PRELIMINARY

meerecompany

Specification

Model S100D

P/N SD-H60NB-1A8

- True VGA ToF camera module
- Compact design

S100D image of the development version

Revision History

Date	Ref. Page	Description	Remark				
20-09-09	-	Draft write					
21-01-21	-01-21 - Added I2C protocol						
	-	Added register map					
	-	Added embedded data information					
	-	Data format change					
	-	Added cover glass guide					
21-06-02	9, 22	Storage temperature, Rockchip information					
	29	Host board connector					

Contents

1	Introduction					
	1.1	ToF 3D	camera technology overview	7		
	1.2	System	block diagram	8		
2	Genera	al Specificat	tion	9		
3	Compo	onent Spec	ification	10		
	3.1	Main co	omponent	10		
	3.2	MR1000) calculating depth	10		
4	Functio	onal Specifi	ication	11		
	4.1	MIPI CS	il-2 output	11		
	4.2	High sp	eed depth calculation using MR1000	11		
1.1 ToF 3D camera technology overview 1.2 System block diagram 2 General Specification 3 Component Specification 3.1 Main component 3.2 MR1000 calculating depth 4 Functional Specification 4.1 MIPI CSI-2 output 4.2 High speed depth calculation using MR1000 5 Operation 5.1 Initialization 5.2 Operation(Boot) Mode 6 I2C Control Protocol 6.1 Protocol description 6.2 Example 7 MIPI interface 7.1 MIPI TX specification 8 Register map 8.1 Register description 8.2.1 Amplitude threshold control registers 8.2.2 Depth threshold control registers 8.2.3 Scattering threshold control registers 8.2.4 Depth error threshold control registers 8.2.5 Image filter control registers 8.2.6 Depth offset control registers 8.2.7 Motion blur control registers 8						
	5.1	Initializa	ation	12		
	5.2	Operati	on(Boot) Mode	12		
6	I2C Co	ntrol Proto	col	14		
	6.1	Protoco	l description	14		
	6.2	Example	9	15		
7	MIPI ir	nterface		16		
	7.1	MIPI TX	specification	16		
8	Registe	er map		17		
	8.1	Register	r information	17		
	8.2	Register	r description	18		
		8.2.1	Amplitude threshold control registers	18		
		8.2.2	Depth threshold control registers	18		
		8.2.3	Scattering threshold control registers	18		
		8.2.4	Depth error threshold control registers	18		
		8.2.5	Image filter control registers	19		
		8.2.6	Depth offset control registers	19		
		8.2.7	Motion blur control registers	20		
		8.2.8	Multi camera interference control registers	20		
		8.2.9	Output data format control registers	21		
		8.2.10	Information register	21		
9	Softwa	re(SDK)		22		
	9.1	Conditio	ons of the example code	22		
	9.2	CubeEy	e software development kit	22		

Contents

10	System	Integration	23
	10.1	System level block diagram	23
	10.2	System Power	23
	10.3	B to B connector pin map	24
	10.4	B to B connector pin information	25
11	Design	Guidelines	26
	11.1	LVDS line PCB design guide (mandatory)	26
	11.2	MIPI signals artwork guide	26
	11.3	Notes on design	26
12	Mecha	nical Drawings	27
	12.1	Schematic	27
	12.2	Physical z=0 plane	27
13	Conne	ctor Drawings	28
	13.1	S100D B to B connector	28
	13.2	Host B to B connector	29
14	Certific	ation	30
	14.1	Eye safety	30

Appendix A : Data		31	
A.1	Data format		31
	A.1.1 1 pixel	format	31
	A.1.2 16 bits	data format	31
A.2	Mode example		32
A.3	Embedded line o	data description	33
Appendix B : USB3	J300)	34	
B.1	Block diagram		34
B.2	S100D on U300		34
B.3	U300 schematic		35
B.4	U300 connector	pin map	36
B.5	U300 connector	pin information	37
B.6	Accessories		38
B.7	Cable connection	n	38
Appendix C : Part	number		39
Appendix D : Cove	le	40	

Figures

Fig 1.	Principles of indirect Time of Flight	7
Fig 2.	ToF demodulation using 4-phase sampling	7
Fig 3.	System block diagram	8
Fig 4.	MR1000 block diagram	10
Fig 5.	Power on sequence, sensor boot time	12
Fig 6.	Boot mode diagram	13
Fig 7.	MIPI TX operation TX signal timing	16
Fig 8.	S100D system block diagram	23
Fig 9.	S100D system power	23
Fig 10.	B to B connector No.1 position	24
Fig 11.	Host PCB LVDS line design guide	26
Fig 12.	S100D dimension and schematic	27
Fig 13.	Physical z=0 plane	27
Fig 14.	S100D connector	28
Fig 15.	Host board Connector	29
Fig 16.	Data reconstruction	31
Fig 17.	Output mode examples	32
Fig 18.	U300 block diagram	34
Fig 19.	Combined S100D and U300	34
Fig 20.	U300 dimension	35
Fig 21.	U300 B to B connector	36
Fig 22.	U300 accessories	38
Fig 23.	Cable connection	38
Fig 24.	Decription of the part number configuration	39
Fig 25.	Example image of use of cover glass	40

