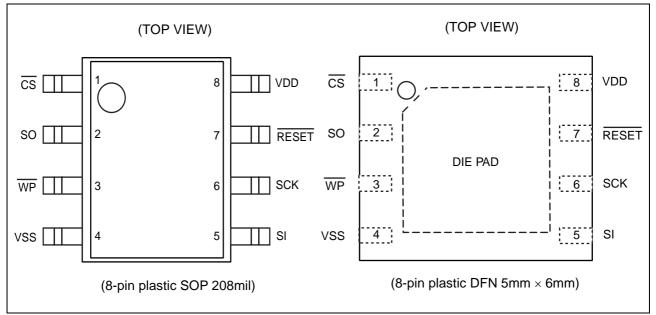
Memory FRAM

4M (512 K × 8) Bit SPI MB85RS4MLY

DESCRIPTION

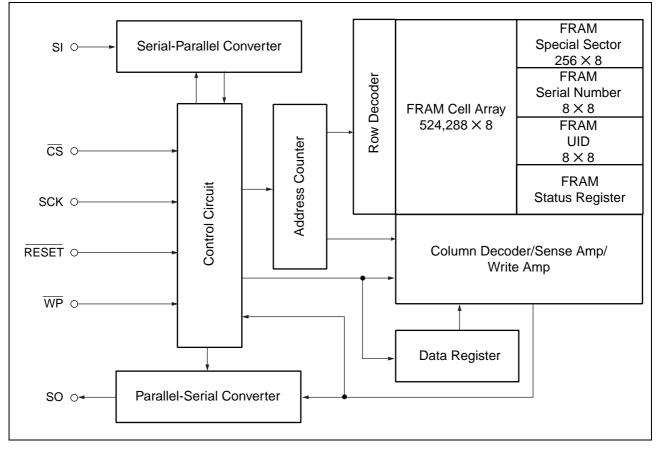
MB85RS4MLY is a FRAM (Ferroelectric Random Access Memory) chip in a configuration of 524,288 words \times 8 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells. This product is targeted for high-temperature environment applications. MB85RS4MLY adopts the Serial Peripheral Interface (SPI).


The MB85RS4MLY is able to retain data without using a back-up battery, as is needed for SRAM. The memory cells used in the MB85RS4MLY can be used for 10¹³ read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM. As MB85RS4MLY does not need any waiting time in writing process, the write cycle time of MB85RS4MLY is much shorter than that of Flash memories or E²PROM.

FEATURES

FEATURES	
 Bit configuration 	: 524,288 words × 8 bits
 Serial Sector Region 	: 256 words × 8 bits
	In this region, data storage after (by) three times reflow based on JEDEC MSL-3 standard condition is guaranteed.
Unique ID	
Serial Number	: 64 bits
	In this region, data storage after (by) three times reflow based on JEDEC MSL-3 standard condition is guaranteed.
Serial Peripheral Interface	: SPI (Serial Peripheral Interfaces)
	Correspondent to SPI mode 0 (0, 0) and mode 3 (1, 1)
Operating frequency	: 50 MHz (Max)
High endurance	: 10 ¹³ times / byte
 Data retention 	: 10 years (+85 °C)
	2 .75years (+105 °C)
	0.85 years (+125 °C) or more
	Under evaluation for more than 2.5years(+125 °C)
Operating power supply voltage	: 1.7 V to 1.95 V
 Low power consumption 	: Operating power supply current 3.5 mA (Max@50 MHz)
	Standby current 340 μA (Max)
Operation ambient temperature ra	
Package	: 8-pin plastic SOP 208mil
	8-pin plastic DFN 5mm × 6mm
	RoHS compliant

