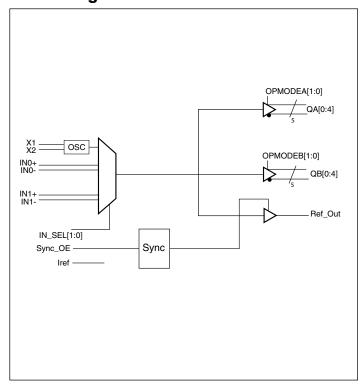


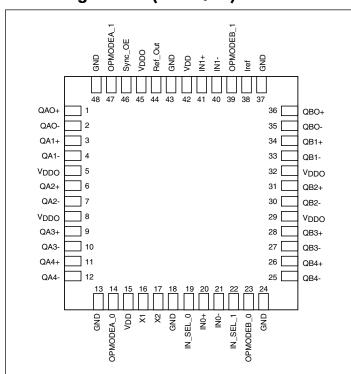
High Performance Differential Fanout Buffer

Features

- → 10 differential outputs with 2 banks
- → User configurable output signaling standard for each bank: LVDS or LVPECL or HCSL
- → LVCMOS reference output up to 200MHz
- → Up to 1.5GHz output frequency for differential outputs
- → Ultra low additive phase jitter: < 0.02 ps (typ) (differential 156.25MHz, 12KHz to 20MHz integration range); < 0.01 ps (typ) (differential 156.25MHz, 10kHz to 1MHz integration range)
- → Selectable reference inputs support either single-ended or differential or Xtal
- → Low skew between outputs within banks (<40ps)
- → Low delay from input to output (Tpd typ. < 0.9ns)
- → Separate Input output supply voltage for level shifting
- \rightarrow 2.5V / 3.3V power supply
- → Industrial temperature support
- → TQFN-48 package


Description

The PI6C49S1510A is a high performance fanout buffer device-which supports up to 1.5GHz frequency. It also integrates a unique feature with user configurable output signaling standards on per bank basis which provide great flexibilities to users. The device also uses Pericom's proprietary input detection technique to make sure illegal input conditions will be detected and reflected by output states. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.


Applications

- → Networking systems including switches and Routers
- → High frequency backplane based computing and telecom platforms

Block Diagram

Pin Configuration (48-TQFN)

Pin Description

Pin #	Pin Name	T	ype	Description		
1,2	QA0+ QA0-	Oı	ıtput	Bank A differential output pair 0. Pin selectable LVPECL/LVDS/HCSL interface levels.		
2.4	QA1+			Bank A differential output pair 1. Pin selectable LVPECL/LVDS/HCSL		
3,4	QA1-	Oi	ıtput	interface levels.		
5,8,29,32,45	VDDO	Po	ower	Power supply pins for IO		
6,7	QA2+	0.	itnut	Bank A differential output pair 2. Pin selectable LVPECL/LVDS/HCSL		
0,7	QA2-	O	ıtput	interface levels.		
9,10	QA3+	0.	utput	Bank A differential output pair 3. Pin selectable LVPECL/LVDS/HCSL		
9,10	QA3-		atput 	interface levels.		
11,12	QA4+	0.	utput	Bank A differential output pair 4. Pin selectable LVPECL/LVDS/HCSL		
11,12	QA4-		put	interface levels.		
13,18,24,37,43,48	GND	Po	ower	Power supply ground		
14,47	OPMODEA	Input	Pulldown	Output mode select for Bank A. See Table 2 for functions, LVCMOS/LVTTL interface levels		
15,42	V_{DD}	Power		Power supply pins		
16	X1	Input		XTAL input, can also be used as single ended input pin		
17	X2	Oı	ıtput	XTAL output. If X1 is used as a single ended input pin, X2 is to be left open		
19,22	IN_SEL	Input	Pulldown	Input clock sele ct. See Table 1 for function. LVCMOS/LVTTL interface levels.		
20	IN0+	Input	Pulldown	Reference input 0		
21	IN0-	Input	Pull-up/ Pulldown	Inverted reference input 0, internal bias to $V_{\text{DD/2}}$		
23,39	OPMODEB	Input	Pulldown	Output mode select for Bank B. See Table 2for functions, LVCMOS/LVTTL interface levels		
26.25	QB4+			Bank B differential output pair 4. Pin selectable LVPECL/LVDS/HCSL		
26,25	QB4-	Oi	utput	interface levels.		
OB3+				Bank B differential output pair 3. Pin selectable LVPECL/LVDS/HCSL		
28,27	QB3-	Output		interface levels.		
21.20	QB2+			Bank B differential output pair 2. Pin selectable LVPECL/LVDS/HCSL		
31,30	QB2-	O	utput	interface levels.		
24.22	QB1+		-44	Bank B differential output pair 1. Pin selectable LVPECL/LVDS/HCSL		
34,33	QB1-	ا ا	utput	interface levels.		