Tables

Table 1.	Main parts specification summary	8
Table 2.	Information of general specification	9
Table 3.	Main components description	10
Table 4.	Operation mode description	12
Table 5.	Protocol header	14
Table 6.	Protocol action	14
Table 7.	Protocol write	15
Table 8.	Protocol read	15
Table 9.	Register information	17
Table 10.	Amplitude threshold register setting	18
Table 11.	Depth threshold register setting	18
Table 12.	Scattering threshold register setting	18
Table 13.	Depth error threshold register setting	18
Table 14.	Image filter register setting	19
Table 15.	Depth offset register setting	19
Table 16.	Motion blur register setting	20
Table 17.	Multi camera interference reducing register setting	20
Table 18.	Output data format register setting	21
Table 19.	Module information register	21
Table 20.	B to B connector pin map	24
Table 21.	B to B connector pin information	25
Table 22.	Eyesafety standard information	30
Table 23.	Data mode	31
Table 24.	Embedded line data description	33
Table 25.	U300 B to B connector pin map	36
Table 26.	U300 pin information	37

1. Introduction

1.1. ToF 3D technology overview

3D time-of-flight (ToF) cameras illuminate an object or a scene with a modulated light source and observe the light reflected from the object. This is achieved via a laser diode illuminator and a receiver. The phase shift between the emitted light and reflected light is measured and translated to distance. This camera can measure an object's distance by pixel unit.

Fig 1. Principles of indirect Time of Flight

1. Introduction

1.2. System block diagram

Fig 3. System block diagram

Parts	Summary			
Illuminator	2W VCSEL(package with PD)			
ToF sensor	VGA, 4 phase data out, global shutter			
MR1000	Depth calculation			
Serial Flash	MR1000 bootloader, calibration parameter			
Power	Illuminator/Sensor/MR1000 Power			
B to B Connector	Connector for host interface			

Table 1. Main parts specification summary

2. General Specification

ToF Sensor								
Type of sensor	of sensor Samsung System LSI S5K33DXX							
Resolution	VGA (640x480), unit pixel size : 7.0 um							
Illumination								
Source 2W VCSEL								
Wavelength	940 nm							
Modulation frequency	80 MHz, 100 MHz							
Optics								
FOV (H x V)	60° x 45°							
Measurement range	0.2 ~ 4.0 m							
Accuracy								
0.2 ~ 0.5 m	<± 10 mm	※ Measurement condition						
0.5 ~ 4.0 m	<± 1% by	- Target : flat screen of >70 % reflectivity						
	distance	- Target area : 7x7 central pixels						
		- Number of data acquisition : 20 frames						
		- Ambient illumination : normal indoor						
		- Ambient temperature : 23 ~ 25°C						
Interface								
Control interface	ntrol interface I2C 400 Kbps							
Data interface	Data interface MIPI CSI-2 2 lanes, 500 Mbps/lane							
Power								
Input	DC 5V 3A							
Power consumption	Average 1.5 W, p	eak 15 W (TBD)						
Temperature								
Operating Tem.	0 ~ 60°C							
Storage Tem.	-20 ~ 70℃							
Size								
Dimensions	60.0 x 15.0 x 10.1	mm³						
Weight	(TBD)							
USB 3.0 Bridge board	d (Option)							
Dimensions	50.0 x 23.0 x 8.6 r	nm³						
Interface	USB 3.0 C type							
Input power	DC 5V 5A (adapto	or)						
Software (SDK for US	B connecting user)							
Operation system	Windows 10, Ubu	intu						
Output data Raw 10 bits								

Table 2. Information of general specification

3. Component Specification

3.1. Main component

ToF sensor	VGA, 4:3 ratio, Active area 1/3.2"					
	Electric global shutter					
	ADC accuracy : 10bits					
	Control I2C : max 1 MHz					
Lens	F number : 1.4					
	Focal Length : 3.92mm					
	Horizontal Field of View : 60°					
	Vertical Field of View : 45°					
	Diagonal Field of View : 72°					
Illuminator	Illuminator wavelength : 940 nm					
	SIP configuration : VCSEL, diffuser, VCSEL driver IC, PD					
	Laser compliance : Eyesafety class 1					

Table 3. Main components description

3.2. MR1000 calculating depth

There are 2 lanes of each Rx/Tx of MIPI on-chip in MR1000.

It also contains depth engine, image correction, post image filter, cartesian coordinate conversion and memory for frame buffer as well as memory controller.

Fig 4. MR1000 block diagram

4. Functional Specification

4.1. MIPI CSI-2 output

- Support MIPI DPHY v1.1 and MIPI CSI-2 v1.1 RAW10
- 80Mbps to 500Mbps with 2-lane selectable

4.2. High speed depth calculation using MR1000

- Support resolution VGA
- Depth calculation in spherical coordinate
- Amplitude/Intensity data ouput
- Depth correction
- Temperature compensation
- Low motion blur(Single frequency mode)
- Noise/TNR/spatial filter selectable
- Cartesian coordinate conversion(Point cloud)

5. Operation

5.1. Initialization

Fig 5. Power on sequence, sensor boot time

After power on, and when external reset is "High", CLK comes in and internal reset will be "High" after 1200 us (CLK at 24 MHz standard). All processes will work when the internal reset is high.

Booting is complete if the status of the boot done flag is '1'. Proceed with protocol work after checking boot done register status.

