Description

The APX803/D is used for microprocessor (µP) supervisory circuits to monitor the power supplies in µP and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V powered circuits.

These circuits perform a single function: they assert a reset signal on power up and whenever the VCC supply voltage declines below a preset threshold, keeping it asserted for a fixed period of time after VCC has risen above the reset threshold. For the APX803D this period is a minimum of 1ms while for other APX803 variants it is at least 140ms. The reset comparator is designed to ignore fast transients on VCC, and the outputs are guaranteed to be in the correct logic state for VCC down to 1V.

The APX803 is available with different reset thresholds suitable for operation with a variety of supply voltages, however the APX803D is available with a 2.93V threshold voltage.

The APX803/D have an open collector active low RESET output and compliment Diodes APX809/10 which have push-pull output stages. Low supply current makes the APX803/D ideal for use in portable equipment. The APX803/D are available in two pin out variants of the 3-pin SOT23 package.

Features

- Precision Monitoring of +2.5V, +3V, +3.3V, and +5V Power-Supply Voltages
- Fully Specified Over Temperature
- Open-drain RESET Active Low
- Power-On/power supply glitch Reset Pulse
 - APX803D 2ms (Typ)
 - APX803 200ms (Typ)
- 30µA Supply Current (Typ.)
- Guaranteed Reset Valid to VCC = +1V
- No External Components
- SOT23 and SOT23R: Available in “Green” Molding Compound (No Br, Sb)
- Lead Free Finish/ RoHS Compliant (Note 1)

Applications

- Computers
- Controllers
- Intelligent Instruments
- Critical µP and μC Power Monitoring
- Portable/Battery Powered Equipment

Apex803
Document number: DS32132 Rev. 2 - 2

www.diodes.com

September 2010
© Diodes Incorporated
Typical Application Circuit

![Application Circuit Diagram]

Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>RESET</td>
<td>Reset Output Pin</td>
</tr>
<tr>
<td></td>
<td>Active Low Open Drain</td>
</tr>
<tr>
<td>VCC</td>
<td>Operating Voltage Input</td>
</tr>
</tbody>
</table>

Functional Block Diagram

![Functional Block Diagram]
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD HBM</td>
<td>Human Body Model ESD Protection</td>
<td>2</td>
<td>kV</td>
</tr>
<tr>
<td>ESD MM</td>
<td>Machine Model ESD Protection</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>V(_{CC})</td>
<td>Supply Voltage</td>
<td>-0.3 to +6.0</td>
<td>V</td>
</tr>
<tr>
<td>V(_{RESET})</td>
<td>RESET (open drain)</td>
<td>-0.3 to 6</td>
<td>V</td>
</tr>
<tr>
<td>I(_{CC})</td>
<td>Input Current, V(_{CC})</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>I(_{O})</td>
<td>Output Current, RESET</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>P(_{D})</td>
<td>Continuous Power Dissipation (T(_{A}) = +70°C), derate 4mW/°C above +70°C</td>
<td>400</td>
<td>mW</td>
</tr>
<tr>
<td>T(_{OP})</td>
<td>Operating Junction Temperature Range</td>
<td>-40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>T(_{ST})</td>
<td>Storage Temperature Range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{CC})</td>
<td>Supply Voltage</td>
<td>1.1</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V(_{IN})</td>
<td>Input Voltage</td>
<td>0</td>
<td>(V(_{CC})+0.3)</td>
<td>V</td>
</tr>
<tr>
<td>V(_{RESET})</td>
<td>RESET output voltage</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T(_{A})</td>
<td>Operating Ambient Temperature Range</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>dV(_{CC})/dt</td>
<td>V({CC}) Rate of rise (V({CC}) = 0~V(_{I}))</td>
<td></td>
<td>100</td>
<td>V/μs</td>
</tr>
</tbody>
</table>
Electrical Characteristics (TA = 25°C)