Pinout Description Cont.

Pin #	Pin Name	Type		Description
36,35	QB0+	Output		Bank B differential output pair 0. Pin selectable LVPECL/LVDS/HCSL
36,33	QB0-	Output		interface levels.
38	Iref	Output		A fixed precision resistor (4750hm) from this pin to ground provides a reference current for HCSL mode. If LVPECL or LVDS mode chosen, pin can be left open
40	IN1-	Input	Pull-up/ Pulldown	Inverted reference input, internal bias to $V_{\mathrm{DD/2}}$
41	IN1+	Input	Pulldown	Reference input 1
44	Ref_Out	Output	·	Reference output, CMOS
46	Sync_OE	Input	Pulldown	Synchronous output enable for Ref_Out, see Table 3 for functions

Function Table

Table 1: Input select function

IN_SEL [1]	IN_SEL [0]	Function
0	0	IN0 is the selected reference input
0	1	IN1 is the selected reference input
1	X	XTAL is the selected input

Table 2: Output Mode select function

OPMODEA/B [1]	OPMODEA/B [0]	Output Bank A / Bank B Mode
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Hi-Z

Table 3: Reference output enable function

Sync_OE	Ref_Out
0	Hi-Z
1	Output enabled

Table 4: Illegal input level function

Input illegal status	Output status
Input open	Logic Low
Input both high	Logic Low
Input both low	Logic Low

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics and Operating Conditions

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V_{DD}	Core Supply Voltage		2.375		3.465	V
V _{DDO}	Output Supply Voltage		2.375		3.465	V
I_{DD}	Core Power Supply Current			90	120	
	Output Power Supply Current	All LVPECL outputs unloaded		150	190	mA
I_{DDO}		All LVDS outputs loaded		110	130	
		All HCSL outputs unloaded		80	120	
T _A	Ambient Operating Temperature ¹		-40		85	°C
T _B	PCB Operating Temperature ¹		-40		105	°C

Note 1: Either T_A or T_B used as operating condition

DC Electrical Specifications - Differential Inputs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{IH}	Input High current	$Input = V_{DD}$			150	uA
I_{IL}	Input Low current	Input = GND	-150			uA
C_{IN}	Input capacitance			3		PF
V _{IH}	Input high voltage				V _{DD} +0.3	V
V _{IL}	Input low voltage		-0.3			V
V _{ID}	Input Differential Amplitude PK-PK		0.15		V _{DD} -0.85	V
V _{CM}	Common model input voltage		GND + 0.5		V _{DD} -0.85	V
ISO _{MUX}	MUX isolation			-89		dBc

DC Electrical Specifications - LVCMOS Inputs

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I_{IH}	Input High current	$Input = V_{DD}$			150	uA
I _{IL}	Input Low current	Input = GND	-150			uA
V _{IH}	Input high voltage	V_{DD} =3.3 V	2.0		V _{DD} +0.3	V
V _{IL}	Input low voltage	V _{DD} =3.3V	-0.3		0.8	V
V _{IH}	Input high voltage	V _{DD} =2.5V	1.7		V _{DD} +0.3	V
V _{IL}	Input low voltage	V _{DD} =2.5V	-0.3		0.7	V