5.2. Operation(Boot) Mode

Mode	Description	Switching time	Power consumption		
S3	Sleep mode	off \rightarrow S3	280 mW		
	: Minimum power consumption	100 ms under			
S2	Retention mode	$S3 \rightarrow S2$	340 mW		
	: Minimum boot time	1150 ms			
S1	Stand-by mode	$S2 \rightarrow S1$	430 mW		
	: Active ready	290 ms			

Table 4.	Operation	mode	description
----------	-----------	------	-------------

5. Operation

Fig 6. Boot mode diagram

6. I2C Control Protocol

6.1. Protocol description

Description	Start		Lengt	:h	CMD		Addre	ess			Check	c sum	Data
Size(Byte)	á	2	ć	2		2		4	4		ć	2	0~63
Byte order	0	1	2	3	4	5	6	7	8	9	10	11	12-76
	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L-H

Table 5. Protocol header

Action	Start	Length	CMD	Address	Check sum	Data
Register setting	0xB0A1	0x0002	0x0006	0x0000****	0x0000	0x****
Illumination	0xB0A1	0x0001	0x0007	0x00000000	0x0000	1:ON, 0:OFF
MIPI TX Mode	0xB0A1	0x0001	0x0009	0x00000000	0x0000	0 : 2560 1 : 1280 2 : 640
MIPI TX reset	0xB0A1	0x0001	0x000A	0x00000000	0x0000	1
Auto exposure	0xB0A1	0x0001	0x000C	0x00000000	0x0000	1:ON, 0:OFF
Sleep mode	0xB0A1	0x0001	0x000D	0x00000000	0x0000	0 : Active 1 : S1 2 : S2 3 : S3
Register reset (default)	0xB0A1	0x0001	0x000E	0x00000000	0x0000	1

Table 6. Protocol action

6. I2C Control Protocol

6.2. Example

Slave address 0xE0 (Write)

0xE1 (Read)

Ex1) Register write(address 0x1122, data 0x33445566)

Protocol name	Slave	Start		Lengt	Length		CMD		Address				< sum	Data
Byte order(Write)	-	0	1	2	3	4	5	6	7	8	9	10	11	12
Register write	0xE0	0xA1	0xB0	0x01	0x00	0x06	0x00	0x22	0x11	0x00	0x00	0x00	0x00	0x66554433
Illumination on	0xE0	0xA1	0xB0	0x01	0x00	0x07	0x00	0x00	0x00	0x00	0x00	0x00	0x00	1
MIPI TX mode 0	0xE0	0xA1	0xB0	0x01	0x00	0x09	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0
MIPI TX reset	0xE0	0xA1	0xB0	0x01	0x00	0x0A	0x00	0x00	0x00	0x00	0x00	0x00	0x00	1
Auto exposure on	0xE0	0xA1	0xB0	0x01	0x00	0x0C	0x00	0x00	0x00	0x00	0x00	0x00	0x00	1
Auto exposure off	0xE0	0xA1	0xB0	0x01	0x00	0x0C	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0
Sleep mode active	0xE0	0xA1	0xB0	0x01	0x00	0x0D	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0
Sleep mode S1	0xE0	0xA1	0xB0	0x01	0x00	0x0D	0x00	0x00	0x00	0x00	0x00	0x00	0x00	1

Table 7. Protocol write

Protocol name	Slave	Address				Slave	Return size	Description
Byte order(Write)	-	0	1	2	3	-	-	
Register read	0xE0	0xA1	0xB2	0x11	0x22	0xE1	4	read address(0x2211)
Product name	0xE0	0xA1	0xB3	0xF0	0xF2	0xE1	8	000S100D(ASCII)
Firmware version	0xE0	0xA1	0xB3	0xF1	0xF2	0xE1	5	year/month/day/major/minor
Serial number	0xE0	0xA1	0xB3	0xF2	0xF2	0xE1	6	
Boot done	0xE0	0xA1	0xB3	0xF1	0xF1	0xE1	1	0 : not boot, 1 : boot

Table 8. Protocol read

7. MIPI interface

7.1. MIPI TX specification

- MIPI D-PHY 1.17 Nov 2011 compliant
- Forward (Unidirectional) high-speed only (LPDT/ULPS not support)
- HS diff.swing 200mV, HS common level 200mV
- Raw 10 data type supported
- Resolution mode
 - mode 0 : 2560x961
 - mode 1 : 1280x961
 - mode 2 : 640x961
- Frame rate : 30 fps
- MIPI CSI-2 2-lane (500Mbps/lane)
- First line : embedded frame head

Fig 7. MIPI TX operation TX signal timing

8.1. Register information

Address	31 30 29 28	27 26 25 24	23 22 2	1 20	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10						8 7	6	5 4	3	2	1 0	Default value	Access
0x0028	amp_max_limit								am	o_min_	limi	t				0xFFFF0000	R/W	
0x0029	depth_max_limit								dept	h_mir	n_lim	it				0xFFFF0000	R/W	
0x002A	scat_threshold						Reserved							0x00000200	R/W			
0x0030					dept	:h_erro	or_th	hreshc	old								0xFFFFFFFF	R/W
0x0031	Reserved											*1	*2	*3 *	4	0x0DAC000F	R/W	
0x0033	Reserved								g_offs	et					0x80000000	R/W		
0x0039							flying pixel_threshold							0x0000FFFF	R/W			
0x003A							temporal_mblur							0x02000020	R/W			
0x003B								mci_thresh							0x00000000	R/W		
0x003D		multi_f	req_ctrl												0xFF000C80	R/W		
0x0042	*5							Reserved						0x00001D4C	R/W			
0x0046	set_tx_mode	data_format_sel			vcyc	:le_dly	r	hcycle_dly						0x10003032	R/W			
0x0041	firm_rev_no						Reserved								R			
0x00AD							BD								R			
0x0127														n	nci_f	lag		R

*1 : filter3 *2 : remove flying pixel *3 : filter2 *4 : filter1 *5 : filter3_ctrl

