

1200V/80 m Ω SiC MOSFET in SOT-227 Package

Features

- High speed switching SiC MOSFET
- Freewheeling diode with zero reverse recovery SiC SBDs
- Low R_{DS ON}
- Simple to drive
- Low stray inductance
- High junction temperature operation
- Easy to parallel and mounting

- Photo Voltaic Inverter
- Motor Driver
- Multi-level Converter
- High voltage AC/DC Converter

- Outstanding power conversion efficiency at high switching frequency operation
- Low switching losses and Low EMI noises
- Very rugged and easy mount
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive Tc of VF
- Reduced cooling requirement
- RoHS Compliant

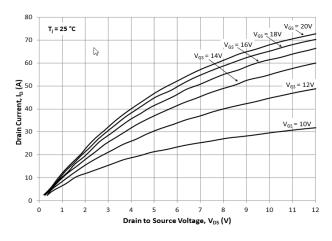
Absolute Maximum Ratings (T_i=25°C unless otherwise specified)

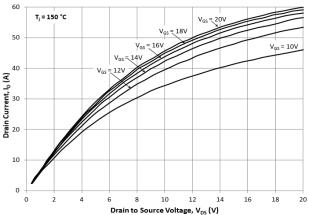
Parameters	Symbol	Conditions	Specifications	Units
SIC MOSFET	<u> </u>	•	-	<u>'</u>
Maximum Drain-Source Voltage	V _{DSS}	$T_j = 25 ^{\circ}\text{C}^{\sim}150 ^{\circ}\text{C}$	1200	V
Continuous Drain Current	I _D	$T_j = 25$ °C, $V_{GS} = 20V$	40	А
		$T_j = 150^{\circ} C, V_{GS} = 20V$	20	А
Pulsed Drain Current	I _{DS}	Limited by Tj_max	60	А
Gate-Source Voltage	V_{GS}		-10/+25	V
Maximum Power Dissipation	P _D	$T_C = 25$ $^{\circ}C$	TBD	W
		$T_{\rm C} = 100^{0}{\rm C}$	TBD	W
Operating Junction Temperature	Tj		-40 ~ 150	°C
Storage Temperature	T _{STG}		-40 ~ 125	°C
SiC SBDs	1	1	1	4
Maximum Reverse Voltage	V_{RRM}		1200	V
Average Forward Current	I _{DAV}	$T_j = 25$ 0 C	20	Α
		$T_j = 150^{\circ}C$	7	А
Non-repetitive Forward Surge Current	I _{FSM}	T _C =25 °C, t _p =8.3 ms	120	А
Non-repetitive Forward Surge Current	I _{F,MAX}	T _C =25 °C, t _p =10 μs	700	А

Electrical Characteristics (T_j=25°C unless otherwise specified)

Parameters	Symbol	Conditions	Min	Тур	Max	Units
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =100μA	1200			V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2.5 \text{ mA}$, $T_j = 25 {}^{0}\text{C}$	1.7	2.2		V
		$V_{GS} = V_{DS}$, $I_D = 2.5 \text{mA}$, $T_j = 150^{\circ} \text{C}$		1.6		V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =1200V, V_{GS} =0V, T_j = 25 0 C		1	100	μΑ
		V_{DS} =1200V, V_{GS} =0V, T_j = 150 0 C		TBD		μΑ
Gate Source Leakage Current	I _{GSS}	V _{GS} =20V, V _{DS} =0V			250	nA
Internal Gate Resistance	R _G	f = 1MHz, V _{AC} = 25mV,		1.5		Ω
		ESR of C _{iss}				
Drain-Source On-state Resistance	R _{DS(ON)}	$V_{GS} = 20V, I_D = 20A, T_j = 25$ °C		80		mΩ
		$V_{GS} = 20V, I_D = 20A, T_j = 150 {}^{0}C$		150		mΩ
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 800V, freq =		950		pF
Output Capacitance	C _{oss}	1MHz, V _{AC} = 25mV, measured		80		pF
Reverse transfer Capacitance	C _{rSS}	at one MOSFET.		6.5		pF
Turn-on Delay Time	t _{d(on)i}	$V_{DS} = 800V, V_{GS} = -5/20V$		15		ns
Rise Time	t _{ri}	$I_D = 20A$, $R_{G(ext)} = 2.5\Omega$,		35		ns
Turn-off Delay Time	t _{d(off)i}	- L = 856μH		32		ns

