Description
The ZXGD3101 is intended to drive MOSFETS configured as ideal diode replacements. The device is comprised of a differential amplifier detector stage and high current driver. The detector monitors the reverse voltage of the MOSFET such that if body diode conduction occurs a positive voltage is applied to the MOSFET’s Gate pin.

Features
- Turn-off propagation delay 15ns and turn-off time 20ns
- Suitable for Discontinuous Mode (DCM), Critical Conduction Mode (CrCM) and Continuous conduction mode (CCM) operation
- Compliant with Energy Star V2.0 and European Code of Conduct V3
- Low component count
- Halogen free
- 5-15V V_{CC} range

Pin out detail

Once the positive voltage is applied to the Gate the MOSFET switches on allowing reverse current flow. The detectors’ output voltage is then proportional to the MOSFET Drain-Source reverse voltage drop and this is applied to the Gate via the driver. This action provides a rapid turn off as current decays.

Applications
Flyback converters in:
- Adaptors
- LCD monitors
- Server PSU’s
- Set top boxes

Refer to documents; AN54, DN90, DN91 and DN94 available from the website

Typical configuration

Ordering information

<table>
<thead>
<tr>
<th>Device</th>
<th>Status</th>
<th>Package</th>
<th>Part Mark</th>
<th>Reelsize (inches)</th>
<th>Tape width (mm)</th>
<th>Quantity per reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZXGD3101T8TA</td>
<td>Active</td>
<td>SM8</td>
<td>ZXGD3101</td>
<td>7</td>
<td>12</td>
<td>1000</td>
</tr>
</tbody>
</table>
Absolute maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage¹</td>
<td>V_{CC}</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain pin voltage¹</td>
<td>V_D</td>
<td>-3 to 180</td>
<td>V</td>
</tr>
<tr>
<td>GATEH and GATEL output Voltage¹</td>
<td>V_G</td>
<td>-3 to V_{CC} + 3</td>
<td>V</td>
</tr>
<tr>
<td>Driver peak source current</td>
<td>I_{SOURCE}</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>Driver peak sink current</td>
<td>I_{SINK}</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>Reference current</td>
<td>I_{REF}</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>V_{BIAS}</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td>I_{BIAS}</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation at T_A =25°C</td>
<td>P_D</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>T_J</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-50 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. All voltages are relative to GND pin

Thermal resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction to ambient (*)</td>
<td>R_{BA}</td>
<td>250</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to lead (†)</td>
<td>R_{BA}</td>
<td>54</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

NOTES:
(*): Mounted on minimum 1oz copper on FR4 PCB in still air conditions
(†): Output Drivers - Junction to solder point at end of the lead 5 and 6

ESD Rating

<table>
<thead>
<tr>
<th>Model</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body</td>
<td>4,000</td>
<td>V</td>
</tr>
<tr>
<td>Machine</td>
<td>400</td>
<td>V</td>
</tr>
</tbody>
</table>
Electrical characteristics at $T_A = 25^\circ C$

$V_{CC} = 10V$; $R_{BIAS} = 1.8k\Omega$; $R_{REF}=3k\Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input and supply characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating current</td>
<td>I_{OP}</td>
<td>$V_{DRAIN} \leq -200mV$</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DRAIN} \geq 0V$</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off Threshold Voltage $^{(**)}$</td>
<td>V_T</td>
<td>$V_G = 1V$, $^{(*)}$</td>
<td>-45</td>
<td>-16</td>
<td>0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{G(\text{off})}$</td>
<td>-</td>
<td>0.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_G</td>
<td>$V_{DRAIN} \geq 0V$, $^{(e)}$</td>
<td>-</td>
<td>6.0</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DRAIN} = -60mV$, $^{(i)}$</td>
<td>6.0</td>
<td>7.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DRAIN} = -80mV$, $^{(i)}$</td>
<td>7.0</td>
<td>8.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DRAIN} = -100mV$, $^{(i)}$</td>
<td>8.4</td>
<td>9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DRAIN} \leq -140mV$, $^{(i)}$</td>
<td>9.2</td>
<td>9.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DRAIN} \leq -200mV$, $^{(i)}$</td>
<td>9.3</td>
<td>9.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GATEH peak source current</td>
<td>I_{SOURCE}</td>
<td>$V_{GH} = 1V$</td>
<td>2.5</td>
<td>-</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>GATEL peak sink current</td>
<td>I_{SINK}</td>
<td>$V_{GL} = 5V$</td>
<td>2.5</td>
<td>-</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Turn on Propagation delay</td>
<td>t_{d1}</td>
<td></td>
<td>525</td>
<td>ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn off Propagation delay</td>
<td>t_{d2}</td>
<td>$C_L = 2.2nF$, $^{(i)}$ $^{(a)}$</td>
<td>15</td>
<td>ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Gate rise time</td>
<td>t_r</td>
<td></td>
<td>305</td>
<td>ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Gate fall time</td>
<td>t_f</td>
<td></td>
<td>20</td>
<td>ns</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