 Table 9. Register information

8.2. Register description

8.2.1. Amplitude threshold control registers

Register Name	Address	Bit	Default	Description
amp max limit	0x0028	[31:16]	0xFFFF	More than the set value, depth = 0
			-	if(amplitude > amp_max_limit) depth = 0
				else depth = depth
amp min limit	0x0028	[15:0]	0x0000	Less than the set value, depth $= 0$
· · · ·				if(amplitude < amp_min_limit) depth = 0
				else depth = depth

Table 10. Amplitude threshold register setting

8.2.2. Depth threshold control registers

Register Name	Address	Bit	Default	Description
depth max limit	0x0029	[31:16]	0xFFFF	More than the set value, depth $= 0$
'				if(depth > depth_max_limit) depth = 0
				else depth = depth
depth min limit	0x0029	[15:0]	0x0000	Less than the set value, depth $= 0$
				if(depth < depth_min_limit) depth = 0
				else depth = depth

Table 11. Depth threshold register setting

8.2.3. Scattering threshold control registers

Register Name	Address	Bit	Default	Description
scat_threshold	0x002A	[31:16]	0xFFFF	scat amplitude = Internally calculated value if(scat amplitude < scat_threshold) depth = 0 else depth = depth
Reserved	0x002A	[15:0]	0x0200	Do not change

Table 12. Scattering threshold register setting

8.2.4. Depth error threshold control registers

Register Name	Address	Bit	Default	Description
depth_error_threshold	0x0030	[31:0]	0xFFFFFFF	error coefficient = Internally calculated value if(error coefficient > depth_error_threshold) depth = 0 else depth = depth

Table 13. Depth error threshold register setting

8.2.5. Image filter control registers

Register Name	Address	Bit	Default	Description
Reserved	0x0031	[31:16]	0x0DAC	Do not change
Reserved	0x0031	[0]	0x1	Do not change
Reserved	0x0042	[15:0]	0x1D4C	Do not change
filter 3	0x0031	[4]	0x0	noise filter 3 on/off 1 = on, 0 = off
filter3_ctrl	0x0042	[31]	0x0	noise filter 3 change 1 = gaussian filter, 0 = default filter
remove flying pixel	0x0031	[3]	0x1	remove flying pixel on/off 1 = on, 0 = off
flying pixel_threshold	0x0039	[15:0]	0xFFFF	flying pixel coefficient = Internally calculated value if(flying pixel coefficient > flying pixel_threshold) depth = 0 else depth = depth
filter 2	0x0031	[2]	0x1	noise filter 2 on/off 1 = on, 0 = off
filter 1	0x0031	[1]	0x1	noise filter 1 on/off 1 = on, 0 = off

Table 14. Image filter register setting

8.2.6. Depth offset control registers

Register Name	Address	Bit	Default	Description
Reserved	0x0033	[31:16]	0x8000	Do not change
g_offset	0x0030	[15:0]	0x0000	Global offset value, Adds or subtracts from the depth value according to
				the set value (scale : 1mm).

Table 15. Depth offset register setting

8.2.7. Motion blur control registers

Register Name	Address	Bit	Default	Description
temporal_mblur	0x003A	[7:0]	0x20	Temporal motion blur weight The motion blur is reduced as smaller input value
				(Input value range : 0x00 ~ 0xFF) As the input value decreases, the deviation of depth increases.
multi_freq_ctrl	0x003D	[31:23]	0x30	Multi-frequency motion blur weight The motion blur is reduced as smaller input value (Input value range : 0x00 ~ 0xFE) When set to 0XFF, multi-Frequency motion blur is completely removed, but aliasing always occurs. As the input value decreases, aliasing for moving objects increases.
multi_freq_ctrl	0x003D	[22:16]	0x01	Do not change

Table 16. Motion blur register setting

8.2.8. Multi camera interference control registers

Register Name	Address	Bit	Default	Description
mci thresh	0x003B	[12:0]	0x00	mci threshold value
inei_tinesii	000055	[12.0]	0,000	mci_flag is generated by comparing the
				difference value between a the previous frame
				and the current frame. The difference value is the
				average value of a specific area.
				if (frame (N-1) - frame(N) > mci thres value)
				mci_flag = '1'
				else mai flag = $'0'$
mci flag	0x0127	[3:0]	0x00	mci_flag consists of 4 bits, and each bit is the area
				information as follows.
				mci_flag[0] : area 1(left up side)
				mci_flag[1] : area 2(right up side)
				mci_flag[2] : area 3(left down side)
				mci flag[3] : area 4(right down side)

Table 17. Multi camera interference reducing register setting

8.2.9. Output data format control registers

Register Name	Address	Bit	Default	Description
set_tx_mode	0x0046	[31:28]	0x1	MIPI TX Resolution Selection
				0x1 : XYZA 2560 * 961
				0x2 : ZA 1280*961
				0x4 : Z 640* 961
data format sel	0x0046	[0]	0x0	set_dist_sel[0] : Depth Output Selection
				0x1 : R(Radial distance)
				0x0 : Z(Point cloud)
		[1]	0x0	set_dist_sel[1] : Amplitute Output Selection
				0x0 : Amplitute
				0x1 : Intensity
		[3:2]	0x0	set_dist_sel[3:2] : MIPI TX Frame Selection
				0x1 : 15 Fps
				0x2 : 7.5 Fps
				default : 30 Fps
vcycle_dly	0x0046	[23:12]	0x000	vertical delay value
				Use it when setting the MIPI TX mode.
hcycle_dly	0x0046	[11:0]	0x000	horizontal delay value Use it when setting the MIPI TX mode.