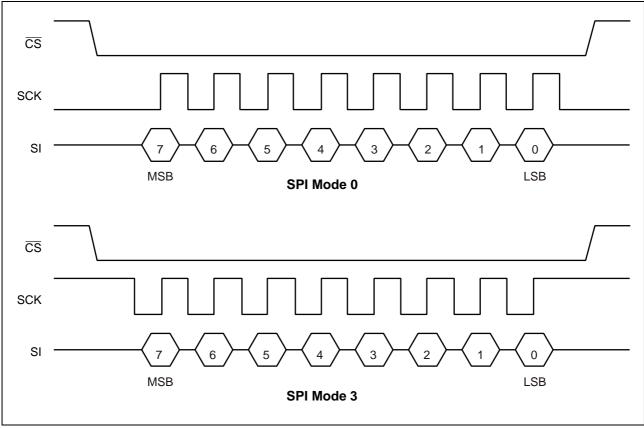
PIN ASSIGNMENT

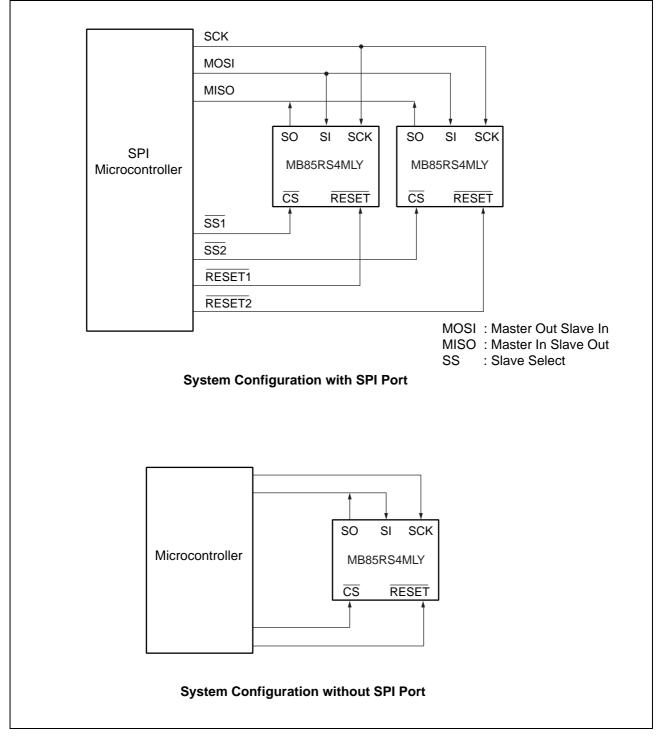


■ PIN FUNCTIONAL DESCRIPTIONS

Pin No.	Pin Name	Functional description
1	CS	Chip Select pin This is an input pin to make chips select. When \overline{CS} is "H" level, device is in deselect (standby) status and SO becomes High-Z. Inputs from other pins are ignored for this time. When \overline{CS} is "L" level, device is in select (active) status. \overline{CS} has to be "L" level before inputting op-code.
3	WP	Write Protect pin This is a pin to control writing to a status register. The writing of status register (see "■ STATUS REGISTER") is protected in related with WP and WPEN. See "■WRITING PROTECT" for detail.
7	RESET	RESET pin This is an input pin to make chip reset. When RESET is "L" level, device is reset and SPI interface status is initialized. During power on transition, it is required to keep RESET "L" level.
6	SCK	Serial Clock pin This is a clock input pin to input/output serial data. SI is loaded synchronously to a rising edge, SO is output synchronously to a falling edge.
5	SI	Serial Data Input pin This is an input pin of serial data. This inputs op-code, address, and writing data.
2	SO	Serial Data Output pin This is an output pin of serial data. Reading data of FRAM memory cell array and status register data are output. This is High-Z during standby.
8	VDD	Supply Voltage pin
4	VSS	Ground pin
DIE PAD	_	It is allowed for the DIE PAD on the bottom of the DFN8 package to be floating (no con- nection to anything) or to be connected to VSS.

PRELIMINARY


BLOCK DIAGRAM


SPI MODE

MB85RS4MLY corresponds to the SPI mode 0 (CPOL = 0, CPHA = 0) , and SPI mode 3 (CPOL = 1, CPHA = 1) .

SERIAL PERIPHERAL INTERFACE (SPI)

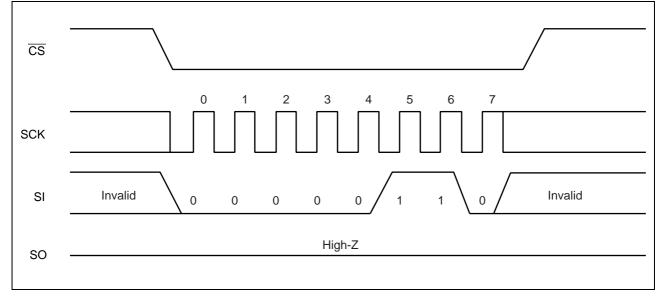
MB85RS4MLY works as a slave of SPI. More than 2 devices can be connected by using microcontroller equipped with SPI port. By using a microcontroller not equipped with SPI port, SI and SO can be bus connected to use.

■ STATUS REGISTER

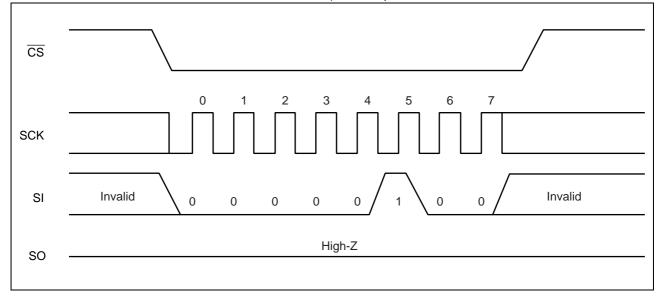
Bit No.	Bit Name	Function
7	WPEN	Status Register Write Protect This is a bit composed of nonvolatile memories (FRAM). WPEN protects writing to a status register (refer to "■ WRITING PROTECT") relating with WP input. Writing with the WRSR command and reading with the RDSR command are possible.
6 to 4		Not Used Bits These are bits composed of nonvolatile memories, writing with the WRSR command is possible. These bits are not used but they are read with the RDSR command.
3	BP1	Block Protect This is a bit composed of nonvolatile memory. This defines size of write
2	BP0	protect block for the WRITE command (refer to "■ BLOCK PROTECT"). Writing with the WRSR command and reading with the RDSR command are possible.
1	WEL	 Write Enable Latch This indicates FRAM Array and status register are writable. The WREN command is for setting, and the WRDI command is for resetting. With the RDSR command, reading is possible but writing is not possible with the WRSR command. WEL is reset after the following operations. After power ON. After WRDI command recognition. After transition of RESET pin from "L" to "H" level. Achieving continuous writing mode, WEL is not reset after following operations making it possible to execute writing commands continuously. After WRSR command recognition. After WRSN command recognition. After WRSN command recognition. After SSWR command recognition.
0	0	This is a bit fixed to "0".

■ OP-CODE

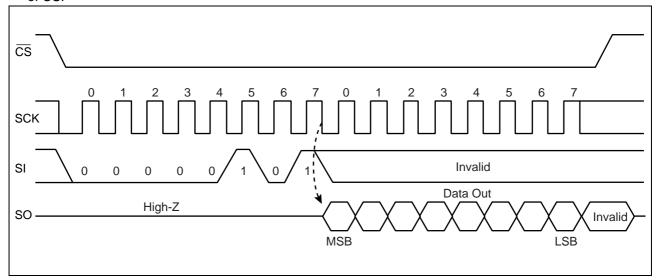
MB85RS4MLY accepts 16 kinds of command specified in op-code. Op-code is a code composed of 8 bits shown in the table below. Do not input invalid codes other than those codes. If \overline{CS} is risen while inputting op-code, the command are not performed.


