool requires direct control of the UART and this is normally controlled by Linux. The UART is
different for different COM boards:

COM boards Bluetooth UART Serial for u-boot
command

iMX6 SoloX COM /dev/ttymxc1 serial1

iMX6 Quad COM /dev/ttymxc4 serial4

iMX6 DualLite COM /dev/ttymxc4 serial4

iMX6 UltraLite COM /dev/ttymxc1 serial1

iMX7 Dual COM /dev/ttymxc1 serial1

iMX7 Dual uCOM /dev/ttymxc1 serial1

iMX7 ULP uCOM /dev/ttyLP2 serial2

iMX7 ULP uCOM with onboard 1LV Not externally accessible

iMX8M COM /dev/ttymxc1 serial1

iMX8M Mini uCOM /dev/ttymxc0 serial0

https://community.cypress.com/docs/DOC-16475

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 26

Copyright 2020 © Embedded Artists AB Rev A

iMX8M Mini uCOM with onboard 1MW Not externally accessible

iMX8M Nano uCOM /dev/ttymxc0 serial0

iMX8M Nano uCOM with onboard 1MW Not externally accessible

To disable that control:

1) Start the terminal program on the PC

2) Power on the board

3) Press space as soon as text appears in the terminal program to stop in the u-boot

4) Run this command:

=> setenv cmd_custom fdt set serial1 status disabled\;fdt set

/modem-reset status disabled

Note that this is one line and the => should not be typed.
The "serial1" part of the command is COM board specific. Replace with the correct one for
your board according to the table above.

5) Run this command to save the setting:

=> saveenv

6) Power off the board

7) Insert an FTDI cable in connector J29

8) Power On the board and let it boot into Linux

9) Now that Linux is no longer in control of the UART the reset signal must be manually
controlled. To enable Bluetooth run the following commands to control BT_REG_ON:

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 27

Copyright 2020 © Embedded Artists AB Rev A

echo 496 > /sys/class/gpio/export

echo high > /sys/class/gpio/gpio496/direction

10) This step is only if you are using an i.MX6 Quad or i.MX6 DualLite COM board. These two
boards require the CTS signal to be pulled low:

echo 165 > /sys/class/gpio/export

echo low > /sys/class/gpio/gpio165/direction

11) Follow the instruction in the CyBluetool document.

The gpio commands are not persistent and must be executed again after a reboot. The U-boot
commands are however persistent and will disable the Linux access to the UART after each reboot. To
return to normal use of the UART stop in the u-boot and run these two commands:

=> setenv cmd_custom

=> saveenv

4.5 Dual UART Debug Channels and JTAG

In a cooperation with Murata, Cypress and Embedded Artists a number of pins on the M.2 connector
have been defines to carry UART debug channels as well as JTAG signals to the chipset on the M.2
module. Note that not all M.2 modules support all debug channels.

Connector J26 carry the Wi-Fi UART debug channel. Connect a UART-to-USB bridge cable from FTDI
(TTL-232R-3V3) into J26 and use a PC terminal application to get access to the debug interface.

Connector J23 carry the Bluetooth UART debug channel. Connect a UART-to-USB bridge cable from
FTDI (TTL-232R-3V3) into J26 and use a PC terminal application to get access to the debug interface.

J28 is a JTAG debug interface to the chipset on the M.2 module.

Note that using these debug interfaces typically requires understanding and access to the firmware

4.6 Audio Codec Multiplexing

Audio interface routing between i.MX processor on COM board, M.2 module and audio codec are
three corners in a triangle. With multiplexing, any corner can connect to any other corner. There are
three options, as listed below. Control is done in run time with two I2C mapped GPIOs.

 Option #1, connect M.2 module audio interface to audio codec on COM Carrier Board V2.

 Option #2, connect M.2 module audio interface to i.MX processor on the COM board.

 Option #3, connect audio interface from i.MX processor (on the COM board) to audio codec
on COM Carrier Board V2. This is the default when no M.2 module is used.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 28

Copyright 2020 © Embedded Artists AB Rev A

5 Software Update
The fastest way to get started is to download a prepared set of files for the COM board you are using
from http://imx.embeddedartists.com .