DC Electrical Specifications- LVPECL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		V _{DDO} -1.4		V_{DDO} -0.9	V
V _{OL}	Output Low voltage		V _{DDO} -2.2		V _{DDO} -1.7	V

DC Electrical Specifications- LVDS Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage			1.43		V
V _{OL}	Output Low voltage			1.0		V
Vocm	Output commode voltage			1.25		V
DVocm	Change in Vocm between completely output states				50	mV
Ro	Output impedance		85		140	Ω

DC Electrical Specifications – HCSL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		520		900	mV
V _{OL}	Output Low voltage		-150		150	mV

DC Electrical Specifications – LVCMOS Output

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
	0 () () ()	V _{DDO} =3.3V +/-5%, I _{OH =} 8mA	2.3			V
V _{OH}	Output High voltage	V _{DDO} =2.5V +/- 5%, I _{OH =} 8mA	1.5			V
Vol	Output Low voltage	V _{DDO} =3.3V +/-5%, I _{OL =} -8mA			0.5	V
		$V_{\rm DDO}$ =2.5V +/- 5%, $I_{\rm OL}$ = -8mA			0.4	V
	Output High voltage	V _{DDO} =3.3V +/-5%, I _{OH} = 24mA	2.1			V
V _{OH}		V _{DDO} =2.5V +/- 5%, I _{OH =} 16mA	1.5			V
3.7	Output I avvvoltage	V _{DDO} =3.3V +/-5%, I _{OL =} -24mA			1	V
Vol	Output Low voltage	$V_{\rm DDO}$ =2.5V +/- 5%, $I_{\rm OL}$ = -16mA			0.8	V
R _{IUT}	Output Impedance	$V_{\text{DDO}} = 3.3 \text{V} \pm 5\%$		17		Ω
		$V_{\text{DDO}} = 2.5 \text{V} \pm 5\%$		22		Ω

AC Electrical Specifications – Differential Outputs

Parameter	Description	Conditions		Min.	Тур.	Max.	Units
n.		LVPECL, LVDS				1500	MHz
F _{OUT}	Clock output frequency	HCSL				250	
			LVPECL	120	150	300	
T _r	Output rise time	From 20% to 80%	LVDS	120	150	300	ps
			HCSL	300		700	
			LVPECL	120	150	300	
$T_{\rm f}$	Output fall time	From 80% to 20%	LVDS	120	150	300	ps
			HCSL	300		700	
	Output duty cycle	Frequency<650MHz, $V_{ID} \ge 400 \text{mV}$	LVPECL, HCSL (<250MHz)	48		52	%
			LVDS	47		53	
		Frequency<1GHz,	LVPECL	45		55	
Todo		$V_{ID} \ge 400 mV$	LVDS	45		55	
		Frequency<1.5GHz,	LVDS	40		60	
		$V_{ID} \ge 400 mV$	LVDS	40		00	
		Frequency<1.5GHz, V_{ID} $\geq 400 \text{mV}$	LVPECL	40		60	
V _{PP}		LVPECL outputs @ <1GHz		500		1100	
	Output swing Single-ended	LVPECL outputs @ >1GHz		400		1000	mV.
		LVDS outputs @ <1GHz		250		600	mV
		LVDS outputs @ >1GHz	LVDS outputs @ >1GHz			550	

AC Electrical Specifications – Differential Outputs Cont.

Parameter	Description	Conditions		Min.	Тур.	Max.	Units
	Duffen additives litter DMC	156.25MHz, 12kHz to 201	156.25MHz, 12kHz to 20MHz		0.02		ps
T _j	Buffer additive jitter RMS	156.25MHz, 10kHz to 1M	Hz		0.01		ps
V _{CROSS}	Absolute crossing voltage	HCSL			460		mV
DV _{CROSS}	Total variation of crossing voltage	HCSL				140	mV
T _{SK}	Output Skew	10 outputs devices, outputs in same tank, with same load, at DUT.			15	40	ps
T	Dropogation Dolor	LVPECL, LVDS @ 3.3V, 10	00MHz		570		ps
T_{PD}	Propagation Delay	HCSL @ 3.3V, 100MHz			900		ps
T _{OD}	Valid to HiZ					80	ns
T _{OE}	HiZ to valid					80	ns
T _{P2P} Skew	Part to Part Skew ¹				80	120	ps