$^{(**)}$ GATEH connected to GATEL
$^{(*)}$ $R_H = 100K\Omega$, $R_L = 0/C$
$^{(e)}$ $R_E = 100K\Omega$, $R_{BIAS} = 0/C$
$^{(i)}$ Refer to Fig 4; Test circuit and Fig 5; Timing diagram on page 11
Schematic symbol and pin description

![Diagram](ZXGD3101T8)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description and function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>No connection
This pin can be connected to GND</td>
</tr>
<tr>
<td>2</td>
<td>REF</td>
<td>Reference
This pin is connected to VCC via resistor, RREF. RREF should be selected to source ~3mA into this pin. See note 1</td>
</tr>
<tr>
<td>3</td>
<td>GATEL</td>
<td>Gate turn off
This pin sinks current, ISINK, from the synchronous MOSFET Gate.</td>
</tr>
<tr>
<td>4</td>
<td>GATEH</td>
<td>Gate turn on
This pin sources current, ISOURCE, to the synchronous MOSFET Gate.</td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td>Power Supply
This is the supply pin. It is recommended to decouple this point to ground closely with a ceramic capacitor.</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground
This is the ground reference point. Connect to the synchronous MOSFET Source terminal.</td>
</tr>
<tr>
<td>7</td>
<td>BIAS</td>
<td>Bias
This pin is connected to VCC via resistor, RBIAS. RBIAS should be selected to source 1.6 times IREF into this pin. See note 1</td>
</tr>
<tr>
<td>8</td>
<td>DRAIN</td>
<td>Drain connection
This pin connects directly to the synchronous MOSFET Drain terminal.</td>
</tr>
</tbody>
</table>

NOTES:

1. BIAS and REF pins should be assumed to be at GND+0.7V
Operation

Normal Operation

The operation of the device is described step-by-step with reference to the timing diagram below.

1. The detector monitors the MOSFET Drain-Source voltage.
2. When, due to transformer action, the MOSFET body diode is forced to conduct there is approximately -0.6V on the Drain pin.
3. The detector outputs a positive voltage with respect to ground, this voltage is then fed to the MOSFET driver stage and current is sourced out of the GATEH pin.
4. The current out of the GATEH pin is sourced into the synchronous MOSFET Gate to turn the device on.
5. The GATEH output voltage is now proportional to the Drain-Source voltage drop across the MOSFET due to the current flowing through the MOSFET.
6. MOSFET conduction continues until the drain current reaches zero.
7. At zero current the detector output voltage is zero and the synchronous MOSFET Gate voltage is pulled low by the GATEL, turning the device off.
NOT RECOMMENDED FOR NEW DESIGN
USE ZXGD3101N8

Fig 1a: Continuous Conduction Mode (CCM)

Fig 1b: Critical Conduction Mode (CrCM)

Fig 1c: Discontinuous Conduction Mode (DCM)

Figure 1. Typical waveforms
Typical characteristics

Transfer Characteristic

- V_G Gate Voltage (V)
- V_D Drain Voltage (V)