Name	Description	Op-code
WREN	Set Write Enable Latch	0000 0110 _в
WRDI	Reset Write Enable Latch	0000 0100в
RDSR	Read Status Register	0000 0101в
WRSR	Write Status Register	0000 0001в
READ	Read Memory Code	0000 0011в
WRITE	Write Memory Code	0000 0010в
FSTRD	Fast Read Memory Code	0000 1011в
RDID	Read Device ID	1001 1111в
RUID	Read Unique ID	0100 1100в
WRSN	Write Serial Number	1100 0010в
RDSN	Read Serial Number	1100 0011в
SSWR	Write Special Sector	0100 0010в
SSRD	Read Special Sector	0100 1011в
FSSRD	Fast Read Special Sector	0100 1001в
		1100 1110в
RFU	Reserved	1100 1111 _в
		1100 1100в

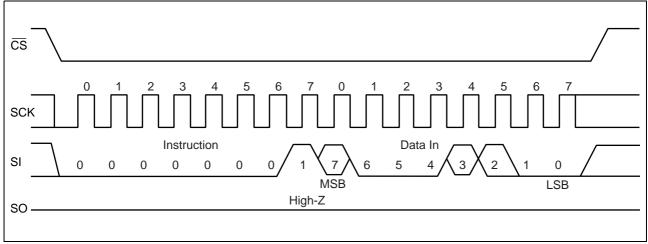
COMMAND


• WREN

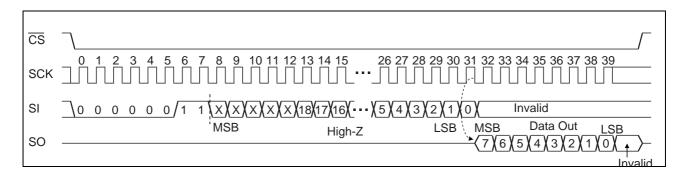
The WREN command sets WEL (Write Enable Latch) bit to 1. WEL has to be set with the WREN command before writing operation (WRSR command, WRITE command, WRSN command and SSWR command).


• WRDI

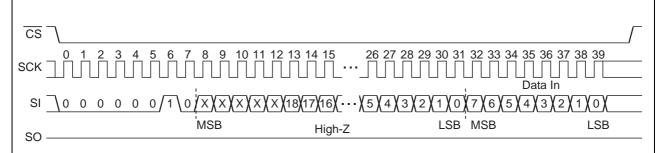
The WRDI command resets WEL (Write Enable Latch) bit to 0. Writing operation (WRSR command, WRITE command, WRSN command and SSWR command) are not performed when WEL is reset.


• RDSR

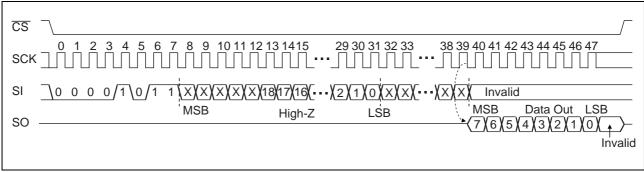
The RDSR command reads status register data. After op-code of RDSR is input to SI, 8-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. In the RDSR command, repeated reading of status register is enabled by sending SCK continuously before rising of CS.


• WRSR

The WRSR command writes data to the nonvolatile memory bit of status register. After performing WRSR op-code to a SI pin, 8 bits writing data is input. WEL (Write Enable Latch) is not able to be written with WRSR command. A SI value correspondent to bit 1 is ignored. Bit <u>0 of</u> the status register is fixed to "0" and cannot be written. The SI value corresponding to <u>bit 0</u> is ignored. WP signal level shall be fixed before performing WRSR command, and do not change the WP signal level until the end of command sequence.


• READ

The READ command reads FRAM memory cell array data. Arbitrary 24 bits address and op-code of READ are input to SI. The 5-bit upper address bit is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the READ command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely.

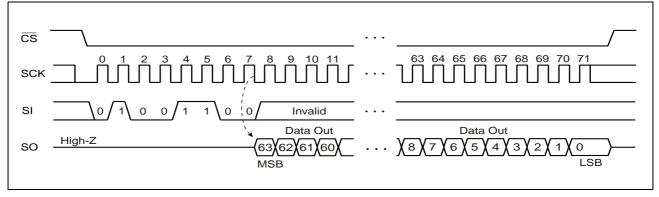

• WRITE

The WRITE command writes data to FRAM memory cell array. WRITE op-code, arbitrary 24 bits of address and 8 bits of writing data are input to SI. The 5-bit upper address bit is invalid. When 8 bits of writing data is input, data is written to FRAM memory cell array. Risen \overline{CS} will terminate the WRITE command, but if you continue sending the writing data for 8 bits each before \overline{CS} rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, it rolls over to the starting address, and writing cycle can be continued infinitely.

• FSTRD

The FSTRD command reads FRAM memory cell array data. Arbitrary 24 bits address and op-code of FSTRD are input to SI followed by 8 bits dummy. The 5-bit upper address bit is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the FSTRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely.

• RDID


The RDID command reads fixed Device ID. After performing RDID op-code to SI, 32-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. The output is in order of Manufacturer ID (8bit)/Continuation code (8bit)/Product ID (1st Byte)/Product ID (2nd Byte). In the RDID command, 32-bit <u>Device</u> ID is output by continuously sending SCK clock, and SO holds the output state of the last bit until \overline{CS} is risen.

cs						_ •	••			
scк, 0 1 2 3 4 5 6 7 8 9 10 11 31 32 33 34 35 36 37 38 39										
SI1 0 0	SI 1 0 0 1 1 1 1 1 Invalid									
SO High-Z	so $\frac{\text{High-Z}}{\text{MSB}}$ $\frac{\text{Data Out}}{\text{MSB}}$ $\frac{\text{Data Out}}{\text{Data Out}}$ $\frac{\text{Data Out}}{\text{Data Out}}$ $\frac{\text{Data Out}}{\text{Data Out}}$ $\frac{\text{Data Out}}{\text{LSB}}$									
				b	it					
	7	6	5	4	3	2	1	0	Hex	
Manufacturer ID	0	0	0	0	0	1	0	0	04н	Fujitsu
Continuation code	0	1	1	1	1	1	1	1	7 Fн	
										·
	Prop	rietary	y use		0	Densit	у		Hex	
Product ID (1st Byte)	0	1	0	0	1	0	0	1	49н	Density: 01001 _B = 4Mbit
				-	tary u	-	T	-	Hex	
Product ID (2nd Byte)	0	0	0	0	1	1	0	1	0Dн	

• RUID

The RUID command reads an unique ID which is defined in 64bits for each device. After performing RUID op-code to SI, 64-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK.