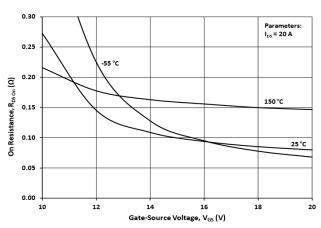
Fall Time	t _{fi}			26		ns
Turn-on Switching Loss	E _{ON}			0.4		mJ
Turn-off Switching Loss	E _{OFF}			0.25		mJ
Body Diode Forward Voltage	V _{SD}	$I_F = 10A, T_j = 25$ $^{\circ}C$		3.3		V
		$I_F = 10A, T_j = 150$ °C		TBD		٧
Total Gate Charge	Qg	V _{DS} =800 V, V _{GS} = -5/20V		49.2		nC
Gate-Source Charge	Q_{GS}	$I_D = 20A$		10.8		nC
Gate-Drain Charge	Q_{GD}			18		nC
SiC SBDs				•		
Maximum peak repetitive reverse voltage	V_{RRM}		1200			V
Maximum Reverse Leakage Current	I _{RM}	$V_R = 1200V, T_j = 25^{\circ}C$		2	20	μΑ
		$V_R = 1200V, T_j = 150$ °C		23	200	μΑ
Diode Forward Voltage	V _F	$I_F = 10A, T_j = 25$ °C		1.5	1.7	V
		$I_F = 10A, T_j = 150$ °C		2	2.6	V
Total Capacitive Charge	Q _C	V _R = 800 V		56		nC
Total Capacitance	С	V _R = 1V, f = 1 MHz		608		pF
		V _R = 400V, f = 1 MHz		53		pF
		V _R = 800V, f = 1 MHz		39		pF


Thermal and Package Characteristics ($T_j = 25^{\circ}C$ unless otherwise specified)

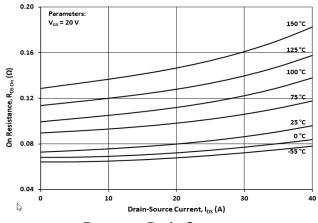

Parameters	Symbol	Conditions	Min	Тур	Max	Units
Junction to Case Thermal Resistance	R _{THJC}	Per MOSFET			0.6	°C /W
		Per SBD			2.2	°C /W
Mounting Torque	M_d				1.5	N-m
Terminal Connection Torque	M _{dt}		1.3		1.5	N-m
Package Weight	W _t			32		g
Isolation Voltage	V _{ISOL}	I _{ISOL} < 1mA, 50/60Hz, t=1 min	2500			V

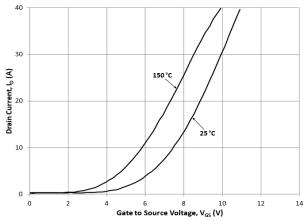
Page 3 of 9 Rev. 0.4 07/24/2020

MOSFET Typical Characteristics



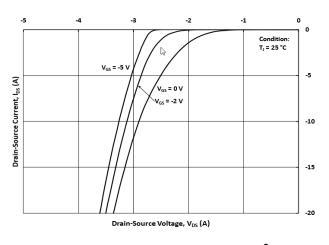
Typical Forward Characteristics T_j=25 °C