$V_C = 10V$
$V_B = 5mA$
$I_{REF} = 3mA$
$R_{LOAD} = 1k\Omega$

$T = +40^\circ C$
$T = 25^\circ C$
$T = 125^\circ C$

Transfer Characteristic

- V_G Gate Voltage (V)
- V_D Drain Voltage (V)

$I_{BAS} = 5mA$
$I_{REF} = 3mA$
$R_{LOAD} = 1k\Omega$
$T = 25^\circ C$

Transfer Characteristic

- V_G Gate Voltage (V)
- V_D Drain Voltage (V)

$V_C = 10V$
$I_{BAS} = 5mA$
$I_{REF} = 2mA$
$I_{REF} = 2.5mA$
$I_{REF} = 3mA$
$I_{REF} = 3.5mA$
$I_{REF} = 4mA$

Transfer Characteristic

- V_G Gate Voltage (V)
- V_D Drain Voltage (V)

$V_C = 10V$
$I_{BAS} = 6mA$
$I_{BAS} = 5mA$
$I_{BAS} = 4.5mA$
$I_{BAS} = 4mA$

Bias Current vs Reference Current

- I_{REF} Reference Current (mA)
- I_{BAS} Bias Current (mA)

Turn-off offset voltage

<table>
<thead>
<tr>
<th>V_D</th>
<th>I_{REF} Reference Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10mV$</td>
<td>2.5 mA</td>
</tr>
<tr>
<td>$20mV$</td>
<td>2 mA</td>
</tr>
</tbody>
</table>

Resistor Ratio R_{RES}/R_{RES} vs Bias Current

- $V_D = 1V$
- $I_{REF} = 1mA$

Bias Resistor vs Reference Resistor

- I_{BAS} Bias Current (mA)

Turn-off offset voltage

<table>
<thead>
<tr>
<th>V_D</th>
<th>I_{BAS} Bias Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10mV$</td>
<td>2.5 mA</td>
</tr>
<tr>
<td>$20mV$</td>
<td>2 mA</td>
</tr>
</tbody>
</table>
Typical characteristics

Drain Sense Voltage vs Temperature

- **Turn-off offset voltage**
 - Set to ~0mV at 25°C
 - Set to ~20mV at 25°C

- **Normalized Current Gain**
 - Source Current
 - $V_{ds} = 10V$
 - $V_s = 1V$
 - $I_{source} = 2.5A$

- **Sink Current**
 - $V_{ds} = 10V$
 - $V_s = 5V$
 - $I_{source} = 2.5A$

Switch On Speed

- V_D
 - V_s

Switch Off Speed

- V_D
 - V_s

Switching vs Temperature

- $F = 100kHz$
 - $V_{ds} = 10V$
 - $R_{ds} = 1.8\,\Omega$
 - $R_{es} = 3k\,\Omega$
 - $C_{es} = 2.2nF$
 - $R_{es} = 1k\,\Omega$

Supply Current vs Temperature

- $F = 100kHz$
 - $V_{ds} = 10V$
 - $R_{ds} = 1.8\,\Omega$
 - $R_{es} = 3k\,\Omega$
 - $C_{es} = 2.2nF$
 - $R_{es} = 100k\,\Omega$
Typical characteristics

Supply Current vs Capacitive Load

- $V_{cc}=15V$
- $V_{cc}=12V$
- $V_{cc}=10V$
- $V_{cc}=8V$

$F=100kHz$, $R_{REF}=1.8k\Omega$

Supply Current vs Frequency

- $V_{cc}=10V$
- $R_{REF}=1.5k\Omega$
- $R_{REF}=3k\Omega$
- $R_{REF}=100k\Omega$

$C_{L}=10nF$
$C_{L}=4.7nF$
$C_{L}=2.2nF$
$C_{L}=1nF$

Component selection

It is advisable to decouple the ZXGD3101 closely to V_{CC} and ground due to the possibility of high peak gate currents with C_1 in Figure 2.