The unique ID is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

•WRSN

The WRSN command writes data to serial number region which is allowed to write only one time. After performing WRSN op-code to SI, 64bits of writing data is input. Once wrote, the serial number region is protected, disabling to overwrite even when issuing WRSN command.

WP signal level shall be fixed before performing WRSN command, and do not change the WP signal level until the end of command sequence.

RDSN

The RDSN command reads 64 bits of serial number which is written using WRSN command. After performing RDSN op-code to SI, 64-cycle clock to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. When reading serial number from devices which no WRSN command is executed, "0" for all bits are output.

The serial number is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

scк ⁰ 1 ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹	$\int \cdots \int \int$
SI1 1 0 0 0 0 1 1 I Invalid	
SO High-Z Carter Data Out	Data Out $\dots \ \sqrt{8} \sqrt{7} \sqrt{6} \sqrt{5} \sqrt{4} \sqrt{3} \sqrt{2} \sqrt{1} \sqrt{0} \qquad \qquad$

• SSWR

The SSWR command writes data to special sector (a special region of 256 Byte in FRAM). SSWR op-code, arbitrary 24 bits address and 8-bit writing data are input to SI. The 16-bit upper address is invalid. When input of 8-bit writing data is completed, it starts writing data to special sector. Risen \overline{CS} will terminate the SSWR command, but if you continue the writing data for each before \overline{CS} rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, roll over is not happen, the data hereafter is ignored.

The data in special sector is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

CS	1			
SCK		23 24 25 26 2	7 28 29 30 31 32 33 34 35 36	37 38 39
	ope. code , 24 bi	t addresses	Data	In
SI		$\cdots \chi \chi \chi 7 \chi 6 \chi 5 \chi 4$	3/2/1/0/7/6/5/4/3	(2)(1)(0)
SO -	MSB	High-Z	LSB MSB	LSB
00				

SSRD

The SSRD command reads data from special sector (a special region of 256 Byte in FRAM). SSWR opcode and arbitrary 24 bits address are input to SI. The 16-bit upper address is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the SSRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, roll over is not happen.

The data in special sector is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

CS	
SCK	0 1 2 3 4 5 6 7 8 9 10 11 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ope. code 24 bit addresses
SI	$\underline{10} \overline{10} \overline{11} 11$
SO	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	Invalid

• FSSRD

The SSRD command reads data from special sector (a special region of 256 Byte in FRAM). SSWR opcode and arbitrary 24 bits address are input to SI followed by 8 bits dummy. The 16-bit upper address is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the SSRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, roll over is not happen.

The data in special sector is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

CS	
SCK	0 1 2 3 4 5 6 7 8 9 10 11 23 24 25 26 27 28 29 30 31 32 33 38 39 40 41 42 43 44 45 46 47
SI	$\sqrt{1}0 0/1 0 0/1 XXXXXX \sqrt{2} \sqrt{2}6 \sqrt{5} \sqrt{4} \sqrt{3} \sqrt{2} \sqrt{1} \sqrt{2} \sqrt{2} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} 1$
so	$\frac{1}{100} + \frac{1}{100} + \frac{1}$
	لېكىكىكىكىكىكى Invali

BLOCK PROTECT

Writing protect block for WRITE command is configured by the value of BP0 and BP1 in the status register.

BP1	BP0	Protected Block
0	0	None
0	1	60000н to 7FFFFн (upper 1/4)
1	0	40000н to 7FFFFн (upper 1/2)
1	1	00000н to 7FFFFн (all)

WRITING PROTECT

Writing operation of the WRITE command and the WRSR command are protected with the value of WEL, WPEN, WP as shown in the table.

WEL	WPEN	WP	Protected Blocks	Unprotected Blocks	Status Register	
0	Х	Х	Protected	Protected	Protected	
1	0	Х	Protected	Unprotected	Unprotected	
1	1	0	Protected Unprotected		Protected	
1	1	1	Protected	Unprotected	Unprotected	

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit	
		Min	Max	Unit
Power supply voltage*	Vdd	- 0.5	+ 2.5	V
Input voltage*	VIN	- 0.5	V _{DD} + 0.5	V
Output voltage*	Vout	- 0.5	Vdd + 0.5	V
Operation ambient temperature	TA	- 40	+ 125	°C
Storage temperature	Tstg	- 55	+ 150	°C

*: These parameters are based on the condition that Vss is 0 V.

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit		
Falameter	Symbol	Min	Тур	Max	Onit
Power supply voltage*1	Vdd	1.70	1.80	1.95	V
Operation ambient temperature ^{*2}	TA	- 40		+ 125	°C

*1: These parameters are based on the condition that Vss is 0 V.

*2: Ambient temperature when only this device is working. Please consider it to be the almost same as the package surface temperature.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