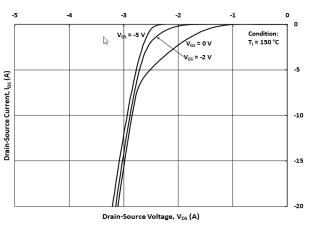

Typical Forward Characteristics T_j=150 °C



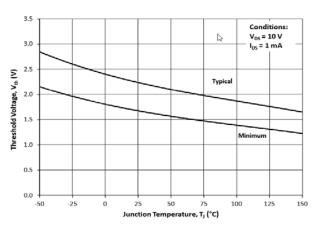
Normalized R_{DS_ON} vs. Temperature

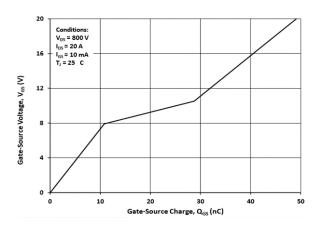
R_{DS_ON} vs. Gate Voltage

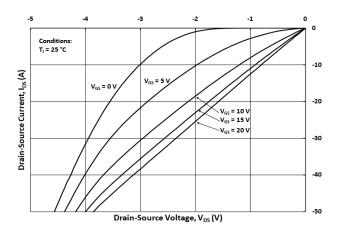


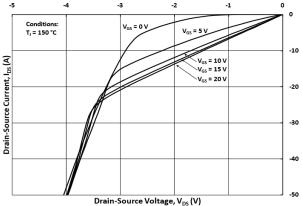


 $R_{\text{DS_ON}}$ vs. Drain Current

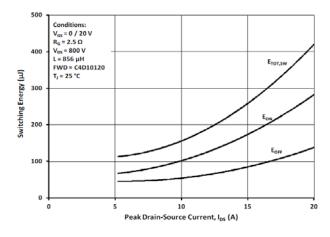

Transfer Characteristics

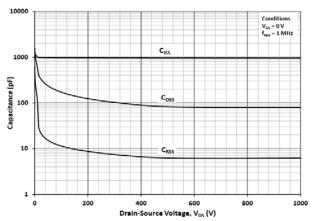



Body Diode Characteristics T_j=25 °C


Body Diode Characteristics T_i=150 °C

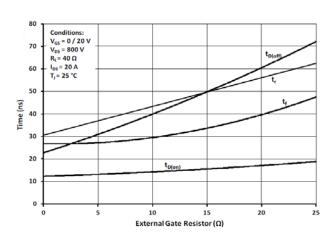
Threshold Voltage vs. Temperature

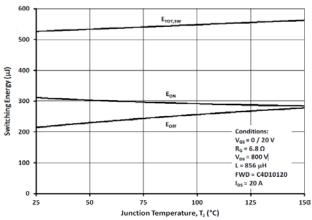

Gate Charge Characteristics



 3^{rd} Quadrant Characteristics T_i =25 °C

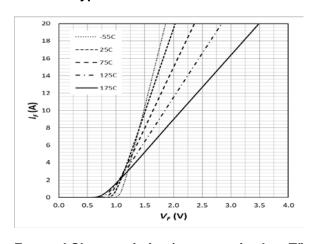
3rd Quadrant Characteristics T_i=150 °C

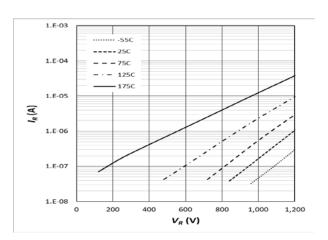




Switching Loss vs. Drain Current (V_{DD}=800V)

Capacitances vs. Drain-Source Voltage (0~1k V)