Instructions on how to flash that software is available in the iMX Working with Yocto document.

This section is an abbreviated version of that document.

5.1 Linux Host Setup

5.1.1 Introduction

The Yocto build system requires a Linux host machine. You can either run this host as a standalone /
native computer or as a virtual machine on, for example, a Microsoft Windows PC. The minimum
available hard disk space is 50 GB, but it is recommended that the host machine has at least 120 GB
to be able to build the largest image / distribution.

Several Linux distributions are supported by the Yocto project. Please refer to the Supported Linux
Distributions section in the Yocto reference manual for a complete list.

The instructions in this document have been tested on an Ubuntu 14.04. The iMX Working with Yocto
document explains how to setup a virtual machine.

5.1.2 Required Packages

The Yocto Project requires several packages to be installed on the host machine. If you are using any
of the distributions in section 5.1.1 follow the instructions below. If you, however, are using another
distribution refer to the Required Packages for the Host Development System section in the Yocto
reference manual.

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo

gcc-multilib build-essential chrpath socat

$ sudo apt-get install libsdl1.2-dev xterm sed cvs subversion

coreutils texi2html docbook-utils python-pysqlite2 help2man make

gcc g++ desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev

mercurial autoconf automake groff curl lzop asciidoc

$ sudo apt-get install u-boot-tools

5.1.3 Install the repo tool

The repo tool has been developed to make it easier to manage multiple Git repositories. Instead of

downloading each repository separately the repo tool can download all with one instruction.

Download and install the tool by following the instructions below.

1. Create a directory for the tool. The example below creates a directory named bin in your

home folder.

$ mkdir ~/bin

2. Download the tool

$ curl http://commondatastorage.googleapis.com/git-repo-

downloads/repo > ~/bin/repo

3. Make the tool executable

http://imx.embeddedartists.com/
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://commondatastorage.googleapis.com/git-repo-downloads/repo
http://commondatastorage.googleapis.com/git-repo-downloads/repo

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 29

Copyright 2020 © Embedded Artists AB Rev A

$ chmod a+x ~/bin/repo

4. Add the directory to the PATH variable. The line below could be added to your .bashrc file so
the path is available in each started shell/terminal

$ export PATH=~/bin:$PATH

5.1.4 Download Yocto recipes

The Yocto project consists of many recipes used when building an image. These recipes come from
several repositories and the repo tool is used to download these repositories.

In step 3 below a branch must be selected of the ea-yocto-base repository. The table below lists the
branches that support the M.2 modules.

Branch name Description

ea-5.4.24 u-boot: 2020.04. Linux: 5.4.24.

Table 1 - ea-yocto-base branches

1. Create a directory for the downloaded files (ea-bsp in the example below)

$ mkdir ea-bsp

$ cd ea-bsp

2. Configure Git if you haven’t already done so. Change “Your name” to your actual name and
“Your e-mail” to your e-mail address.

$ git config --global user.name “Your name”

$ git config --global user.email “Your e-mail”

3. Initialize repo. The file containing all needed repositories is downloaded in this step. Change
<selected branch> to a branch name according to Table 1.

$ repo init -u https://github.com/embeddedartists/ea-yocto-base -b

<selected branch>

4. Start to download files

$ repo sync

All files have now been downloaded into the ea-bsp directory. Most of the files will actually be

available in the sub-directory called sources.

https://github.com/embeddedartists/ea-yocto-base

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 30

Copyright 2020 © Embedded Artists AB Rev A

5.2 Building Images

Yocto is using the BitBake tool to generate complete Linux images/distributions, that is, all needed to
boot and run a Linux system. This is typically boot loader(s), Linux kernel, and root file system with
selected utilities and applications.

5.2.1 Available Images

The recipes that have been downloaded contain many different images. The table below describes the
ones relevant when working with the M.2 modules.