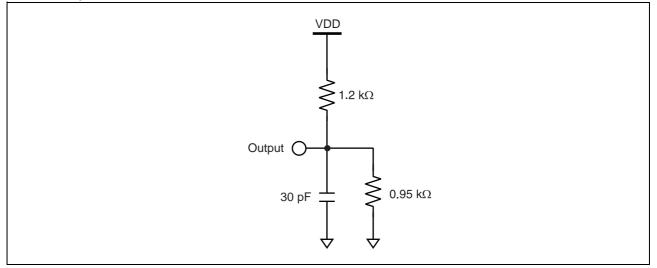
Parameter	Symbol	Condition			Value		Unit
Farameter	Symbol			Min	Тур	Max	Unit
		$\overline{CS} = V_{DD}$	25 °C	—		1	
Input lookago curront*1	11.1	$\mathbf{CS} = \mathbf{V}\mathbf{DD}$	125 °C	—		2	۸
Input leakage current*1	Iu	\overline{WP} , SCK, \overline{CS} , SI,	25 °C	—		1	μA
		$\overline{\text{RESET}} = 0 \text{ V to V}_{\text{DD}}$	125 °C	—		2	
Output lookago ourropt*2		SO = 0 V to V _{DD}	25 °C	—		1	۸
Output leakage current*2	Ilo	$30 = 0 \vee 10 \vee 00$	125 °C	—		2	μA
Operating power supply current*3	IDD	SCK = 50MHz			TBD.	3.5	mA
Standby current	lsв	$\frac{SCK}{WP} = \frac{SI}{RESET} = V_{DD}$			TBD.	340	μΑ
Input high voltage	Vih	V _{DD} = 1.7 V to 1.95 V		$V_{\text{DD}} \times 0.7$		Vdd + 0.5	V
Input low voltage	VIL	V _{DD} = 1.7 V to 1.95 V		- 0.5		$V_{\text{DD}} \times 0.3$	V
Output high voltage	Vон	Iон = -2 mA		$V_{\text{DD}}-0.5$		_	V
Output low voltage	Vol	IoL = 2 mA	ł			0.4	V

*1 : Applicable pin : \overline{CS} , \overline{WP} , SCK, SI

*2 : Applicable pin : SO

*3 : Input voltage magnitude : VDD - 0.2 V or VSS

2. AC Characteristics

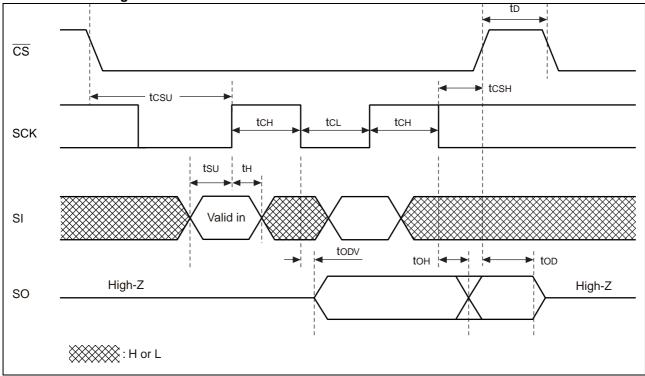

Parameter	Symbol	Va	lue	- Unit	Condition
Farameter	Symbol	Min	Max		Vdd
SCK clock frequency	fcк		50	MHz	all commands ex- cept for READ/ SSRD
		—	40		READ command
		—	10		SSRD command
Clock high time	tсн	9	—	ns	
Clock low time	tc∟	9	—	ns	
Chip select set up time	t csu	5		ns	
Chip select hold time	t csн	5		ns	
Output disable time	tod		10	ns	
Output data valid time	todv		9	ns	*1
Output hold time	tон	0		ns	
Deselect time	to	40		ns	
Data in rising time	t _R		50	ns	
Data falling time	t⊧		50	ns	
Data set up time	t s∪	5		ns	
Data hold time	tн	5		ns	
RESET pulse width	t RP	20		μs	
time from releasing Reset to Re- set again	treset		450	μs	

*1: In SSRD command, 60ns(max.)

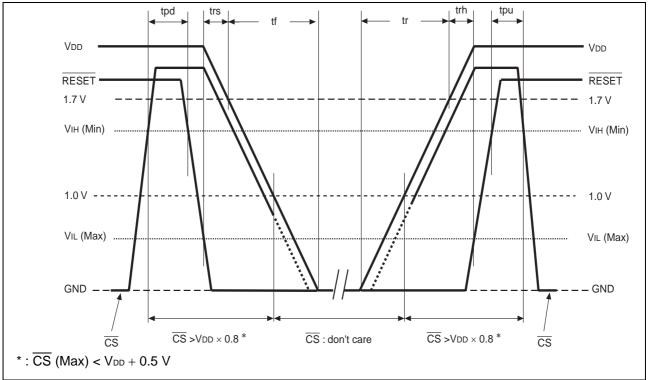
AC Test Condition

Power supply voltage	: 1.7 V to 1.95 V Operation
Operation ambient temperature	: - 40 °C to + 125 °C
Input voltage magnitude	: Vdd \times 0.8 \leq Vih \leq Vdd
	$0 \leq V_{\text{IL}} \leq V_{\text{DD}} \times 0.2$
Input rising time	: 5 ns
Input falling time	: 5 ns
Input judge level	: Vdd/2
Output judge level	: Vdd/2

AC Load Equivalent Circuit


3. Pin Capacitance

Parameter	Symbol	Condition	Va	lue	Unit
Farameter	Symbol	Condition	Min	Max	Onit
Output capacitance	Co	$V_{DD} = 1.8 \text{ V},$ $V_{IN} = V_{OUT} = 0 \text{ V to } V_{DD},$	—	8	pF
Input capacitance	Ci	$f = 1 \text{ MHz}, T_A = +25 \text{ °C}$		6	pF



TIMING DIAGRAM

■ POWER ON/OFF SEQUENCE

Parameter	Symbol	Va	lue	Unit
	Symbol	Min	Max	Onit
CS level hold time at power OFF	tod	400		ns
	tpd	0	_	ns
CS level hold time at power ON	tpu	450	_	μs
Power supply rising time	tr	0.05		ms/V
Power supply falling time	tf	0.1		ms/V
VDD(min) hold time after RESET fall during power off	trs	0		μs
RESET low level hold time after VDD(min) rise during power on	trh	1		μS

If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

■ FRAM CHARACTERISTICS

Parameter	Value		Unit	Remarks	
Farameter	Min	Max	Onit	Reliaiks	
Read/Write Endurance*1	10 ¹³	_	Times/byte	Operation Ambient Temperature $T_A = + 125 \ ^{\circ}C$	
	0.85 or more*3			Operation Ambient Temperature $T_A = +125 \ ^{\circ}C$	
Data Retention ^{*2}	2.75		Years	Operation Ambient Temperature $T_A = +105 \ ^{\circ}C$	
	10			Operation Ambient Temperature $T_A = +85 \ ^{\circ}C$	

*1 : Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism.