AC Electrical Specifications – CMOS

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
	7.60.6	XTAL input	10		50	MHz
F _{OUT}	Ref_Out frequency	Reference input			200	MHz
T_{j}	Duffen additive litter DMC	XTAL input		0.3		ps
	Buffer additive jitter RMS	Reference input		0.03		ps
t _{r/} t _f	Rise time, Fall time	$C_L = 10 pF$		1.5		ns
Todo	Output duty cycle	$C_L = 10 pF$	45		55	%
t _{PD}	Propagation delay	3.3V, 25MHz		2200		ps
ts	Setup time		300			ps
t _{SOD}	Clock edge to output disable	Ref_Out	2		4	cycles
t _{SOE}	Clock edge to output enable	Ref_Out	2		4	cycles

Notes:

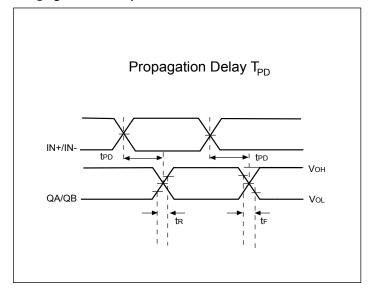
1. This parameter is guaranteed by design

Crystal Characteristics

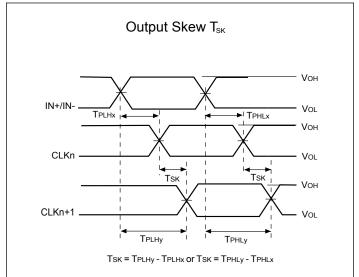
Parameter	Min.	Тур.	Max.	Units
Mode of Oscillation		Fundamental		
Frequency Range	10		50	MHz
Equivalent Series Resistance (ESR)			70	Ω
Shunt Capacitance			7	pF
Load Capacitance	10		18	pF
Drive Level			500	μW

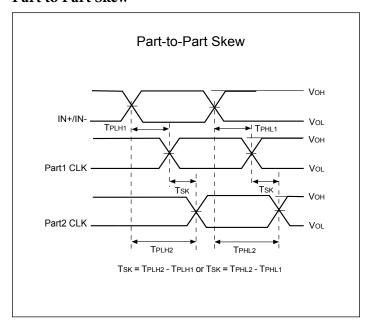
8

Recommended Crystals

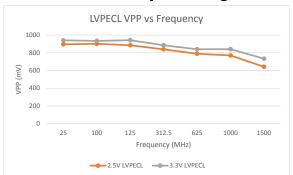

Pericom recommends:

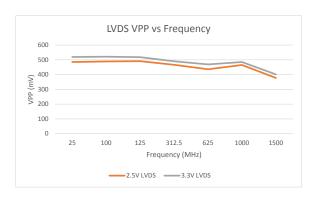
- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/GC_GF.pdf
- b) FY2500091, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm http://www.pericom.com/pdf/datasheets/se/FL.pdf