8.2.10. Information register

Register Name	Address	Bit	Default	Description
firm_rev_no	0x0041	[27:16]	0x21	firmware version information
BD	0x00AD	[0]	0x1	Boot status information 0x01 : idle, 0x01 : Boot done
sleep mode	TBD	TBD	TBD	sleep mode status information

Table 19. Module information register

9. Software(SDK)

9.1. Conditions of the example code (MIPI connection)

Environment

- Linux kernel version : 4.4.189
- V4L2 compatible
- Rockchip RK1109 compatible

Information

- file name : tof_lsi_mipi.c

9.2. CubeEye software development kit (USB3.0 connection)

libCubeEye is a cross-platform library for working with CubeEye camera (include S100D).

- $\ensuremath{\mathbbmm{X}}$ The SDK at a minimum includes :
 - CubeEyeShell : This application can be used view, debug and set camera configurations and other controls.
 - Code Examples : Examples to demostrate the use of SDK to include S100D snippets into applictions.
 - Doc : Documents for use the SDK.

10. System Integration

10.1. System level block diagram

10.2. System power

Fig 9. S100D system power

10. System Integration

10.3. B to B connector pin map(BBR50-04001-001)

Fig 10. B to B connector No.1 position

Name	N	0.	Name
+5V	1	2	GND
+5V	3	4	GND
+5V	5	6	GND
+5V	7	8	GND
+5V	9	10	GND
+5V	11	12	GND
+5V	13	14	GND
GND	15	16	GND
LVDS_RX_P	17	18	LVDS_TX_P
LVDS_RX_N	19	20	LVDS_TX_N
GND	21	22	GND
MIPI_DATA0_P	23	24	Boot done
MIPI_DATA0_N	25	26	RESET
GND	27	28	LD Enable
MIPI_CLK_P	29	30	GPIO0
MIPI_CLK_N	31	32	GPIO1
GND	33	34	GPIO2
MIPI_DATA1_P	35	36	I2C_SDA
MIPI_DATA1_N	37	38	I2C_SCL
GND	39	40	Sync Input

Table 20. B to B connector pin map

10. System Integration

10.4. B to B connector pin information

Nama	Description	Electrical			
INdiffie	Description	Characteristics			
+5V	ToF Module Power Input	5V/3A			
MIPI_DATA0_N	MIPI data lane 0(negative)	MIPI			
MIPI_DATA0_P	MIPI data lane 0(positive)	MIPI			
MIPI_CLK_N	MIPI clock lane(negative)	MIPI			
MIPI_CLK_P	MIPI clock lane(positive)	MIPI			
MIPI_DATA1_N	MIPI data lane 1(negative)	MIPI			
MIPI_DATA1_P	MIPI data lane 1(positive)	MIPI			
LVDS_TX_P	Differential modulation clock output(positive)	LVDS			
LVDS_TX_N	Differential modulation clock output(negative)	LVDS			
LVDS_RX_P	Differential modulation clock input(negative)	LVDS			
LVDS_RX_N	Differential modulation clock input(positive)	LVDS			
Boot done	Booting Done : Active High	1.8V			
RESET	Reset : Active Low	1.8V			
LD ENABLE	Laser Diode(VCSEL) Enable : Active Low	1.8V			
GPIO	General Purpose I/O	1.8V			
I2C_SDA	I2C Serial Data(Slave)	1.8V			
I2C_SCL	I2C Serial Clock(Slave)	1.8V			
Sync Input	Second camera SYNC signal : Input	1.8V			

Table 21. B to B connector pin information

11. Design Guidelines

11.1. LVDS line PCB design guide(Mandatory)

- Assign those two pair of pins as close as possible, to be connected in the shortest path on the host PCB.
- Line length should be the same.
- Design with an impedance of 100 ohm.

Fig 11. Host PCB LVDS line design guide

11.2. MIPI signals artwork guide

- Keep the length difference of the differential traces less than 1mm.
- Design with an impedance of 100 $\boldsymbol{\Omega}$

11.3. Notes on design

- Design the host PCB, the connector pin 1 position should not be changed
- The specified power must be supplied to the ToF camera module