Image name Description

meta-toolchain Builds an installable toolchain (cross-complier)

ea-image-base
Only available on branch ea-4.14.78 and later. Based on core-image-
base and added packages for peripheral testing and verification

5.2.2 Machine Configurations

A machine configuration must be specified before a build can be started.

The table below contains the machine configurations available for Embedded Artists boards. It is also

possible to find the configuration files in the directory ~/ea-bsp/sources/meta-

ea/conf/machine.

Machine Description

imx6sxea-com
Machine configuration for Embedded Artists i.MX 6 SoloX COM
Board / Kit

imx6qea-com
Machine configuration for Embedded Artists i.MX 6 Quad COM Board
/ Kit

imx6dlea-com
Machine configuration for Embedded Artists i.MX 6 DualLite COM
Board / Kit

imx6ulea-com
Machine configuration for Embedded Artists i.MX 6 UltraLite COM
Board / Kit

imx7dea-ucom
Machine configuration for Embedded Artists i.MX 7 Dual uCOM
Board / Kit

imx7dea-com
Machine configuration for Embedded Artists i.MX 7 Dual COM Board
/ Kit

imx7ulpea-ucom
Machine configuration for Embedded Artists i.MX 7 ULP uCOM
Board / Kit

imx8mqea-com
Machine configuration for Embedded Artists i.MX8M Quad COM
Board / Kit

imx8mmea-ucom
Machine configuration for Embedded Artists i.MX8M Mini uCOM
Board / Kit

imx8mnea-ucom
Machine configuration for Embedded Artists i.MX8M Nano uCOM
Board / Kit

5.2.3 Initialize Build

Before starting the build it must be initialized. In this step the build directory and local configuration files
are created.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 31

Copyright 2020 © Embedded Artists AB Rev A

A distribution must be selected when initializing the build, see iMX Working with Yocto for different

alternatives. For headless setups (i.e. without a display) use fsl-imx-fb. Note that the i.MX8

boards do not support fsl-imx-fb so use fsl-imx-wayland instead.

In the example below the machine imx6sxea-com, the build directory build_dir and the

fsl-imx-fb distribution (see iMX Working with Yocto for other distributions) is selected.

$ DISTRO=fsl-imx-fb MACHINE=imx6sxea-com source ea-setup-

release.sh -b build_dir

Restart a Build

If you need to restart a build in a new terminal window or after a restart of the host computer you don’t

need to run the ea-setup-release.sh script again. Instead you run the setup-

environment script. If you don’t run the setup-environment script you won’t have access

to needed tools and utilities, such as bitbake.

$ source setup-environment build_dir

5.2.4 Starting the Build

Everything has now been setup to start the actual build. The example below shows how the ea-

image-base image is being built. Please note that depending on the capabilities of your host

computer building an image can take many hours.

$ bitbake ea-image-base

When the build has finished the images will be available in the directory specified below. Please note
that this directory will be different if you are using another build directory or machine configuration.

~/ea-bsp/build_dir/tmp/deploy/images/imx6sxea-com.

Go to chapter 5.3 for instructions of how to deploy images to the target hardware.

5.3 Deploying Images

UUU (Universal Update Utility) is version 3 of MFGTool (NXP's Manufacturing Tool) but it has been
rewritten, is publicly available on GitHub (https://github.com/NXPmicro/mfgtools) and it can be run on
both Windows and Linux while the older versions of MFGTool were limited to Windows only.

UUU can be used to write images to the board. This tool is sending files and instructions over USB and
the board must be set in OTG boot mode for it to work.

Prerequisites:

 Ubuntu 16.04 or above, 64-bit

 Windows 10, 64-bit

 Windows 7, 64-bit - note that there might be problems with drivers and that it might not even
work with the driver fixes applied even if the documentation says it does. The Windows 7
specific instructions can be found here: https://github.com/NXPmicro/mfgtools/wiki/WIN7-
User-Guide

Useful links:

 UUU on GitHub: https://github.com/NXPmicro/mfgtools

https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://github.com/NXPmicro/mfgtools
https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide
https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide
https://github.com/NXPmicro/mfgtools

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 32

Copyright 2020 © Embedded Artists AB Rev A

 UUU release page: https://github.com/NXPmicro/mfgtools/releases

5.3.1.1 Download the Tool

Download the zip file for the board you are using from http://imx.embeddedartists.com/

Unpack this zip file somewhere on your computer. Below is a description of some of the content in the
zip file.