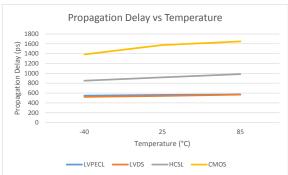



Propagation Delay

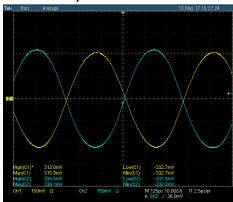
Output Skew

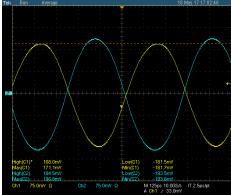

Part to Part Skew

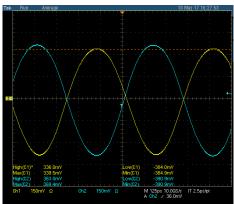


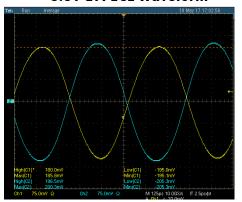


LVPECL/ LVDS Output Swing vs. Frequency




Propagation Delay vs Temperature

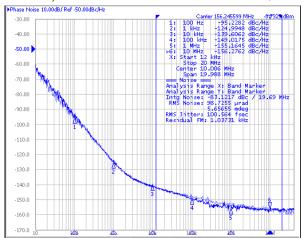

1.5GHz LVPECL/ LVDS Waveform

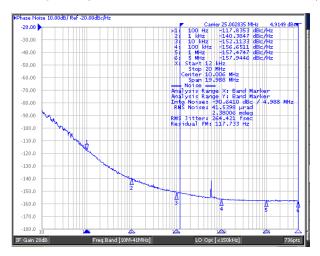


2.5V LVDS Waveform

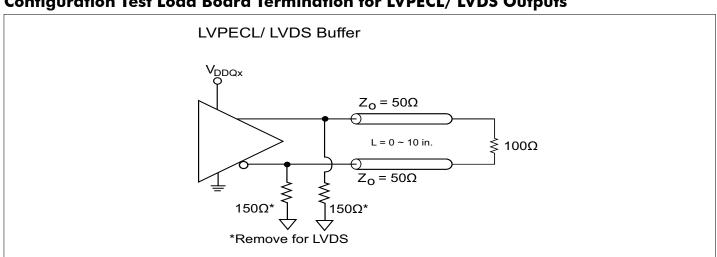
3.3V LVPECL Waveform

3.3V LVDS Waveform

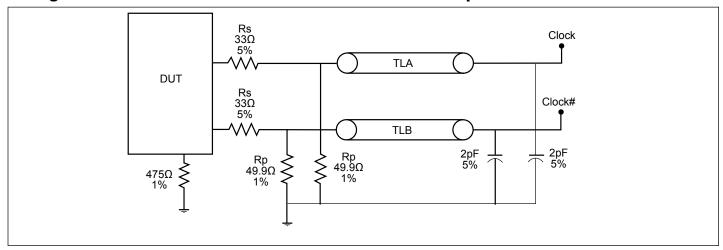


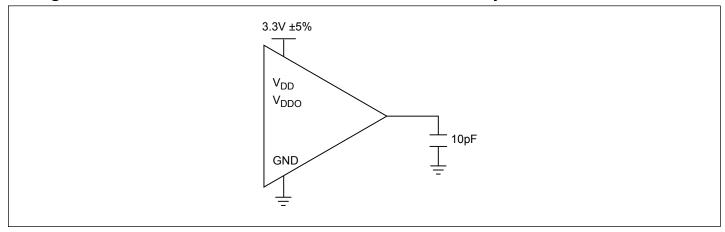

Phase Noise and Additive Jitter

Output phase noise (Dark Blue) vs Input Phase noise (light blue)


Additive jitter is calculated at 156.25MHz~27fs RMS (12kHz to 20MHz). Additive jitter = $\sqrt{\text{Output jitter}^2 - \text{Input jitter}^2}$

Total phase jitter with 25MHz XTAL ~ 264fs RMS (12kHz ~20MHz)


Configuration Test Load Board Termination for LVPECL/ LVDS Outputs



Configuration Test Load Board Termination for HCSL Outputs

Configuration Test Load Board Termination for LVCMOS Outputs

Application Information

Wiring the differential input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to postion the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R1/R2 = 0.609.

