



# SABRE9006A Premier8-Channel Audio DAC

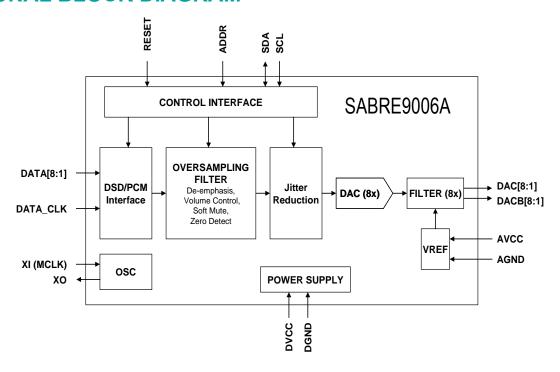
**Datasheet** 

### **OVERVIEW**

The Sabre Premier (SABRE9006A) High Performance Audio DAC is a 24-Bit, 8-channel audio DAC that brings professional, digital audio quality to the consumer home entertainment market. The SABRE9006A is a pincompatible replacement for the ES9006 and offers significantly improved linearity versus the ES9006.

Using ESS' patented HyperStream® architecture and patented Time Domain Jitter Eliminator, and advanced SABRE® technology, the Sabre Premier Audio DAC delivers studio quality audio with 120dB DNR and – 102dB THD+N to digital audio applications such as Blu-ray, SACD, DVD-Audio, DVD, CD, home theatre, set top boxes and digital TV.

The Sabre Premier's flexible input architecture accepts serial 16-24 bit serial PCM data to 192kHz sample rate, 16-24 bit SPDIF data up to 96kHz sampling rate, or DSD data supporting native SACD audio.


| FEATURE                                                          | DESCRIPTION                                                                                                                                                                                                        |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PatentedHyperStream®Architecture  o DNR: +120dB  o THD+N: -102dB | <ul> <li>Unprecedented dynamic range and low distortion allowing<br/>true reproduction of audio as it is mastered at the recording<br/>studio</li> </ul>                                                           |
| Patented Time Domain Jitter Reduction                            | <ul> <li>Unmatched audio clarity free from input clock jitter allowing<br/>simple system design and layout</li> </ul>                                                                                              |
| SABRE® technology                                                | <ul> <li>Sound quality with a immersive sound stage</li> </ul>                                                                                                                                                     |
| 51-bit Accumulator and 28-bit Processing                         | <ul> <li>Distortion free signal processing</li> </ul>                                                                                                                                                              |
| Auto-detect PCM/DSD Converter                                    | <ul> <li>Universal (e.g. DVD/SACD) audio playback</li> </ul>                                                                                                                                                       |
| 8-channel DAC in 48-LQFP                                         | <ul> <li>Reduces PCB footprint and simplifies board layout</li> </ul>                                                                                                                                              |
| Low power (100mW for 8 channels)                                 | <ul> <li>Simplifies power supply design</li> </ul>                                                                                                                                                                 |
| Universal Digital Input                                          | <ul> <li>All-digital SPDIF, PCM (I<sup>2</sup>S, MSB/LSB justified 16-, 20- or<br/>24-bit) or DSD input</li> </ul>                                                                                                 |
| Integrated DSP functions                                         | <ul> <li>Click-free soft mute and volume control</li> <li>Programmable filter characteristics for PCM/DSD</li> <li>Programmable Zero detect</li> <li>De-emphasis for 32kHz, 44.1kHz, and 48kHz sampling</li> </ul> |

### **APPLICATIONS**

- Blu-ray players
- SACD / DVD-Audio players
- Audio receivers
- Home theater receivers
- Professional audio equipment