- uuu (root): Contains a README file.

- uuu/uuu.exe: The Windows version of the tool

- uuu/*.uuu: The different download configurations.

- uuu/files/: Contains pre-compiled versions of images. The tool will look in this directory

when selecting images to download to the board.

The UUU zip file includes the Windows version of tool itself (i.e. uuu.exe). The README file contains a
link to where the latest binaries can be downloaded (https://github.com/NXPmicro/mfgtools/releases).
Download either uuu.exe (for Windows) or uuu for Linux and save the file in the same folder as the
README file.

5.3.1.2 Prepare hardware

Begin by reading the Getting Started document for the board you are using. It shows how to setup the
board and also gives an overview of the hardware.

5.3.1.3 OTG boot mode – J2 jumper

To download images using uu the board must be put into OTG boot mode.

This is accomplished by closing the J2 jumper on the Carrier board; see Figure 5 to locate the jumper.
Please note that in the figure the jumper is in open state which means that the COM board will boot
from eMMC.

Figure 5 - J2 jumper (opened state) on a COM Carrier Board V2

Note: When you want to boot the software from eMMC you have to remove jumper J2.

https://github.com/NXPmicro/mfgtools/releases
http://imx.embeddedartists.com/
https://github.com/NXPmicro/mfgtools/releases

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 33

Copyright 2020 © Embedded Artists AB Rev A

5.3.1.4 Configurations

Several configurations (*.uuu files) for the tool have been prepared in order to help you download
specific images.

- bootloader.uuu – will install only the bootloaders. This should only be used if you want

to restore the bootloaders or download your own bootloaders to the board.

- bootloader_combined.uuu – will install only the bootloaders. This is a faster

alternative to bootloader.uuu but it requires a binary where SPL and the u-boot have been
combined (see below). This should only be used if you want to restore the bootloaders or
download your own bootloaders to the board.

- kernel.uuu – will install kernel and dtb files. This should only be used if you want to

update the kernel or dtb files.

- full_tar.uuu – will install bootloaders, Linux kernel and root file system. The root file

system will be installed from a tar.bz2 file.

- raw_sdcard_example.uuu – will overwrite the eMMC with the content of an sdcard

file. The sdcard file is copied directly to the eMMC overwriting everything including
bootloaders, Linux kernel and file system.

If you want to create the combined binary to use with bootloader_combined.uuu run the following
commands in Linux:

$ dd if=SPL of=spl_and_uboot.bin bs=1024

$ dd if=u-boot.img of=spl_and_uboot.bin bs=1024 seek=68

5.3.1.5 Download Your Own Images

The UUU zip file that you download from http://imx.embeddedartists.com/ contain the latest build from
Embedded Artists.

The simplest way to download your own images is to replace the existing file(s) with your own file(s). If
you keep the file names intact the *.uuu configurations will download your version of the file.

5.3.1.6 Run the Tool in Ubuntu

On Linux open a terminal, navigate to the folder where the UUU zip file was unpacked, make sure that
the tool is executable and then execute the tool:

$ cd ~/uuu_imx8mq_com_5.4.24

$ chmod +x ./uuu

$ sudo ./uuu full_tar.uuu

The terminal will show a progress bar like this while it is running:

After a successful run it will look like this:

http://imx.embeddedartists.com/

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 34

Copyright 2020 © Embedded Artists AB Rev A

If a problem occurs then the program will terminate and print an error message like this

5.3.1.7 Run the Tool in Windows

On Windows open a Command Prompt, navigate to the folder where the UUU zip file was unpacked
and then run the tool:

C:\> cd c:\temp\uuu_imx8mq_com_5.4.24

C:\temp\uuu_imx8mq_com_5.4.24> uuu.exe full_tar.uuu

The terminal will show a progress bar like this while it is running:

After a successful run it will look like this:

If a problem occurs then the program will terminate and print an error message like this

5.3.1.8 Troubleshoot

Some common problems and solutions:

 The first time you run UUU on your computer it fails.
This is likely because of USB driver installation. Let the driver install, reset the hardware and
then run the uuu command again. In Windows it is three different drivers that are needed so
this procedure might have to be repeated three times - each time the procedure gets a little bit
further.