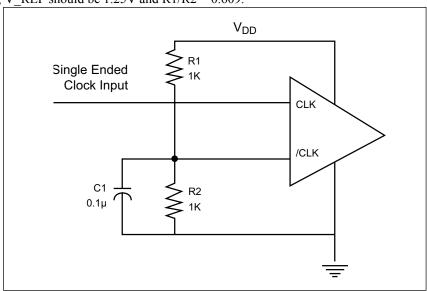
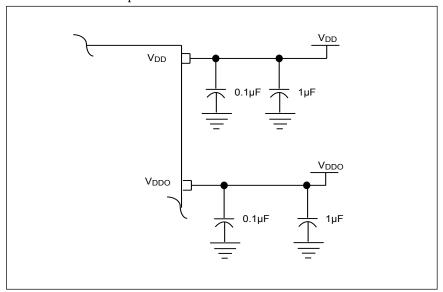
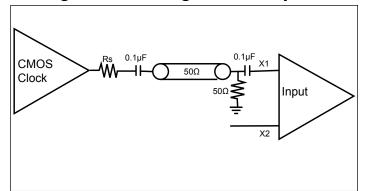
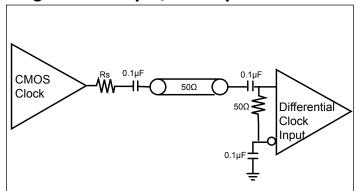
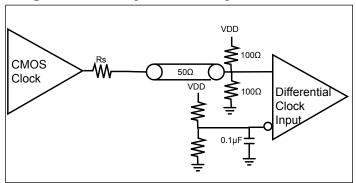



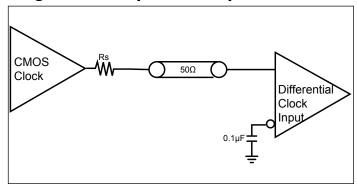
Figure 1. Single-ended input to Differential input device

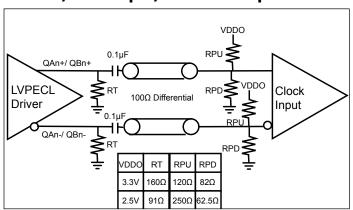
Power Supply Filtering Techniques

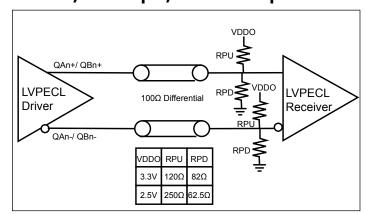

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. All power pins should be individually connected to the power supply plane through vias, and $0.1\mu F$ an $1\mu F$ bypass capacitors should be used for each pin.