*2: Minimum values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.

*3: Under evaluation for more than 0.85years(+125 °C).

NOTE ON USE

We recommend programming of the device after reflow except for special sector region and serial number region. Data written before reflow cannot be guaranteed.

■ ESD AND LATCH-UP

(8-pin plastic SOP 208mi)

Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant	MB85RS4MLYPF-G-BCE1 MB85RS4MLYPF-G-BCERE1	≥ 2000 V
ESD CDM (Charged Device Model) JESD22-C101		≥ 1500 V
Latch-Up (I-test) JESD78 compliant		≥ 125mA
Latch-Up (V _{supply} overvoltage test) JESD78 compliant		$\geq 5.4V$

(8-pin plastic DFN 5mm × 6mm)

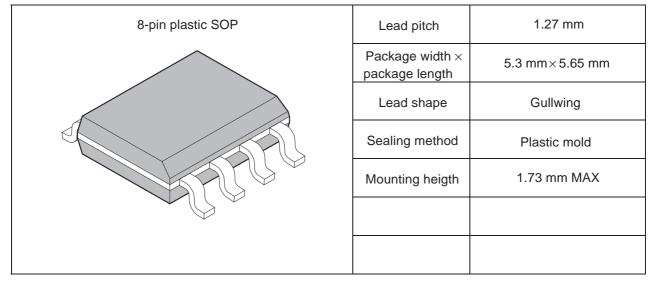
Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant		≥ 2000 V
ESD CDM (Charged Device Model) JESD22-C101	MB85RS4MLYPN-G-AWEWE1	≥ 750 V
Latch-Up (I-test) JESD78 compliant	WB65K54WETFN-G-AWEWET	≥ 125mA
Latch-Up (V _{supply} overvoltage test) JESD78 compliant		≥ 5.4V

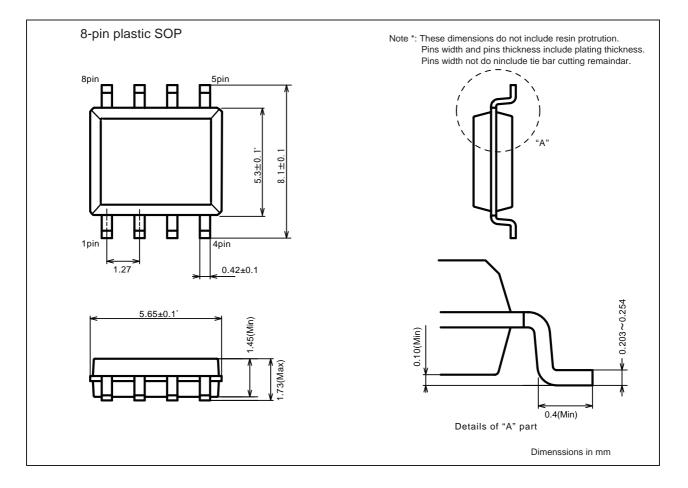
■ REFLOW CONDITIONS AND FLOOR LIFE

[JEDEC MSL] : Moisture Sensitivity Level 3 (IPC/JEDEC J-STD-020D)

Current status on Contained Restricted Substances

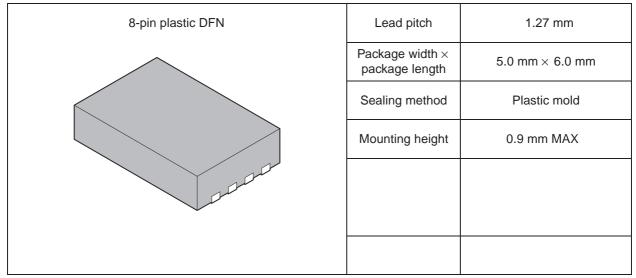
This product complies with the regulations of REACH Regulations, EU RoHS Directive and China RoHS.

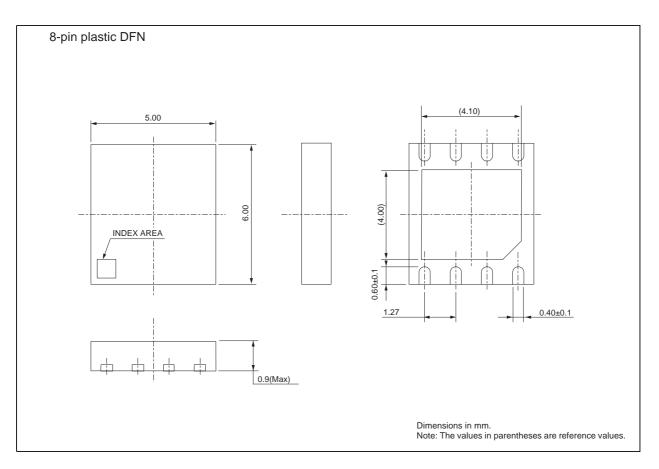


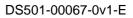

ORDERING INFORMATION

Part number	Package	Shipping form	Minimum shipping quantity
MB85RS4MLYPF-G-BCE1	8-pin plastic SOP	Tube	*
MB85RS4MLYPF-G-BCERE1	8-pin plastic SOP	Embossed Carrier tape	1500
MB85RS4MLYPN-G-AWEWE1	8-pin plastic DFN	Embossed Carrier tape	1500

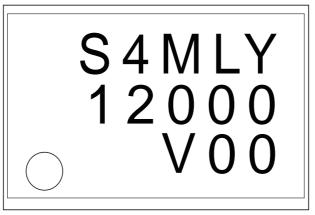
* : Please contact our sales office about minimum shipping quantity.