 UUU appears to hang with a "Wait for Known USB Device Appear..." message like this:

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 35

Copyright 2020 © Embedded Artists AB Rev A

This means that the hardware is either not connected to the computer with the USB cable or it
is not in the OTG boot mode. Check Fel! Hittar inte referenskälla. to Fel! Hittar inte
referenskälla. again and then run the uuu command again.

 Windows 7 fail to flash with an error like this:

It could be due to a driver problem. Follow instructions here:
https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide

 Windows 7 terminal does not appear as in the screenshots
This is because Windows 7 does not support what the UUU tool calls "VT mode" so it defaults
to verbose mode which has a lot more printouts and no progress bar.

 Running raw_sdcard_example.uuu complains about a missing .sdcard file
That file is not supplied in the downloaded zip file but you will find it in the "deploy" folder after
you complete your own yocto build.

 UUU in Ubuntu reports failure to open usb device:

This happens if the UUU program is not executed with the correct rights. Either use "sudo
uuu" or setup udev rules so that sudo rights are not needed. The instructions for how to

https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 36

Copyright 2020 © Embedded Artists AB Rev A

create the udev rules are built into the tool so run "uuu -udev" and then follow the steps:

5.4 Building without Yocto

5.4.1 Stand-alone Toolchain

To be able to build your own application or, for example, u-boot and the Linux kernel outside of Yocto
you need a toolchain. The toolchain consists of cross-compiler, linker, and necessary libraries. As
mentioned in section 5.2.1 there is an image named meta-toolchain that will create the necessary
toolchain.

1. Build the image

$ bitbake meta-toolchain

2. The build will result in a file located at <build dir>/tmp/deploy/sdk. The exact

name of the file depends on the host computer and the target board, but in our example it is
called:

fsl-imx-fb-glibc-x86_64-meta-toolchain-cortexa9hf-neon-

toolchain-4.14-sumo.sh

3. Install the toolchain

$ cd <build dir>/tmp/deploy/sdk

$ sudo ./fsl-imx-fb-glibc-x86_64-meta-toolchain-cortexa9hf-neon-

toolchain-4.14-sumo.sh

4. If you select the default settings the toolchain will in this example be installed in /opt/fsl-
imx-fb/ 4.14-sumo

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 37

Copyright 2020 © Embedded Artists AB Rev A

5. Before building an application run the command below to setup environment variables

$ source /opt/fsl-imx-fb/4.14-sumo/environment-setup-cortexa9hf-

neon-poky-linux-gnueabi

6. You can verify that the environment variables has been correctly setup by running the
command below that will show the version of the GCC compiler used.

$ $CC --version

arm-poky-linux-gnueabi-gcc (GCC) 7.3.0

...

NOTE 1: Setting up environment variables in step 5 may overwrite other variables you
already have in your environment. It is, for example, not recommended to do this in the same
terminal where you run bitbake to build Yocto images.

It is recommended to build this toolchain on your host computer and where you will do the
development and that you build for the same board as for example i.MX6UL/i.MX7Dual have a
different (ARM7) cross compiler than other i.MX6 processors (ARM9).

5.4.2 Build Linux kernel from source code

You can build the Linux kernel outside of Yocto by following the instructions in this section. Please note
that it is recommended that the kernel is built by Yocto when you are generating your final distribution
images since there can be dependencies between the root file system and the kernel.

The instructions in this section assume that you have built and installed the toolchain as described in
section 5.4.1 above.

Setup the environment variables for the toolchain. We are using the same installation path as
described in section 5.4.1 above. If you have installed the toolchain in a different path use that path in
the instructions below.