TA = -40 to 85°C unless otherwise note. Typical values are at TA = +25 °C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>Supply Current</td>
<td>VT_H + 0.2V</td>
<td>30</td>
<td>40</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>VTH</td>
<td>Reset Threshold</td>
<td>TA = 25°C</td>
<td>2.21</td>
<td>2.25</td>
<td>2.30</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803-23</td>
<td>2.59</td>
<td>2.63</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803-26</td>
<td>2.89</td>
<td>2.93</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803D-29</td>
<td>2.89</td>
<td>2.93</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803-31</td>
<td>3.04</td>
<td>3.08</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803-40</td>
<td>3.94</td>
<td>4.00</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803-44</td>
<td>4.31</td>
<td>4.38</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APX803-46</td>
<td>4.56</td>
<td>4.63</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>RESET Output Voltage Low</td>
<td>VCC = VT_H-0.2, ISINK = 1.2mA</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCC = VT_H-0.2, ISINK = 3.5mA</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCC > 1.0V, ISINK = 50µA</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>RESET Output High leakage current</td>
<td>VCC > VT_H +0.2</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>θJA</td>
<td>Thermal Resistance Junction-to-Ambient</td>
<td>SOT23/SOT23R (Note 2)</td>
<td>201</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>θJC</td>
<td>Thermal Resistance Junction-to-Case</td>
<td>SOT23/SOT23R (Note 2)</td>
<td>56</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:
1. Test condition for SOT23 and SOT23R: Devices mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.
2. Final datasheet limits to be determined by characterization and correlation.
Typical Performance Characteristics

Figure 1
RESET Threshold Voltage vs. Temperature

Figure 2
RESET Threshold Voltage vs. Temperature

Figure 3
RESET Timeout Period vs. Temperature

Figure 4
RESET Timeout Period vs. Temperature

Figure 5
Supply Current vs. Temperature

Figure 6
Supply Current vs. Vcc
Typical Performance Characteristics (Continued)

![Nch Driver Sink Current vs. Vcc](image1)

Figure 7

![Nch Driver Sink Current vs. Vcc](image2)

Figure 8

![Nch Driver Output Current vs. VDS](image3)

Figure 9

![Nch Driver Output Current vs. VDS](image4)

Figure 10
Microprocessors (μPs) and microcontrollers (μC) have a reset input to ensure that it starts up in a known state. The APX803/D drive the μP’s reset input to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the VCC supply voltage declines below a preset threshold and keep it asserted for a fixed period of time after VCC has risen above the reset threshold. For the APX803D this period is a minimum of 1ms while for other APX803 variants it is at least 140ms. The APX803/D have an open-drain output stage.

Ensuring a Valid Reset Output Down to VCC = 0

RESET is guaranteed to be a logic low for VCC > 1V. Once VCC exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high. If a brownout condition occurs (VCC dips below the RESET reset threshold), RESET goes low. Any time VCC goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after VCC returns above the reset threshold, and RESET remains low for the reset timeout period.

When VCC falls below 1V, the APX803/D RESET output no longer sinks current — it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applications since most μP and other circuitry is inoperative with VCC below 1V.

Interfacing to μP with Bidirectional Reset Pins

Since the RESET output on the APX803/D is open drain, this device interfaces easily with μP/μC that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μP supervisor’s RESET output directly to the microcontroller’s (μC’s) RESET pin with a single pull-up resistor allows either device to assert reset.

Supervising and monitoring Multiple Supplies

Generally, the pull-up resistor connected to the APX803/D will connect to the supply voltage that is being monitored at the IC’s VCC pin. However, some systems may use the APX803/D open-drain output to level-shift from the monitored supply to reset the μP powered by a different supply voltage or monitor multiple supplies that will be fed into 1 μC/μP reset input.
APX803/D
3-PIN MICROPROCESSOR RESET CIRCUIT

Ordering Information

APX 803 - XX XX G - 7

- **Output type:**
 - 03 : Active-Low, Open Drain

- **Voltage:**
 - 46 : 4.63
 - 44 : 4.38
 - 40 : 4.00
 - 31 : 3.08
 - 29 : 2.93
 - 26 : 2.63
 - 23 : 2.25

