
#### HIGH-SIDE POWER DISTRIBUTION SWITCH WITH ENABLE

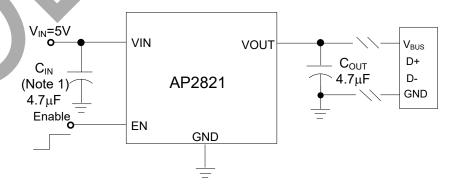
## **Description**

The AP2821 is an integrated high-side power switch that consists of TTL compatible enables input, a charge pump, and n-channel MOSFET. The switch's low R<sub>DS(ON)</sub>, 120mΩ, meets USB voltage drop requirements. It includes soft-start to limit inrush current, overcurrent protection with fold-back, and thermal shutdown to avoid switch failure during hot plug-in. Undervoltage lockout (UVLO) function is used to ensure the device remains off unless there is a valid input voltage present. And no reverse current when power off, with shutdown pull-low resistor to discharge the output capacitor when EN is disabled.

The AP2821 is available in standard package of SOT-23-5.

## **Pin Assignments**




#### **Features**

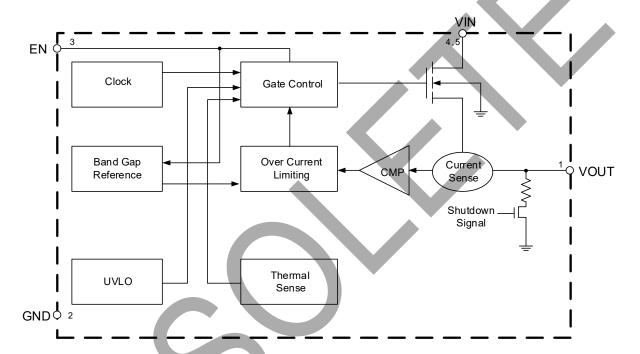
- Low MOSFET On-Resistance: 120mΩ@V<sub>IN</sub> = 5.0V
- Compliant to USB Specifications
- Operating Voltage Range: 2.7V to 5.5V
- Low Supply Current: 35µA (typ)
- Low Shutdown Current: < 1µA
- Current Limit with Foldback: 2A
- Undervoltage Lockout
- Soft Startup
- **Overcurrent Protection**
- Overtemperature Protection
- Load Short Protection with Foldback
- No Reverse Current when Power Off
- Pass System ESD: IEC61000-4-2 ±16kV (Air Discharge) and ±8kV (Contact Discharge) on USB Connector
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

## **Applications**

- USB power management
- USB bus/self-powered hubs
- Hot-plug power supplies
- Battery-charger circuits
- Notebooks, motherboard PCs

# **Typical Applications Circuit**




Note: 1. 4.7µF input capacitor is enough in most application cases. If the PCB trace of power rail to V<sub>IN</sub> is long, larger input capacitor is necessary.



# **Pin Descriptions**

| Pin Number | Pin Name | Descriptions                           |  |  |  |  |
|------------|----------|----------------------------------------|--|--|--|--|
| 1          | VOUT     | vitch Output Voltage                   |  |  |  |  |
| 2          | GND      | Ground                                 |  |  |  |  |
| 3          | EN       | Chip Enable Control Input, Active High |  |  |  |  |
| 4, 5       | VIN      | Supply Input Pin                       |  |  |  |  |

# **Functional Block Diagram**





# **Absolute Maximum Ratings** (Note 2)

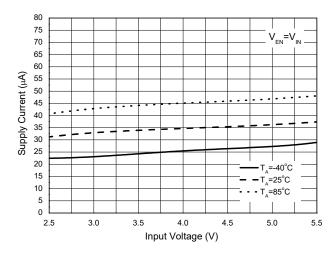
| Symbol          | Parameter                                | Rating | Unit |
|-----------------|------------------------------------------|--------|------|
| V <sub>IN</sub> | Power Supply Voltage                     | 6.0    | V    |
| TJ              | Operating Junction Temperature Range     | +150   | °C   |
| Tstg            | Storage Temperature Range -65 to +150    |        | °C   |
| TLEAD           | Lead Temperature (Soldering, 10 Seconds) | +260   | °C   |
| θЈΑ             | Thermal Resistance (Junction to Ambient) | 235    | °C/W |
| _               | ESD (Machine Model)                      | 200    | V    |
| _               | ESD (Human Body Model)                   | 2000   | V    |