12. Mechanical Drawings

12.1. Schematic

Fig 12. S100D dimension and schematic

12.2. Physical z=0 plane

Fig 13. Physical z=0 plane

13. Connector Drawings

13.1. S100D B to B connector drawing(BBR50-04001-001)

Fig 14. S100D connector

13. Connector Drawings

13.2. Host board connector drawing (DF12(5.0)-40DP-0.5V(86))

Header With metal fitting

OStacking Height : 3.5 to 5mm Product

Stacking Height : 3.5 to	o 5mm Product								U	nit : mm
Part No.	HRS No.	No. of Contacts	Α	В	С	D	E	F	Remarks	RoHS
DF12 (3.5)-20DP-0.5V (86)	537-0028-7 86	20	7.2	4.5	5.7	6.6		8.1		
DF12 (3.5)-30DP-0.5V (86)	537-0030-9 86	30	9.7	7.0	8.2	9.1	Ī	10.6		
DF12 (3.5)-36DP-0.5V (86)	537-0031-1 86	36	11.2	8.5	9.7	10.6	2.0	12.1		
DF12 (3.5)-40DP-0.5V (86)	537-0032-4 86	40	12.2	9.5	10.7	11.6	2.0	13.1		
DF12 (3.5)-50DP-0.5V (86)	537-0034-0 86	50	14.7	12.0	13.2	14.1	Ī	15.6		
DF12 (3.5)-60DP-0.5V (86)	537-0036-5 86	60	17.2	14.5	15.7	16.6	t l	18.1		
DF12 (4.0)-20DP-0.5V (86)	537-0053-4 86	20	7.2	4.5	5.7	6.6		8.1		
DF12 (4.0)-30DP-0.5V (86)	537-0055-0 86	30	9.7	7.0	8.2	9.1	Ī	10.6		
DF12 (4.0)-32DP-0.5V (86)	537-0926-2 86	32	10.2	7.5	8.7	9.6	t i	11.1		
DF12 (4.0)-36DP-0.5V (86)	537-0056-2 86	36	11.2	8.5	9.7	10.6	3.3	12.1	With metal fitting	
DF12 (4.0)-40DP-0.5V (86)	537-0057-5 86	40	12.2	9.5	10.7	11.6	t i	13.1	With boss	
DF12 (4.0)-50DP-0.5V (86)	537-0059-0 86	50	14.7	12.0	13.2	14.1	t i	15.6		
DF12 (4.0)-60DP-0.5V (86)	537-0061-2 86	60	17.2	14.5	15.7	16.6	t l	18.1		
DF12 (5.0)-20DP-0.5V (86)	537-0153-9 86	20	7.2	4.5	5.7	6.6		8.1		
DF12 (5.0)-30DP-0.5V (86)	537-0155-4 86	30	9.7	7.0	8.2	9.1	t	10.6	1	
DF12 (5.0)-36DP-0.5V (86)	537-0156-7 86	36	11.2	8.5	9.7	10.6		12.1		
DF12 (5.0)-40DP-0.5V (86)	537-0157-0 86	40	12.2	9.5	10.7	11.6	4.5	13.1		
DF12 (5.0)-50DP-0.5V (86)	537-0159-5 86	50	14.7	12.0	13.2	14.1		15.6		
DF12 (5.0)-60DP-0.5V (86)	537-0161-7 86	60	17.2	14.5	15.7	16.6	t l	18.1		
DF12B (3.5)-20DP-0.5V (86)	537-0328-0 86	20	7.2	4.5	5.7			8.1		YES
DF12B (3.5)-30DP-0.5V (86)	537-0330-2 86	30	9.7	7.0	8.2			10.6	1	
DF12B (3.5)-36DP-0.5V (86)	537-0331-5 86	36	11.2	8.5	9.7			12.1		
DF12B (3.5)-40DP-0.5V (86)	537-0332-8 86	40	12.2	9.5	10.7		2.8	13.1		
DF12B (3.5)-50DP-0.5V (86)	537-0334-3 86	50	14.7	12.0	13.2			15.6	1	
DF12B (3.5)-60DP-0.5V (86)	537-0336-9 86	60	17.2	14.5	15.7			18.1		
DF12B (4.0)-20DP-0.5V (86)	537-0353-8 86	20	7.2	4.5	5.7			8.1		
DF12B (4.0)-30DP-0.5V (86)	537-0355-3 86	30	9.7	7.0	8.2			10.6		
DF12B (4.0)-32DP-0.5V (86)	537-0927-5 86	32	10.2	7.5	8.7			11.1		
DF12B (4.0)-36DP-0.5V (86)	537-0356-6 86	36	11.2	8.5	9.7		3.3	12.1	With metal fitting	
DF12B (4.0)-40DP-0.5V (86)	537-0357-9 86	40	12.2	9.5	10.7			13.1	Without boss	
DF12B (4.0)-50DP-0.5V (86)	537-0359-4 86	50	14.7	12.0	13.2			15.6	1	
DF12B (4.0)-60DP-0.5V (86)	537-0361-6 86	60	17.2	14.5	15.7			18.1		
DF12B (5.0)-20DP-0.5V (86)	537-0378-9 86	20	7.2	4.5	5.7			8.1		
DF12B (5.0)-30DP-0.5V (86)	537-0380-0 86	30	9.7	7.0	8.2			10.6		
DF12B (5.0)-36DP-0.5V (86)	537-0381-3 86	36	11.2	8.5	9.7		4.2	12.1		
DF12B (5.0)-40DP-0.5V (86)	537-0382-6 86	40	12.2	9.5	10.7		4.3	13.1		
DF12B (5.0)-50DP-0.5V (86)	537-0384-1 86	50	14.7	12.0	13.2			15.6		
DF12B (5.0)-60DP-0.5V (86)	537-0386-7 86	60	17.2	14.5	15.7			18.1		

Note : Please order the embossed tape packaging product per reel. (1000 pcs./reel)

Fig 15. Host board Connector

14. Certification

14.1. Eye safety

Standard	Result
IEC 60825-1:2014 (Third Edition)	Class 1

Table 22. Eyesafety standard information

Appendix A : Data Format

A.1. Data format - Raw 10 bits (16 bits unsigned int)

The S100D has 3 output modes as shown in the table below.(Default : mode 0) Each (Z/R) and (Amplitude/Intensity) is selectable and the default is Z, Amplitude.

mode	Possiution	Positic	on(Z/R sele	IR(selectable)		
mode	Resolution	Х	Y	Z / R	Amplitude / Intensity	
mode 0	2560 x 961	0	0	0	0	
mode 1	1280 x 961	-	-	0	0	
mode 2	640 x 961	-	-	0	-	

Table 23. Data mode

A.1.1. 1 pixel format

Each mode has a different pixel size. Attention is required in these situations.

mode 0 (64bits): 1pixel (16bits X, 16bits Y, 16bits Z, 16bits A) mode 1 (32bits): 1pixel (16bits R, 16bits A) mode 2 (16bits): 1pixel (16bits R)

A.1.2. 16 bits Data format

Complexly, it imports two 10-bit raw MIPI data to convert one 16-bit. The 16-bit data generated becomes a component of the pixel.