PACKAGE DIMENSION

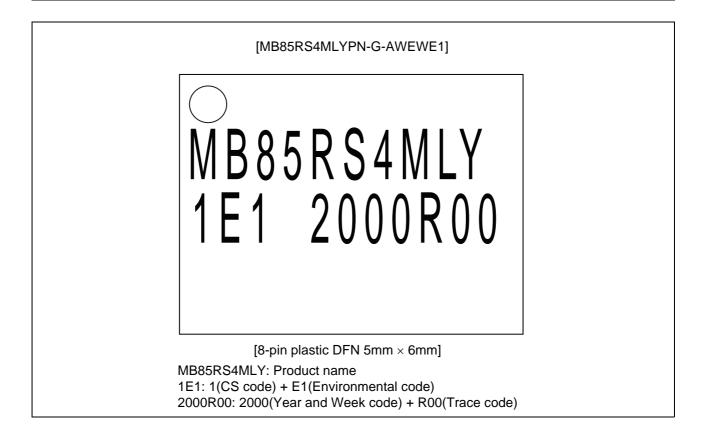



MB85RS4MLY

(Continued)



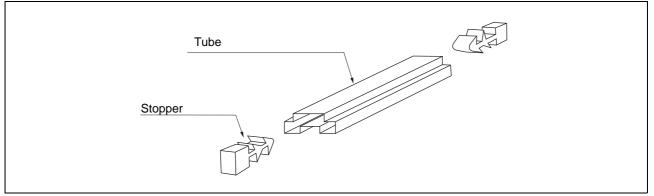
FUÏITSU


MARKING (Example)

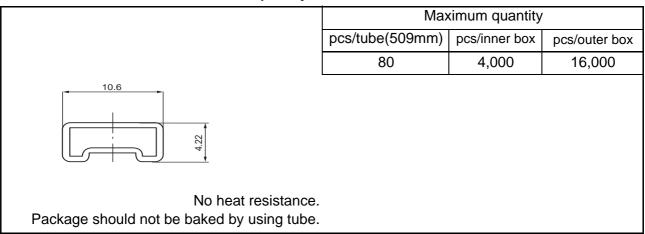
[MB85RS4MLYPF-G-BCE1] [MB85RS4MLYPF-G-BCERE1]

[8-pin plastic SOP 208mil]

S4MLY: Product name 12000: 1(CS code) + 2000(Year and Week code) V00: Trace code

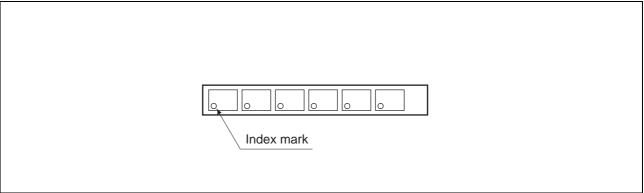


PACKING INFORMATION

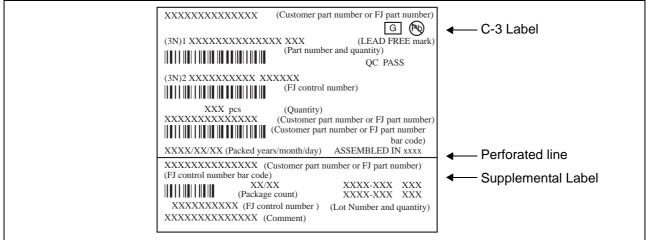

1. Tube

1.1 Tube Dimensions

• Tube/stopper shape (example)

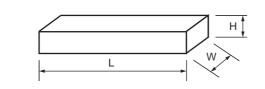


• Tube cross-sections and Maximum quantity

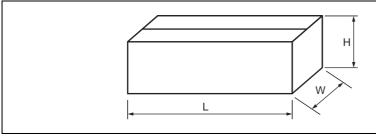

(Dimensions in mm)

• Direction of index in tube

1.2 Product label indicators (example)


Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

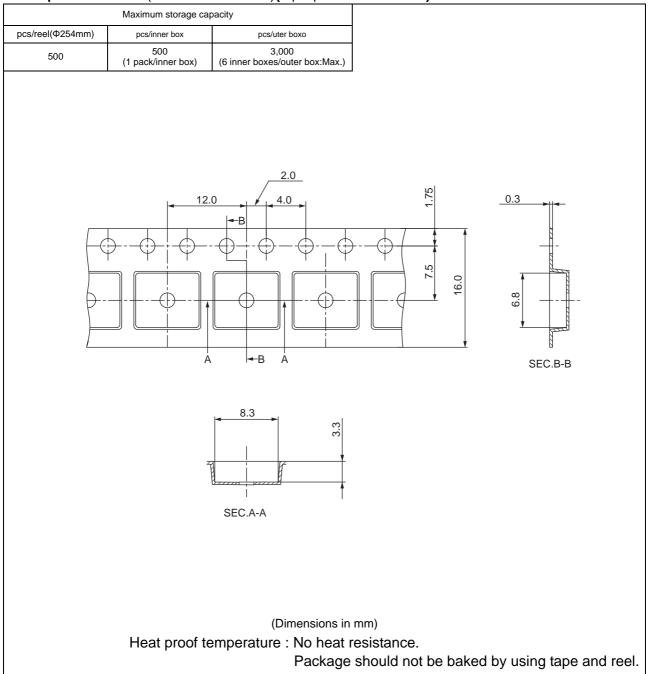
1.3 Dimensions for Containers


(1) Dimensions for inner box

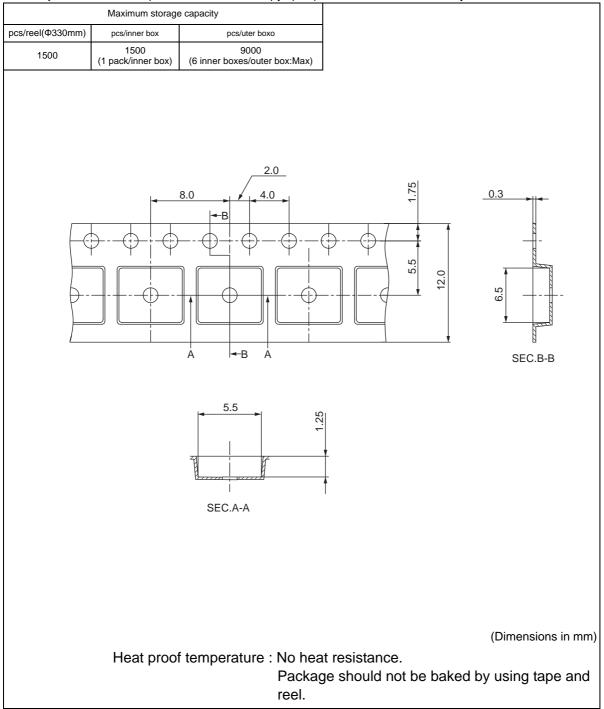
L	W	Н
533	124	73

(Dimensions in mm)