Note:

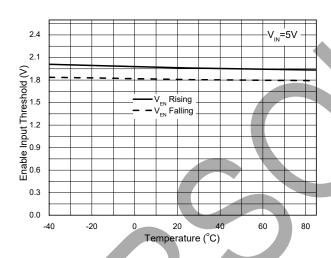
# **Recommended Operating Conditions**

| Symbol          | Parameter                           | Min | Max | Unit |  |
|-----------------|-------------------------------------|-----|-----|------|--|
| V <sub>IN</sub> | Supply Voltage                      | 2.7 | 5.5 | V    |  |
| TA              | Ambient Operation Temperature Range | -40 | +85 | °C   |  |

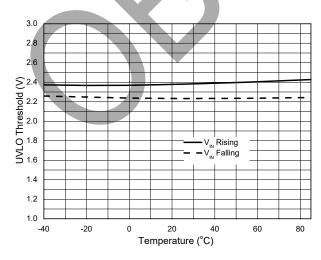
## Electrical Characteristics (V<sub>IN</sub> = 5.0V, C<sub>IN</sub> = 4.7μF, C<sub>OUT</sub> = 4.7μF, Typical T<sub>A</sub> = +25°C, unless otherwise specified.)


| Symbol              | Parameter                              | Test Conditions                                       | Min | Тур  | Max | Unit |
|---------------------|----------------------------------------|-------------------------------------------------------|-----|------|-----|------|
| VIN                 | Input Voltage Range                    | -                                                     | 2.7 | _    | 5.5 | V    |
| RDS(ON)             | Switch On Resistance                   | V <sub>IN</sub> = 5V, I <sub>OUT</sub> = 0.5A         | _   | 120  | 140 | mΩ   |
| Ішміт               | Current Limit                          | V <sub>OUT</sub> = 4.0V                               | 1.5 | 2.0  | 2.8 | Α    |
| I <sub>SUPPLY</sub> | Supply Current                         | V <sub>IN</sub> = 5V, R <sub>LOAD</sub> Open          | _   | 35   | 65  | μA   |
| Ishort              | Foldback Short Current                 | Vout = 0                                              | _   | 1.5  | _   | Α    |
| Ishutdown           | Shutdown Supply Current                | V <sub>EN</sub> = 0, Shutdown Mode                    | _   | 0.1  | 1   | μA   |
| ILEAKAGE            | Output Leakage Current                 | V <sub>EN</sub> = 0, V <sub>OUT</sub> = 0             | _   | 0.1  | 1   | μA   |
| V <sub>ENH</sub>    | Enable High Voltage                    | Enable Logic High                                     | 2.0 | _    | 6.0 | V    |
| VENL                | Enable Low Voltage                     | Enable Logic Low                                      | 0   | _    | 1.2 | V    |
| len                 | Enable Pin Input Current               | Force 0V to 5.0V at EN Pin                            | 0   | _    | 1.0 | μA   |
| Vuvlo               | Undervoltage Lockout Threshold Voltage | V <sub>IN</sub> Increasing from 0                     | 2.2 | 2.5  | 2.7 | V    |
| Vuvlohy             | Undervoltage Hysteresis                | _                                                     | _   | 0.2  | _   | V    |
| Ireverse            | Reverse Current                        | VEN = 0, VOUT > VIN                                   | _   | 0.1  | 1.0 | μA   |
| Rdischarge          | Shutdown Pull Low Resistance           | V <sub>EN</sub> is disable                            | _   | 100  | 250 | Ω    |
| ton                 | Output Turn-On Time                    | From Enable Active to 90% of Output, $R_L = 10\Omega$ | _   | 1.9  | _   | ms   |
| Totsd               | Thermal Shutdown Temperature           | _                                                     | _   | +145 | _   | °C   |
| T <sub>HYOTSD</sub> | Thermal Shutdown Hysteresis            |                                                       | _   | +20  | _   | C    |
| θјС                 | Thermal Resistance (Junction to Case)  | _                                                     | _   | 70   | _   | °C/W |

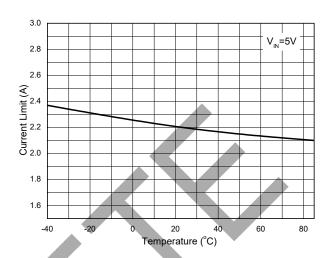
Stresses greater than those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied.
Exposure to Absolute Maximum Ratings for extended periods can affect device reliability.



