

- Designed for 868.95 MHz SRD Transmitters
- Very Low Series Resistance
- Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481

The RO3156D is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode stabilization of fixed-frequency transmitters operating at 868.95 MHz. This SAW is designed specifically for SRD remote control and security transmitters operating under ETSI EN 300 220 regulations.

Absolute Maximum Ratings

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +85	°C
Soldering Temperature, 10 seconds / 5 cycles maximum	260	°C

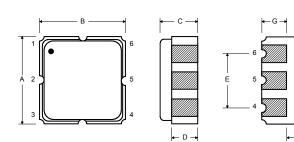
AEC-Q200 This component was always RoHS compliant from the first date of manufacture.

RO3156D

868.95 MHz SAW Resonator

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C				868.750		869.150	
		f _C					MHz
Tolerance from 916.5 MHz						±200	
		Δf_{C}					kHz
Insertion Loss		IL			1.20	2.5	dB
Quality Factor	Unloaded Q	QU			6300		
	50 Ω Loaded Q	QL			850		
Temperature Stability	Turnover Temperature	Т _О		10	25	40	°C
	Turnover Frequency	f _O			fc		MHz
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA			10		ppm
DC Insulation Resistance be	tween Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			15.7		Ω
	Motional Inductance	L _M			18.1		μH
	Motional Capacitance	C _M			1.85		fF
	Transducer Static Capacitance	Co			2.2		pF
Test Fixture Shunt Inductance	e	L _{TEST}			15.2		nH
Lid Symbolization					715, <u>YWW</u> S	<u> </u>	
Standard Reel Quantity	Reel Size 7 Inch			5	500 Pieces / R	eel	
	Reel Size 13 Inch	3000 Pieces / Reel					



1. The design, manufacturing process, and specifications of this device are subject to change.

2. US or International patents may apply.

Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The call out NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

Pin

1

2

3

5

6

NC

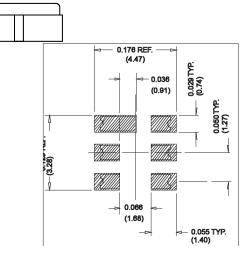
NC

4 NC

NC

7 NC

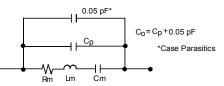
8 NC

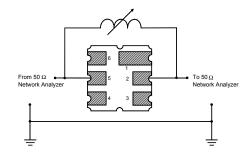

Terminal

Terminal

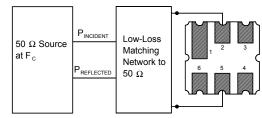
J

Connection

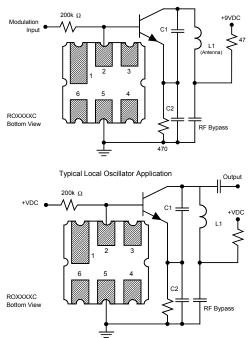

2


Case Dimensions

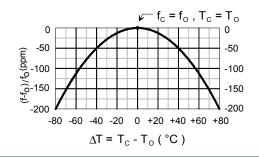
Dimension	mm			Inches			
	Min	Nom	Max	Min	Nom	Max	
Α	3.60	3.80	4.00	0.142	0.150	0.157	
В	3.60	3.80	4.00	0.142	0.150	0.157	
С	1.10	1.30	1.50	0.043	0.050	0.060	
D	0.95	1.10	1.25	0.037	0.043	0.049	
E	2.39	2.54	2.69	0.094	0.100	0.106	
G	0.90	1.00	1.10	0.035	0.040	0.043	
н	1.90	2.00	2.10	0.748	0.079	0.083	
I	0.50	0.60	0.70	0.020	0.024	0.028	
J	1.70	1.80	1.90	0.067	0.071	0.075	


Equivalent RLC Model

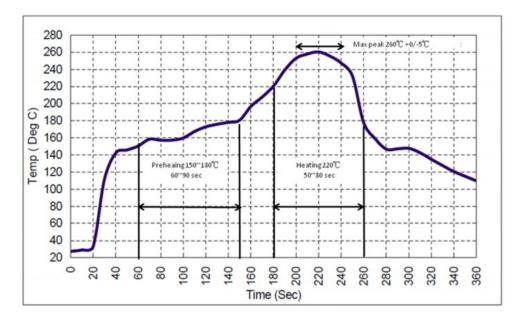
Parameter Test Circuit



Power Test Circuit


Example Application Circuits

Typical Low-Power Transmitter Application


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

RFMi: RO3156D