(2) Dimensions for outer box

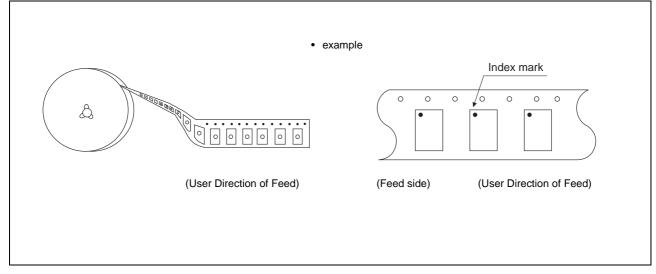


L	W	Н
549	277	180

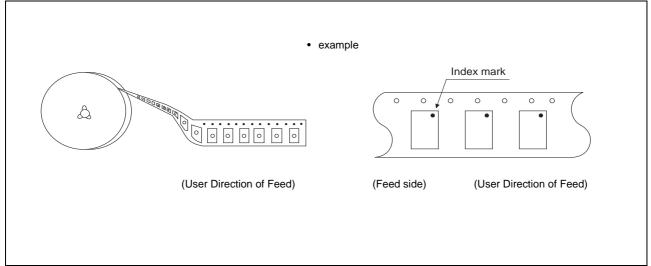

(Dimensions in mm)

2. Emboss Tape

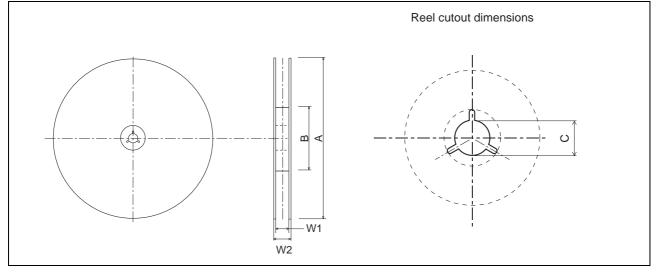
2.1 Tape Dimensions (not drawn to scale)(8-pin plastic SOP 208mil)



2.2 Tape Dimensions (not drawn to scale)(8-pin plastic DFN 5mm × 6mm)

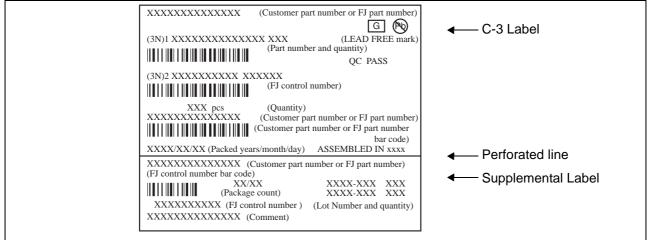


2.3 IC orientation



8-pin plastic DFN 5mm \times 6mm

2.4 Reel dimensions



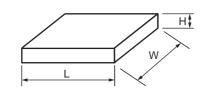
			Dimensions in mm		
	А	В	С	W1	W2
SOP8	254	100	13	17.5	21.5
DFN8	330	100	13	13.5	17.5

Г

2.5 Product label indicators (example)

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

Label II: Moisture Barrier Bag (It sticks it on the Aluminum laminated bag) SOP8 [MSL Label (100mm \times 70mm)]


	← MSL label
This bag contains MOISTURE-SENSITIVE DEVICES	
MOISTURE-SENSITIVE DEVICES	
1. Calculated shelf life in sealed bag: 24 months at <40°C and <90% relative humidity (RH)	
2. Peak package body temperature: 260°C	
3. After bag is opened, devices that will be subjected to reflow	
solder or other high temperature process must be	
a) Mounted within: 168 hours of factory conditions <30°C/60% RH, or	
b) Stored per J-STD-033	
4. Devices require bake, before mounting, if:	
a) Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at 23 ± 5°C	
b) 3a or 3b are not met	
5. If baking is required, refer to IPC/JEDEC J-STD-033 for	
bake procedure	
Bag Seal Date: see adjacent bar code label.	
Note: Level and body temperature defined by IPC/JEDEC J-STD-020	

DFN8 [MSL Label (100mm × 70mm)]

2.6 Dimensions for Containers

(1) Dimensions for inner box

	Tape width	L	W	Н
SOP8	12	265	262	51
DFN8	12	350	335	35

(Dimensions in mm)

(2) Dimensions for outer box

	L	W	Н
SOP8	549	277	180
DFN8	384	368	225

(Dimensions in mm)

FUJITSU SEMICONDUCTOR MEMORY SOLUTION LIMITED

Shin-Yokohama TECH Building, 3-9-1 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-0033, Japan https://www.fujitsu.com/jp/fsm/en/

All Rights Reserved.

FUJITSU SEMICONDUCTOR MEMORY SOLUTION LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMI-CONDUCTOR MEMORY SOLUTION ") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR MEMORY SOLUTION sales representatives before order of FUJITSU SEMICONDUCTOR MEMORY SOLUTION device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR MEMORY SOLUTION device. FUJITSU SEMI-CONDUCTOR MEMORY SOLUTION disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR MEMORY SOLUTION device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR MEMORY SOLUTION or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR MEMORY SOLUTION assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR MEMORY SOLUTION shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.

Edited: Marketing Division

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kaga FEI:

MB85RS4MLYPN-G-AWEWE1