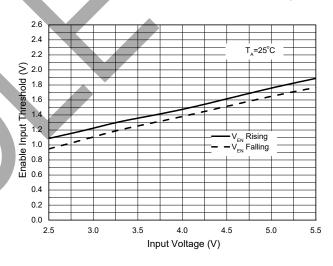

## **Performance Characteristics**


#### Supply Current vs. Input Voltage

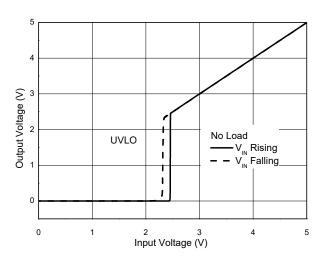



## **Enable Input Threshold vs. Temperature**



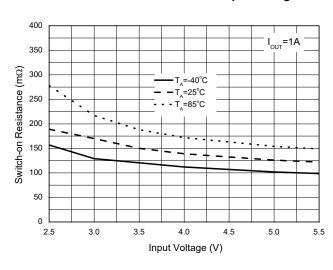

#### **UVLO Threshold Voltage vs. Temperature**



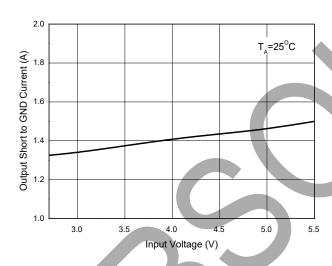

#### **Current Limit vs. Temperature**



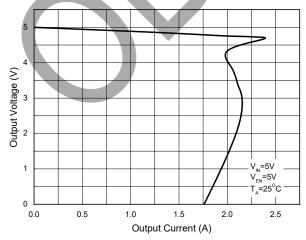
#### **Enable Input Threshold vs. Input Voltage**