2 MIPI Raw 10 bits to 16 bits data

Appendix A : Data Format

A.2. Mode example

Expression rule

mode 0

Х	-	*		#	\$
			_	_	

- X : data information
- Em : embedded data

2560 Raw 10bits(320 pixels)

: data index

Em - #

* : pixel x index

- # : pixel y index
- \$: L(LSB) H(MSB)

(
Em-0	Em-1	Em-2	Em-3	Em-4	Em-5	Em-6	Em-7		Em-2552	Em-2553	Em-2554	Em-2555	Em-2556	Em-2557	Em-2558	Em-2559
X-0_0_L	X-0_0_H	Y-0_0_L	Y-0_0_H	Z-0_0_L	Z-0_0_H	A-0_0_L	A-0_0_H		X-319_L	X-319_H	Y-319_L	Y-319_H	Z-319_0_L	Z-319_0_H	A-319_0_L	A-319_0_H
X-320_0_L	X-320_0_H	Y-320_0_L	Y-320_0_H	Z-320_0_L	Z-320_0_H	A-320_0_L	A-320_0_H		X-639_0_L	X-639_0_H	Y-639_0_L	Y-639_0_H	Z-639_0_L	Z-639_0_H	A-639_0_L	A-639_0_H
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
X-0_479_L	X-0_479_H	Y-0_479_L	Y-0_479_H	Z-0_479_L	Z-0_479_H	A-1_479_L	A-1_479_H		X-319_479_L	X-319_479_H	Y-319_479_L	Y-319_479_H	Z-319_479_L	Z-319_479_H	A-319_479_L	A-319_479_H
X-320_479_L	X-320_479_H	Y-320_479_L	Y-320_479_H	Z-320_479_L	Z-320_479_H	A-320_479_L	A-320_479_H		X-639_479_L	X-639_479_H	Y-639_479_L	Y-639_479_H	Z-639_479_L	Z-639_479_H	A-639_479_L	A-639_479_H
total 961 lin	nes Raw10bits	s														

							1390 Da	10hite(2	0 nivel
	mode 1						1200 Rd	人 100113(52	to pixels
Em-0	Em-1	Em-2	Em-3	Em-4	Em-5	Em-6	Em-7		Em-12
R-0_0_L	R-0_0_H	A-0_0_L	A-0_0_H	R-1_0_L	R-1_0_H	A-1_0_L	A-1_0_H		R-318
R-320_0_L	R-320_0_H	A-320_0_L	A-320_0_H	R-321_0_L	R-321_0_H	A-321_0_L	A-321_0_H		R-638
:	:	:	:	:	:	:	:	:	
:	:	:	:	:	:	:	:	:	
R-0_479_L	R-0_479_H	A-0_479_L	A-0_479_H	R-1_479_L	R-1_479_H	A-1_479_L	A-1_479_H		R-318_4
R-320_479_L	R-320_479_H	A-320_479_L	A-320_479_H	R-321_479_L	R-321_479_H	A-321_479_L	A-321_479_H		R-638_4
total 961 lin	es Raw10bits	S							

)
Em-1272	Em-1273	Em-1274	Em-1275	Em-1276	Em-1277	Em-1278	Em-1279
R-318_0_L	R-318_0_H	A-318_0_L	A-318_0_H	R-319_0_L	R-319_0_H	A-319_0_L	A-319_0_H
R-638_0_L	R-638_0_H	A-638_0_L	A-638_0_H	R-639_0_L	R-639_0_H	A-639_0_L	A-639_0_H
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
R-318_479_L	R-318_479_H	A-318_479_L	A-318_479_H	R-319_479_L	R-319_479_H	A-319_479_L	A-319_479_H
R-638 479 L	R-638 479 H	A-638 479 L	A-638 479 H	R-639 479 L	R-639 479 H	A-639 479 L	A-639 479 H

	mode 2						640 Ra	w 10bits(320 人) pixels)							
Em-0	Em-1	Em-2	Em-3	Em-4	Em-5	Em-6	Em-7		Em-632	Em-633	Em-634	Em-635	Em-636	Em-637	Em-638	Em-639
R-0_0_L	R-0_0_H	R-1_0_L	R-1_0_H	R-2_0_L	R-2_0_H	R-3_0_L	R-3_0_H		R-316_0_L	R-316_0_H	R-317_0_L	R-317_0_H	R-318_0_L	R-318_0_H	R-319_0_L	R-319_0_H
R-320_0_L	R-320_0_H	R-321_0_L	R-321_0_H	R-322_0_L	R-322_0_H	R-323_0_L	R-323_0_H		R-636_0_L	R-636_0_H	R-637_0_L	R-637_0_H	R-638_0_L	R-638_0_H	R-639_0_L	R-639_0_H
:	:	:	:	:	:	:	:		:	:	:	:	:		:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
R-0_479_L	R-0_479_H	R-1_479_L	R-1_479_H	R-2_479_L	R-2_479_H	R-3_479_L	R-3_479_H		R-316_479_L	R-316_479_H	R-317_479_L	R-317_479_H	R-318_479_L	R-318_479_H	R-319_479_L	R-319_479_H
R-320_479_L	R-320_479_H	R-321_479_L	R-321_479_H	R-322_479_L	R-322_479_H	R-323_479_L	R-323_479_H		R-636_479_L	R-636_479_H	R-637_479_L	R-637_479_H	R-638_479_L	R-638_479_H	R-639_479_L	R-639_479_H
total 961 lir	nes Raw10bit	s	•	•	•	•			•				-			