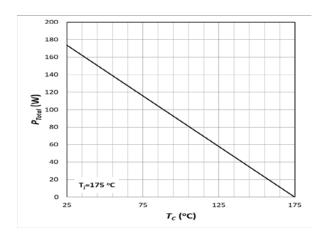


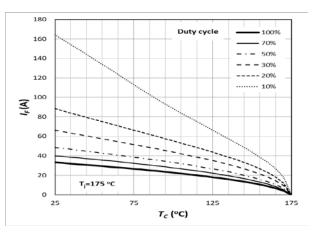


Resistive Switching Time vs. R_{G(ext)}

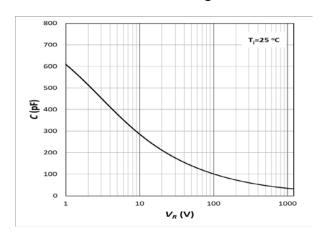
Clamped Inductive Switching Energy vs. Temperature

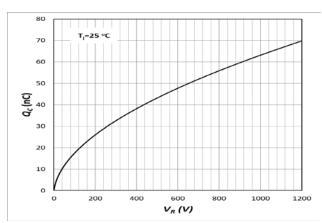
SiC SBD Typical Characteristics




Forward Characteristics (parameterized on Tj)

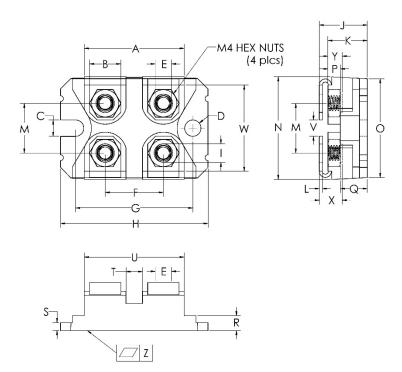
Reverse Characteristics (parameterized on Tj)


Page 6 of 9 Rev. 0.4 07/24/2020



Power Derating

Current Derating


Capacitance

Recovery Charge

Page 7 of 9 Rev. 0.4 07/24/2020

SOT-227 Package Outline and Dimension

0	Millimeters			hes
Sym	Min	Max	Min	Max
Α	31.67	31.90	1.247	1.256
В	7.95	8.18	0.313	0.322
С	4.14	4.24	0.163	0.167
D	4.14	4.24	0.163	0.167
Е	4.14	4.24	0.163	0.167
F	14.94	15.09	0.588	0.594
G	30.15	30.25	1.187	1.191
Н	38.00	38.10	1.496	1.500
ı	4.75	4.83	0.187	0.190
J	11.68	12.19	0.460	0.480
K	9.45	9.60	0.372	0.378
L	0.76	0.84	0.030	0.033
М	12.62	12.88	0.497	0.507
N	25.15	25.30	0.990	0.996
0	24.79	25.04	0.976	0.986
Р	3.02	3.15	0.119	0.124
Q	6.71	6.96	0.264	0.274
R	4.17	4.42	0.164	0.174
S	2.08	2.13	0.082	0.084
Т	3.28	3.63	0.129	0.143
U	26.75	26.90	1.053	1.059
V	3.86	4.24	0.152	0.167
W	20.55	26.90	0.809	0.814
Χ	5.45	5.85	0.215	0.230
Υ	3.15	3.66	0.124	0.144
Z	0.00	0.13	0.000	0.005

Revision History

Date	Revision	Notes
10/3/2016	0.1	Initial release
01/03/2020	0.2	Applied company name change
05/27/2020	0.3	Updated mechanical drawing
07/24/2020	0.4	Updated SBD specification

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.SemiQ.com.

REACh Compliance

REACh substances of high concern (SVHC) information is available for this product. Since the European Chemicals Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at SemiQ Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

SemiQ Inc., reserves the right to make changes to the product specifications and data in this document without notice. SemiQ products are sold pursuant to SemiQ's terms and conditions of sale in place at the time of order acknowledgement.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.

SemiQ makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SemiQ assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using SemiQ products.

To obtain additional technical information or to place an order for this product, please contact us. The information in this datasheet is provided by SemiQ. SemiQ reserves the right to make changes, corrections, modifications, and improvements of datasheet without notice.

Page 9 of 9 Rev. 0.4 07/24/2020

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

SemiQ:

GCMS080A120S1-E1