- **Package:**
 - SA : SOT23
 - SR : SOT23R

- **Green:**
 - G : Green

- **Packing:**
 - 7 : Tape & Reel

APX 803 D - 29 XX G - 7

- **Output type:**
 - 03 : Active-Low, Open Drain

- **Voltage:**
 - 29 : 2.93

- **Package:**
 - SA : SOT23
 - SR : SOT23R

- **Green:**
 - G : Green

- **Packing:**
 - 7 : Tape & Reel

### Device	Package Code	Packaging (Note 4)	7” Tape and Reel	Part Number Suffix
APX803-XXSAG-7 | SA | SOT23 | 3000/Tape & Reel | -7
APX803-XXSRG-7 | SR | SOT23R | 3000/Tape & Reel | -7
APX803D-29SAG-7 | SA | SOT23 | 3000/Tape & Reel | -7
APX803D-29SRG-7 | SR | SOT23R | 3000/Tape & Reel | -7

Notes: 4. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
Marking Information

(1) SOT23 and SOT23R

(Top View)

XX : Identification code
Y : Year 0~9
W : Week : A~Z : 1~26 week;
 a~z : 27~52 week; z represents
 52 and 53 week
X : A~Z : Green

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Identification Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>APX803-46SA</td>
<td>SOT23</td>
<td>V3</td>
</tr>
<tr>
<td>APX803-44SA</td>
<td>SOT23</td>
<td>V4</td>
</tr>
<tr>
<td>APX803-40SA</td>
<td>SOT23</td>
<td>V5</td>
</tr>
<tr>
<td>APX803-31SA</td>
<td>SOT23</td>
<td>V6</td>
</tr>
<tr>
<td>APX803-29SA</td>
<td>SOT23</td>
<td>V7</td>
</tr>
<tr>
<td>APX803-26SA</td>
<td>SOT23</td>
<td>V8</td>
</tr>
<tr>
<td>APX803-23SA</td>
<td>SOT23</td>
<td>V9</td>
</tr>
<tr>
<td>APX803-46SR</td>
<td>SOT23R</td>
<td>S3</td>
</tr>
<tr>
<td>APX803-44SR</td>
<td>SOT23R</td>
<td>S4</td>
</tr>
<tr>
<td>APX803-40SR</td>
<td>SOT23R</td>
<td>S5</td>
</tr>
<tr>
<td>APX803-31SR</td>
<td>SOT23R</td>
<td>S6</td>
</tr>
<tr>
<td>APX803-29SR</td>
<td>SOT23R</td>
<td>S7</td>
</tr>
<tr>
<td>APX803-26SR</td>
<td>SOT23R</td>
<td>S8</td>
</tr>
<tr>
<td>APX803-23SR</td>
<td>SOT23R</td>
<td>S9</td>
</tr>
<tr>
<td>APX803D-29SA</td>
<td>SOT23</td>
<td>VN</td>
</tr>
<tr>
<td>APX803D-29SR</td>
<td>SOT23R</td>
<td>SN</td>
</tr>
</tbody>
</table>
Package Outline Dimensions (All Dimensions in mm)

(1) Package Type: SOT23 and SOT23R

Notes: 5. Package outline dimensions as shown on Diodes Inc. package outline dimensions document AP02002, which can be found on our website at http://www.diodes.com/datasheets/ap02002.pdf
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2010, Diodes Incorporated

www.diodes.com
Diodes Incorporated:
APX803-23SAG-7 APX803-23SRG-7 APX803-26SAG-7 APX803-26SRG-7 APX803-29SAG-7 APX803-29SRG-7
APX803-31SAG-7 APX803-31SRG-7 APX803-40SAG-7 APX803-40SRG-7 APX803-44SAG-7 APX803-44SRG-7
APX803-46SAG-7 APX803D-29SAG-7 APX803D-29SRG-7