Fig 17. Output mode examples

Appendix A : Data Format

A.3. Embedded line data description

Data index	Bus_width	Name	Description			
Em-0	8	rev_no[7:0]	MR1000 Revision number			
Em-6	8	frame_count[7:0]	frame_count[7:0]			
Em-7	8	frame_count[15:8]	frame_count[15:8]			
Em-8	1	filter3_on[7]	filter3_on/off			
	1	remove_flying_pixel_on[6]	remove_flying_pixel_on/off			
	1	flter2_on[5]	flter2_on/off			
	1	filter1_on[4]	filter1_on/off			
Em-12	8	set_firm_rev_no[7:0]	firmware Revision number			
Em-17	8	tof_temp[7:0]	ToF temperature = tof_temp[15:0] * 256			
Em-18	8	tof_temp[15:8]				
Em-19	8	drv_temp[7:0]	drive IC temperature = drv_temp[15:0] * 256			
Em-20	8	drv_temp[15:8]				
Em-21	8	amp_max_limit[7:0]	amp_max_limit			
Em-22	8	amp_max_limit[15:8]				
Em-23	8	amp_min_limit[7:0]	amp_min_limit			
Em-24	8	amp_min_limit[15:8]				
Em-25	8	depth_max_limit[7:0]	depth_max_limit			
Em-26	8	depth_max_limit[15:8]				
Em-27	8	depth_min_limit[7:0]	depth_min_limit			
Em-28	8	depth_min_limit[15:8]				
Em-29	8	mci_thresh[7:0]	mci_thresh			
Em-30	8	mci_thresh[15:8]				
Em-35	4	mci_flag[3:0]	mci_flag			
Em-38	8	scat_threshold[7:0]	scat_threshold			
Em-39	8	scat_threshold[15:8]				
Em-40	8	flying pixel_threshold[7:0]	remove_flying_pixel_thresh			
Em-41	8	flying pixel_threshold[15:8]				
Em-42	8	temporal_mblur[7:0]	temporal_mblur			
Em-43	8	multi_freq_ctrl[7:0]	multi_freq_ctrl			
Em-68	4	data_format_sel[3:0]	data_format_sel[3:0]			
Em-73	8	g_offset[7:0]	global_offset			
Em-74	8	g_offset[15:8]				

Table 24. Embedded line data description

B.1. Block Diagram

B.2. S100D on U300

Fig 19. Combined S100D and U300

B.3. U300 schematic

Fig 20. U300 dimension

B.4. U300 connector pin map(BBP50-04001-001)

Fig 21. U300 B to B connector

Name	N	0.	Name		
N.C	1	2	GND		
I2C_SCL	3	4	MIPI_DATA1_N		
I2C_SDA	5	6	MIPI_DATA1_P		
GPIO2	7	8	GND		
GPIO1	9	10	MIPI_CLK_N		
GPIO0	11	12	MIPI_CLK_P		
N.C	13	14	GND		
RESET	15	16	MIPI_DATA0_N		
Boot done	17	18	MIPI_DATA0_P		
GND	19	20	GND		
LVDS_RX_N	21	22	LVDS_TX_N		
LVDS_RX_P	23	24	LVDS_TX_P		
GND	25	26	GND		
GND	27	28	+5V		
GND	29	30	+5V		
GND	31	32	+5V		
GND	33	34	+5V		
GND	35	36	+5V		
GND	37	38	+5V		
GND	39	40	+5V		

Table 25. U300 B to B connector pin map

B.5. U300 connector pin Information

Nama	Description	Electrical		
INdifie	Description	Characteristics		
+5V	ToF Module Power Input	5V/3A		
MIPI_DATA0_N	MIPI data lane 0(negative)	MIPI		
MIPI_DATA0_P	MIPI data lane 0(positive)	MIPI		
MIPI_CLK_N	MIPI clock lane(negative)	MIPI		
MIPI_CLK_P	MIPI clock lane(positive)	MIPI		
MIPI_DATA1_N	MIPI data lane 1(negative)	MIPI		
MIPI_DATA1_P	MIPI data lane 1(positive)	MIPI		
LVDS_RX_P	Differential modulation clock input(positive)	LVDS		
LVDS_RX_N	Differential modulation clock input(negative)	LVDS		
LVDS_TX_P	Differential modulation clock output(negative)	LVDS		
LVDS_TX_N	Differential modulation clock output(positive)	LVDS		
Boot done	Booting Done : Active High	1.8V		
RESET	Reset : Active Low	1.8V		
GPIO	General Purpose I/O	1.8V		
I2C_SDA	I2C Serial Data(Slave)	1.8V		
I2C_SCL	I2C Serial Clock(Slave)	1.8V		

Table 26. U300 pin information

B.6. Accessories

- Adaptor
- Power Cable
- USB3.0 Cable(A to C-type)

Fig 22. U300 accessories

B.7. Cable connection

- Power Cable/USB Cable connection

Fig 23. Cable connection

Appendix C : Part Number

Configuration of part number

Fig 24. Decription of the part number configuration

Appendix D : Cover Glass Assy' Guide

When using the cover glass, it is recommended to place it as close to the lens as possible. And it is necessary to place a light barrier between RX and TX to minimize light spread.

Fig 25. Example image of use of cover glass

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

meerecompany: SD-H60NB-1A8