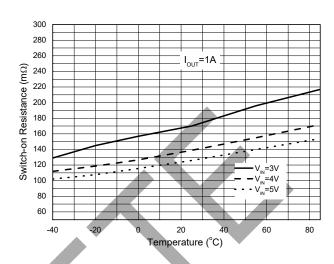

#### **UVLO Function**



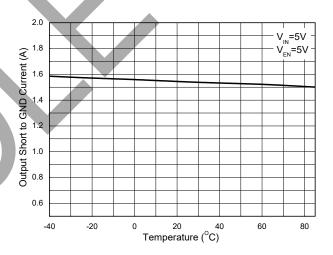




#### Switch-On Resistance vs. Input Voltage

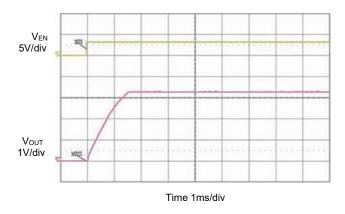



#### **Output Short to GND Current vs. Input Voltage**



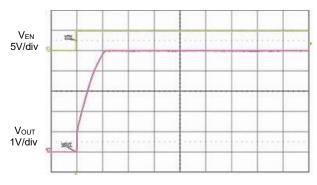

## **Output Voltage vs. Output Current**




#### Switch-On Resistance vs. Temperature

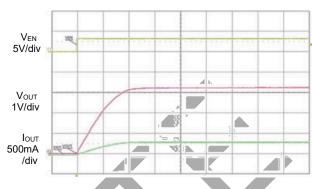


## Output Short to GND Current vs. Temperature



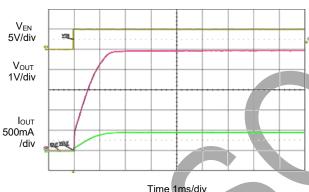

# Switch Turn-On and Rise Time ( $V_{IN}$ =3.3V, $C_{OUT}$ =4.7 $\mu$ F, No Load)





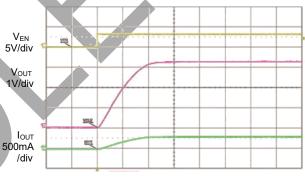

#### Switch Turn-On and Rise Time (V<sub>IN</sub>=5.0V, C<sub>OUT</sub>=4.7µF, No Load)




Time 1ms/div

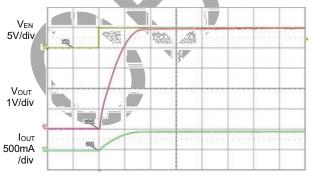
#### Switch Turn-On and Rise Time ( $V_{IN}$ =3.3V, $C_{OUT}$ =4.7 $\mu$ F, $R_L$ =10 $\Omega$ )




Time 1ms/div

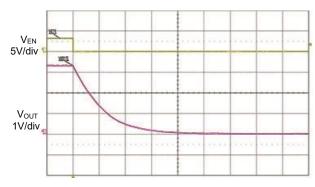
#### Switch Turn-On and Rise Time $(V_{IN}=5.0V, C_{OUT}=4.7\mu F, R_{L}=10\Omega)$




Time 1ms/div

Switch Turn-On and Rise Time  $(V_{IN}=3.3V, C_{OUT}=100\mu F, R_{L}=10\Omega)$ 

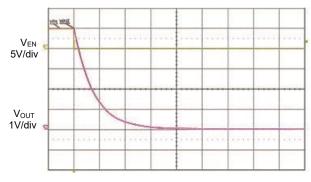



Time 1ms/div

## Switch Turn-On and Rise Time $(V_{IN}=5.0V, C_{OUT}=100\mu F, R_{L}=10\Omega)$

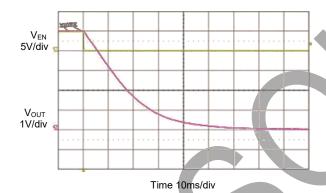


Time 1ms/div

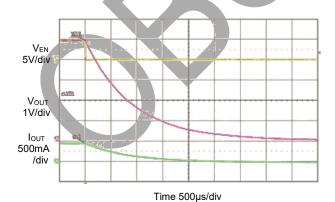

## Switch Turn-Off and Fall Time (V<sub>IN</sub>=3.3V, C<sub>OUT</sub>=4.7µF, No Load)



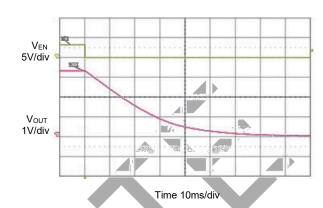
Time 1ms/div



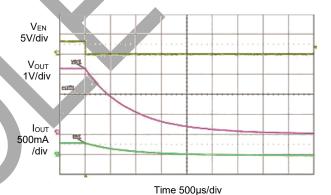

# Switch Turn-Off and Fall Time ( $V_{IN}$ =5.0V, $C_{OUT}$ =4.7 $\mu$ F, No Load)



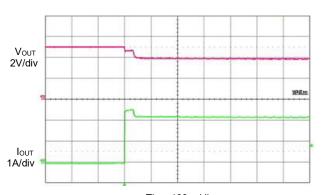

Time 1ms/div


# Switch Turn-Off and Fall Time (V<sub>IN</sub>=5.0V, C<sub>OUT</sub>=100µF, No Load)




Switch Turn-Off and Fall Time ( $V_{IN}$ =5.0V,  $C_{OUT}$ =100 $\mu$ F,  $R_L$ =10 $\Omega$ )

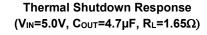


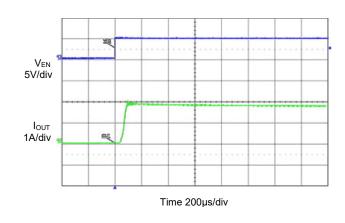

Switch Turn-Off and Fall Time (VIN=3.3V, COUT=100µF, No Load)