$ source /opt/fsl-imx-fb/4.14-sumo/environment-setup-cortexa9hf-

neon-poky-linux-gnueabi

Get the source code from the Embedded Artists GitHub repository. In this example we are checking
out branch ea_5.4.24.

$ git clone https://github.com/embeddedartists/linux-imx.git

$ cd linux-imx

$ git checkout ea_5.4.24

Use Embedded Artists kernel configurations.

$ make ea_imx_defconfig

(Optional) If you want to change kernel configurations you can at this point run the menuconfig tool.

$ make menuconfig

Build the kernel.

https://github.com/embeddedartists/linux-imx.git

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 38

Copyright 2020 © Embedded Artists AB Rev A

$ make

When the build process has finished the kernel will be available here:

arch/arm/boot/zImage - for iMX6 and iMX7 boards

arch/arm64/boot/Image - for iMX8 boards

Device tree files are available in the following directory:

arch/arm/boot/dts/ - for iMX6 and iMX7 boards

arch/arm64/boot/dts/freescale/ - for iMX8 boards

A compiled device tree file has the file extension dtb.

Updating the system

To update the system use manufacturing tool as described in 5.3 . For alternative ways of updating
see the iMX Working with Yocto document.

5.4.3 Build u-boot from source code

You can build u-boot outside of Yocto by following the instructions in this section.

The instructions in this section assume that you have built and installed the toolchain as described in
section 5.4.1 above.

Setup the environment variables for the toolchain. We are using the same installation path as
described in section 5.4.1 above. If you have installed the toolchain in a different path use that path in
the instructions below.

$ source /opt/fsl-imx-fb/4.14-sumo/environment-setup-cortexa9hf-

neon-poky-linux-gnueabi

Get the source code from the Embedded Artists GitHub repository. In this example we are checking
out branch ea_v2020.04.

$ git clone https://github.com/embeddedartists/uboot-imx.git

$ cd uboot-imx

$ git checkout ea_v2020.04

Use the Embedded Artists configuration for the COM board you are using. In the example below the
configuration for the iMX6 SoloX COM board is used.

$ make mx6sxea-com_config

Build the bootloader.

$ make

When the build process has finished the u-boot image (and in some cases SPL) will be available
directly in the uboot-imx directory.

https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://github.com/embeddedartists/uboot-imx.git

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 39

Copyright 2020 © Embedded Artists AB Rev A

Updating the system

Use the manufacturing tool as described in section 5.3 to update the system with the new u-boot
image and possibly SPL if your board requires it.

5.5 NVRAM

<TBD>Describe NVRAM and how it is updated/modified

5.6 Firmware

<TBD>Describe how to update the firmware for the M.2 modules, if needed

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 40

Copyright 2020 © Embedded Artists AB Rev A

6 Appendix - Updating Files on Target
There are four parts that make up a running system: u-boot, Linux kernel, device tree files and a root
file system. The u-boot and root file system have to be flashed using MfgTool/UUU as described in
section 5.3 . The Linux kernel and the device tree files are however much easier to update and this
appendix will show a couple of different ways to do this.

 U-boot USB Mass Storage Gadget - Quick, no extra software or network connection needed

 Secure Copy From Target - Requires network but no extra software

 Secure Copy To Target - Requires network and PC software. Target must be modified to
allow incoming connection. The advantage is an application with a GUI.

 USB memory stick - Only requires a Memory Stick but using it involves a lot of
plugging/copying/unplugging

Note that the sections below focus on updating the Linux kernel and device tree files but the same
commands can be used to update any file on the target.

6.1 U-boot USB Mass Storage Gadget

The u-boot has an ums command that can export an mmc device as a USB Mass Storage making it

accessible from a PC. The mmc device numbering is different for each board and changes with
versions of the u-boot so the table below shows the command to use for version 2020.04.