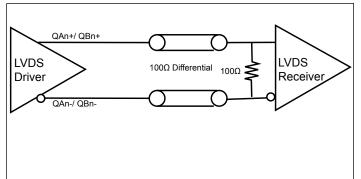

Driving X1 with a Single Ended Input

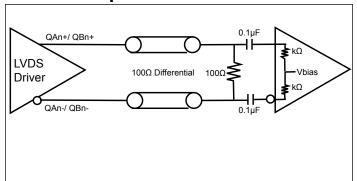

Single Ended Input, AC couple

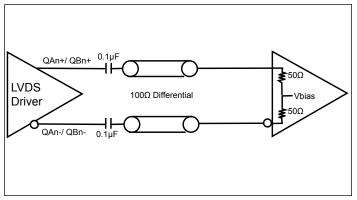

Single Ended Input, DC couple


Single Ended Input, DC couple

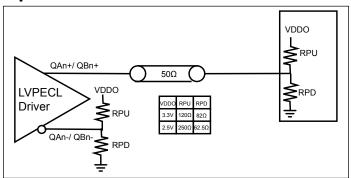
LVPECL, AC Couple, Thevenin Equivalent

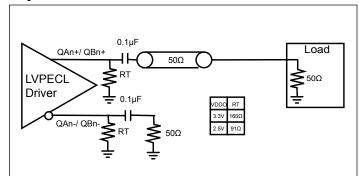

LVPECL, DC Couple, Thevenin Equivalent



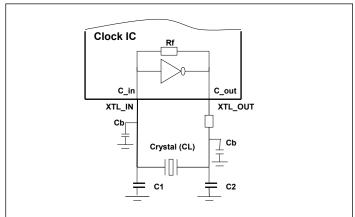

LVDS DC Couple

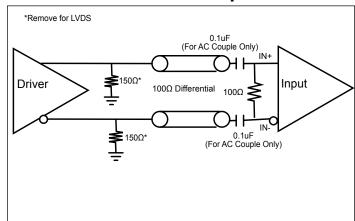
LVDS AC Couple at Load


LVDS AC Couple with Internal Termination

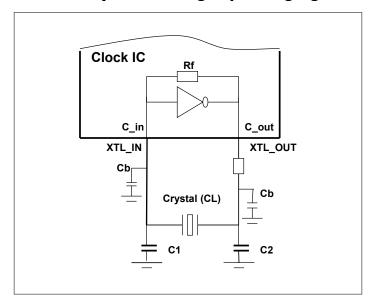

Single Ended LVPECL, DC Couple

Single Ended LVPECL, DC Couple, Thevenin Equivalent


Single Ended LVPECL, AC Couple, Thevenin Equivalent



Clock IC Crystal Input Guide


LVPECL/ LVDS AC and DC input

Clock IC Crystal loading cap. design guide

CL = crystal spec. loading cap.

 $C_{in}/out = (3\sim 5pF)$ of IC pin cap.

 $Cb = PCB \text{ trace } (2\sim4pF)$

C1,C2 = load cap. of design

Rd = 50 to 100ohm drive level limit

Design guide: C1=C2=2 *CL - (Cb +C_in/out) to meet target +/-ppm < 20 ppm

Example1: Select CL=18 pF crystal, C1=C2=2*(18pF) – (4pF+5pF)=27pF, check datasheet too

Example2: For higher frequency crystal (\Rightarrow 20MHz), can use formula C1=C2=2*(CL-6), can do fine tune of C1, C2 for more accurate ppm if necessary

Thermal Information

Symbol	Description	Condition	
$\Theta_{_{ m JA}}$	Junction-to-ambient thermal resistance	Still air	23.65 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		9.10 °C/W

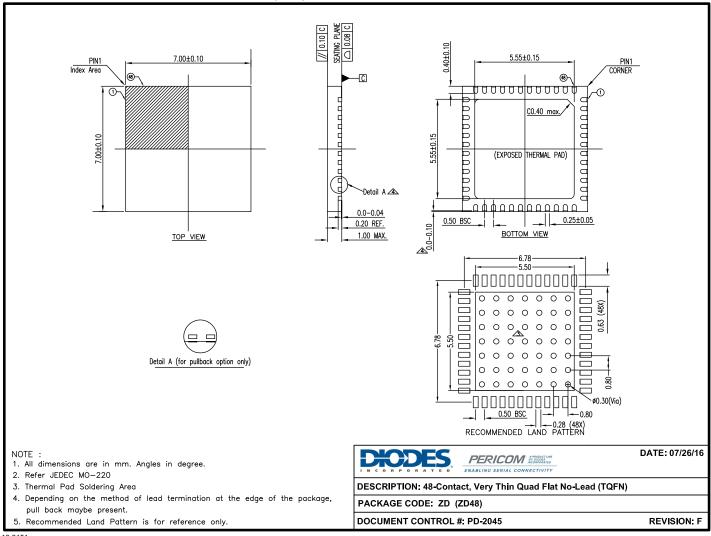
17

Part Marking

ZD Package

PI6C49S 1510AZDIE YYWWXX

YY: Year


WW : Workweek

1st X : Assembly Site Code 2nd X : Wafer Site Code

Packaging Mechanical: 48-TQFN (ZD)

16-0151

For latest package info.

 $please\ check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packagin$

Ordering Information

Ordering Code	Package Code	Package Type	Operating Temperature
PI6C49S1510AZDIEX	ZD	48-Contact, Very Thin Quad Flat No-Lead (TQFN)	-40 °C to 85 °C

Notes:

- 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- 2. See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/

- 3. E = Pb-free and Green
- 4. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated:

PI6C49S1510AZDIEX PI6C49S1510AAZDIEX PI6C49S1510AAZDIEX-36