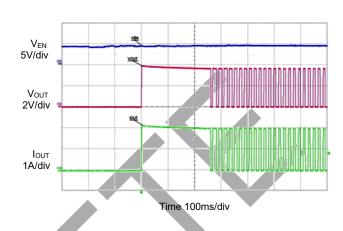


Switch Turn-Off and Fall Time ( $V_{IN}$ =3.3V,  $C_{OUT}$ =100 $\mu$ F,  $R_L$ =10 $\Omega$ )

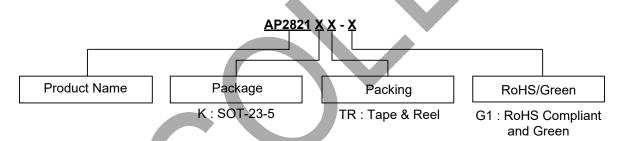



Resistance Load Inrush Response ( $C_{OUT}$ =4.7 $\mu$ F,  $R_L$ =1.65 $\Omega$ )





Time 100µs/div




#### Short-Circuit Current, Device Enable into Short ( $V_{IN}$ =5.0V, $C_{OUT}$ =4.7 $\mu$ F)



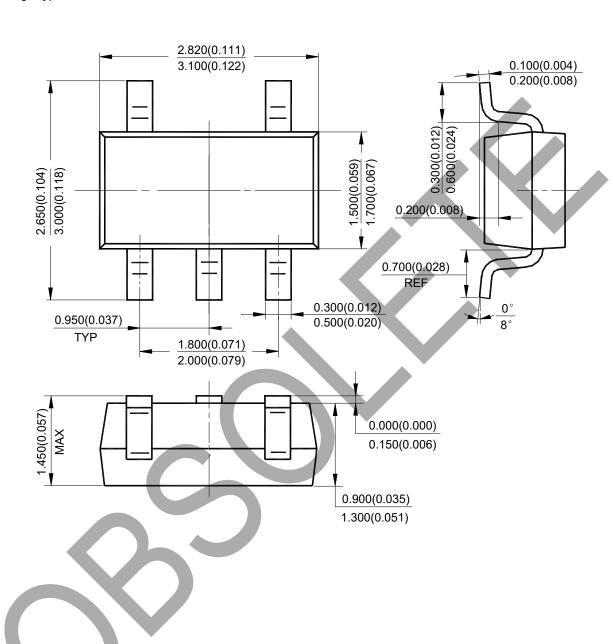




## Ordering Information (Note 3)



| Orderable Part Number Package |  | Temperature Range | Marking ID   | Packing |             |
|-------------------------------|--|-------------------|--------------|---------|-------------|
| AP2821KTR-G1 SOT-23-5         |  | SOT-23-5          | -40 to +85°C | G4E     | Tape & Reel |

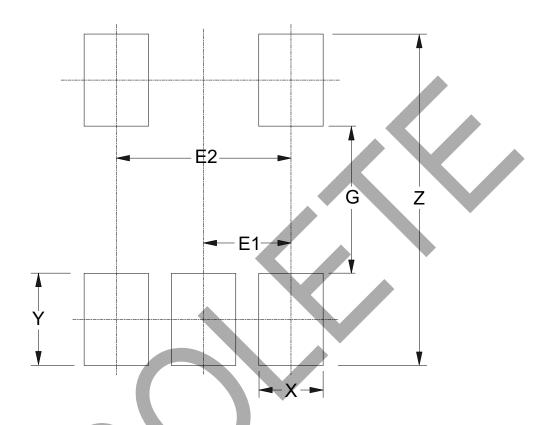

Note: 3. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.



## Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (1) Package Type: SOT-23-5






# Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (1) Package Type: SOT-23-5



| Dimensions | Z           | G           | X           | Y           | E1          | E2          |
|------------|-------------|-------------|-------------|-------------|-------------|-------------|
|            | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) |
| Value      | 3.600/0.142 | 1.600/0.063 | 0.700/0.028 | 1.000/0.039 | 0.950/0.037 | 1.900/0.075 |



#### IMPORTANT NOTICE

- DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and
- Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- Diodes' provided subject Standard Terms (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-andconditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2025 Diodes Incorporated, All Rights Reserved.

www.diodes.com

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

**Diodes Incorporated:** 

AP2821KTR-G1