COM board Command

iMX6 SoloX COM ums 0 mmc 2

iMX6 Quad COM ums 0 mmc 3

iMX6 DualLite COM ums 0 mmc 3

iMX6 UltraLite COM ums 0 mmc 1

iMX7 Dual COM ums 0 mmc 2

iMX7 Dual uCOM ums 0 mmc 2

iMX7ULP uCOM ums 0 mmc 0

iMX8M Quad COM ums 0 mmc 0

iMX8M Mini uCOM ums 0 mmc 2

iMX8M Nano uCOM ums 0 mmc 2

To use the ums command, power on, stop in the u-boot, connect the micro USB cable in J11 and to

the PC and then execute the command for your board. For iMX6 SoloX it will look like this:

=> ums 0 mmc 0

UMS: LUN 0, dev 0, hwpart 0, sector 0x0, count 0x72c000

/

There will be a spinning character indicating that the command is running. After a few seconds the PC
should detect the USB drive(s) and make them available.

The number of drives that appear and if they can be accessed, or not, depends on the operating
system. Windows and Linux are both able to access the first drive as it is FAT formatted. It

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 41

Copyright 2020 © Embedded Artists AB Rev A

corresponds to the mmc partition with the Linux kernel and device tree files on it. As Linux has
ext3/ext4 file system support it can also access the second drive which corresponds to the root file
system of the target.

Add/remove files on the PC and then use the "safe unmounting" option in Windows/Linux to make sure
all changes have been written. Finally stop the ums command in the u-boot by typing Ctrl+C in the
terminal.

=> ums 0 mmc 0

UMS: LUN 0, dev 0, hwpart 0, sector 0x0, count 0x72c000

CTRL+C - Operation aborted

=>

Some things to note

 The u-boot is single threaded so the transfer speed of files to/from the USB drive is quite low.
That does not matter when updating the Linux kernel and/or device tree files but for large files
it is probably quicker to boot into Linux first (and do the file transfer from there).

 When accessing the root file system from a PC running Linux you may have to run the
commands as root (for example using sudo) as all files are owned by root.

 The ums support was verified on the ea_v2018.03 branch of the u-boot and connected to a
PC running Windows 7, Windows 10 and Ubuntu 18.04.

6.2 Secure Copy from Target

The default file system on all iMX Developer's Kits come with the scp tool preinstalled. If the target is

connected to the same network as you build computer and the build computer has an ssh server
running then scp can be used to transfer files from the build server.

The first step is to mount the mmc partition that holds the Linux kernel and device tree files. The mmc
device numbering is different for each board so the table below shows the command to use.

COM board eMMC device in Linux Command

iMX6 SoloX COM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX6 Quad COM /dev/mmcblk3 mount /dev/mmcblk3p1 /mnt/mmc

iMX6 DualLite COM /dev/mmcblk3 mount /dev/mmcblk3p1 /mnt/mmc

iMX6 UltraLite COM /dev/mmcblk1 mount /dev/mmcblk1p1 /mnt/mmc

iMX7 Dual COM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX7 Dual uCOM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX7ULP uCOM /dev/mmcblk0 mount /dev/mmcblk0p1 /mnt/mmc

iMX8M Quad COM /dev/mmcblk0 mount /dev/mmcblk0p1 /mnt/mmc

iMX8M Mini uCOM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX8M Nano uCOM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 42

Copyright 2020 © Embedded Artists AB Rev A

Using iMX8M Quad COM as an example:

mkdir /mnt/mmc

mount /dev/mmcblk0p1 /mnt/mmc

ls /mnt/mmc/

Image

boot.scr

fsl-imx8mq-ea-com-kit_v2-m4.dtb

fsl-imx8mq-ea-com-kit_v2-ov5640.dtb

fsl-imx8mq-ea-com-kit_v2-pcie.dtb

fsl-imx8mq-ea-com-kit_v2.dtb

The scp command looks like this:

scp <username>@<server>:<path> <destination>

So to copy the kernel from server with IP address 192.168.0.10 as user bob it could look like this:

scp bob@192.168.0.10:/home/bob/linux-imx/arch/arm64/boot/Image /mnt/mmc/

After copying the files from the build server make sure to unmount the mmc partition before rebooting:

unmount /mnt/mmc

6.3 Secure Copy To Target - WinSCP

WinSCP is a Windows program that is very useful to transfer files from the PC to the target hardware.
It can also be used to transfer the files from a yocto build to the PC where the files can be flashed
using UUU as described in section 5.3 .