The proper selection of external resistors R_{REF} and R_{BIAS} is important to the optimum device operation. Select a value for resistor R_{REF} to give a reference current, I_{REF}, of ~3mA. The value of R_{BIAS} must then be 0.6 times the value of R_{REF} to give a bias current, I_{BIAS}, of 1.6 times I_{REF}. This provides a recommended typical offset voltage of ~20mV.

External gate resistors are optional. They can be inserted to control the rise times which may help with EMI issues, power supply consumption issues or dissipation within the part.

$$R_{REF} = (V_{CC} - 0.7V) / 0.003$$

$$R_{BIAS} = (V_{CC} - 0.7V) / 0.005$$

Layout considerations

The Gate pins should be as close to the MOSFET Gate as possible. Also the ground return loop should be as short as possible. The decoupling capacitor should be close to the V_{CC} and Ground pin, and should be a X7R type.

For more detailed information refer to application note AN54.
Figure 2 - Example connection for low side synchronous rectification

Figure 3 - Example connection for high side synchronous rectification
Figure 4: Test circuit

Figure 5: Timing diagram
NOT RECOMMENDED FOR NEW DESIGN
USE ZXGD3101N8

Package information - SM8 (Surface mounted, 8 pin package)

<table>
<thead>
<tr>
<th>DIM</th>
<th>Millimeters</th>
<th>Inches</th>
<th>DIM</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.7</td>
<td>-</td>
<td>e1</td>
<td>4.59</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>0.1</td>
<td>-</td>
<td>e2</td>
<td>1.53</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>0.7</td>
<td>-</td>
<td>He</td>
<td>6.7</td>
<td>7.3</td>
</tr>
<tr>
<td>c</td>
<td>0.32</td>
<td>-</td>
<td>Lp</td>
<td>0.035</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>6.3</td>
<td>6.7</td>
<td>α</td>
<td>15°</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>3.3</td>
<td>3.7</td>
<td>β</td>
<td>10°</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches.

Soldering footprint
Definitions

Product change
Diodes Incorporated reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Diodes Inc. with respect to the accuracy or use of such Information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Diodes Inc. does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support
Diodes Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:
1. are intended to implant into the body
or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labelling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or re reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold subject to Diodes Inc. terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Diodes or Zetex sales office.

Quality of product
Diodes Zetex Semiconductors Limited is an ISO 9001 and TS16949 certified semiconductor manufacturer.

To ensure quality of service and products we strongly advise the purchase of parts directly from Diodes Inc. or one of our regionally authorized distributors. For a complete list of authorized distributors please visit: www.zetex.com or www.diodes.com

Diodes Inc. does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices.

The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric failure to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance
Diodes Inc. is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Diodes Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:

“Preview” Future device intended for production at some point. Samples may be available

“Active” Product status recommended for new designs

“Last time buy (LTB)” Device will be discontinued and last time buy period and delivery in effect

“Not recommended for new designs” Device is still in production to support existing designs and production

“Obsoleted” Production has been discontinued

Datasheet status key:

“Draft version” This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.

“Provisional version” This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.

“Issue” This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.

Sales offices

The Americas

Europe

Taiwan

Shanghai

Shenzhen

Korea

3050 E. Hilletree Drive
Westlake Village, CA 91362-3154
Tel: (+1) 888 446 4900
Fax: (+1) 805 446 4980

Kustermann-Park
Balanstrasse 58,
D-81411 München
Germany
Tel: (+49) 89 445 4940
Fax: (+49) 89 445 4949

7F, No. 50,
Min Chia Road
Hsin-Tien
Taipei, Taiwan
Tel: (+886) 289 146 000
Fax: (+886) 289 146 639

Rm. 606, No.1158
Changning Road
Shanghai, China
Tel: (+886) 215 241 4982
Fax: (+886) 215 241 4981

ANLIAN Plaza, #4018
Jitiant Road
Futian CBD,
Shenzhen, China
Tel: (+86) 755 882 849 98
Fax: (+86) 755 882 849 99

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
1005-5 Yeongjong-dong,
Yeongtong-gu, Suwon-st,
Gyeonggi-do, Korea 434-813

6 Floor, Changwa BD,
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body, or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com