6.3.1 Download and Install

Download the program from https://winscp.net/eng/download.php and install it.

6.3.2 Connect to Target

When WinSCP is started it asks for connection information. Enter the following information

Field Value

User name Root

Password Pass

Host name The IP number of the target (found by running "ifconfig" on the target)

File protocol SCP or SFTP

mailto:bob@192.168.0.10:/home/bob/linux-imx/arch/arm64/boot/Image
https://winscp.net/eng/download.php

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 43

Copyright 2020 © Embedded Artists AB Rev A

Press the Login button to connect to the target.

The first time connecting to the target (or after a re-flash of the target) this dialog will appear:

Press the Yes button to accept it.

If you get a dialog liked the one below asking for the password and you are sure that you have entered
the correct one (pass) then it is probably because the target is configured not to allow the root user to
connect.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 44

Copyright 2020 © Embedded Artists AB Rev A

Allowing root access is a huge security threat and it should never be allowed in a production system.
To allow it during development in a controlled environment is ok and to do it run the following
command on the target and then reboot to apply the change:

sed -i 's/#PermitRoot/PermitRoot/' /etc/ssh/sshd_config

If you prefer to edit the file manually then open /etc/ssh/sshd_config and search for

#PermitRootLogin yes

and then remove the preceding # sign.

Note that the command is persistent but needs to be executed again if you re-flash the file system.

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 45

Copyright 2020 © Embedded Artists AB Rev A

6.3.3 Copy Files

This is what the program looks like after a successful login:

Select a file in the left side (the PC), select a destination folder on the target (right side) and then click
the Upload button to transfer the file.

Note that to copy files directly to the mmc partition, use the mount and unmount commands as

described in section 6.2 above. You will then find the mounted partition under the mnt/mmc/ folder in
WinSCP.

6.4 USB Memory Stick

If the build machine is not accessible over network then copying the files on the build server onto a
USB Memory Stick could be an option.

When the USB Memory Stick is inserted on the target some status messages will be printed in the
console.

usb 1-1.3: new high-speed USB device number 5 using ci_hdrc

usb-storage 1-1.3:1.0: USB Mass Storage device detected

scsi1 : usb-storage 1-1.3:1.0

scsi 1:0:0:0: Direct-Access Kingston DataTraveler G2 1.00 PQ:

0 ANSI: 2

sd 1:0:0:0: [sda] 31252024 512-byte logical blocks: (16.0 GB/14.9

GiB)

sd 1:0:0:0: [sda] Write Protect is off

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

 Getting Started with M.2 Modules and i.MX 6/7/8 from Linux v5.4 Page 46

Copyright 2020 © Embedded Artists AB Rev A

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

sd 1:0:0:0: [sda] Attached SCSI removable disk

The interesting part above is the “sda: sda1” which indicates which device (sda1) that the USB

memory stick is assigned to.

To be able to access the memory stick it must first be mounted:

mkdir /mnt/usb

mount /dev/sda1 /mnt/usb

The memory stick is now available in the /mnt/usb directory on the file system:

ls /mnt/usb/

core-image-base-imx6sxea-com.rootfs.ext3

core-image-base-imx6sxea-com.rootfs.tar.bz2

imx6sxea-com-kit.dtb

u-boot-imx6sxea-com.img

zImage-imx6sxea-com

If the mmc partition has been mounted as described in section 6.2 above then files can be copied from
the directory to the mmc partition like this:

cp /mnt/usb/imx6sxea-com-kit.dtb /mnt/mmc/

Make sure to unmount the mmc after completing the copying.

Before physically removing the memory stick from the COM Carrier Board, it should be unmounted to
make sure that all pending write operations are committed to prevent data loss:

umount /mnt/usb

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Embedded Artists:

 EAR00373

https://www.mouser.com/embedded-artists
https://www.mouser.com/access/?pn=EAR00373