### **FUNCTIONAL BLOCK DIAGRAM**





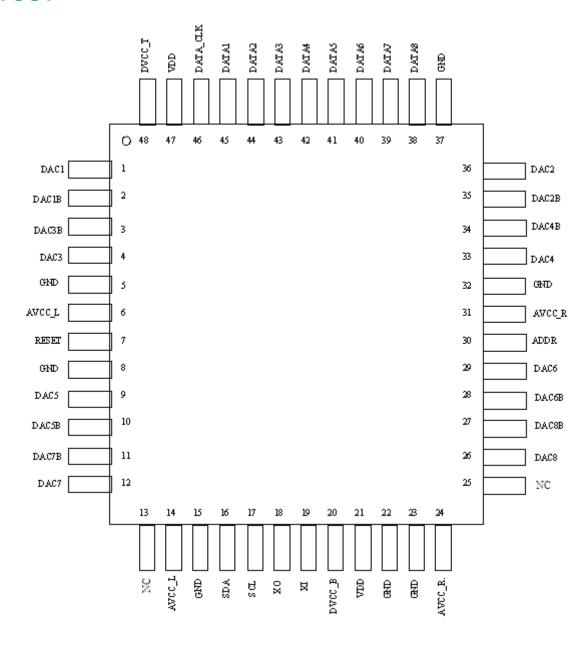
### Migration Notes from ES9006S to SABRE9006AS

#### Hardware Compatibility from ES9006S to SABRE9006AS

SABRE9006AS parts are 100% pin-compatible to ES9006S parts. No PCB change is necessary.

#### Software Compatibility from ES9006S to SABRE9006AS

No software modification is required when migrating from ES9006S to SABRE9006AS.


### **New Functions in SABRE9006AS only**

The following functions will by default be inactive after a hardware reset to maintain compatibility with ES9006S. Only customers interested in the new functions need to perform the specific programming to enable them.

| Register | New Function (not available in ES9006S)                                                              |  |  |
|----------|------------------------------------------------------------------------------------------------------|--|--|
| 17       | Mode Control for manual input mode selection, auto de-emphasis in SPDIF mode and 128x DPLL bandwidth |  |  |
| 27-24    | Master Trim                                                                                          |  |  |
| 64       | Chip ID, Auto-mute status and Lock status                                                            |  |  |
| 69-66    | DPLL_NUM readout                                                                                     |  |  |
| 93-70    | SPDIF channel status                                                                                 |  |  |



### **PIN LAYOUT**





### **PIN DESCRIPTIONS**

| Pin | Name      | I/O | Description                                                             |  |
|-----|-----------|-----|-------------------------------------------------------------------------|--|
| 1   | DAC1      | 0   | Differential Positive Analog Output 1                                   |  |
| 2   | DAC1B     | 0   | Differential Negative Analog Output 1                                   |  |
| 3   | DAC3B     | 0   | Differential Negative Analog Output 3                                   |  |
| 4   | DAC3      | 0   | Differential Positive Analog Output 3                                   |  |
| 5   | GND       | -   | Ground (Analog)                                                         |  |
| 6   | AVCC_L    | -   | Analog Power (+3.3V) for Left channels                                  |  |
| 7   | RESET     | ı   | Global Reset (Active high)                                              |  |
| 8   | GND       | -   | Ground (Digital or Analog)                                              |  |
| 9   | DAC5      | 0   | Differential Positive Analog Output 5                                   |  |
| 10  | DAC5B     | 0   | Differential Negative Analog Output 5                                   |  |
| 11  | DAC7B     | 0   | Differential Negative Analog Output 7                                   |  |
| 12  | DAC7      | 0   | Differential Positive Analog Output 7                                   |  |
| 13  | NC        | -   | No internal connection. May be grounded or connected to VDD if desired  |  |
| 14  | AVCC_L    | -   | Analog Power (+3.3V) for Left channels                                  |  |
| 15  | GND       | -   | Ground (Analog)                                                         |  |
| 16  | SDA       | I/O | I <sup>2</sup> C Serial Data I/O                                        |  |
| 17  | SCL       | I   | I <sup>2</sup> C Serial Clock Input                                     |  |
| 18  | ХО        | 0   | Xtal oscillator output                                                  |  |
| 19  | XI (MCLK) | I   | Xtal oscillator input (Note: can also just be a clock input)            |  |
| 20  | DVCC_B    | -   | Digital Power (+3.3V) for bottom pad ring of chip                       |  |
| 21  | VDD       | -   | Digital Power (+1.2V) for core of chip                                  |  |
| 22  | GND       | -   | Ground (Digital)                                                        |  |
| 23  | GND       | -   | Ground (Analog)                                                         |  |
| 24  | AVCC_R    | -   | Analog Power (+3.3V) for Right channels                                 |  |
| 25  | NC        | -   | No internal connection. May be grounded or connected to VDD if desired. |  |
| 26  | DAC8      | 0   | Differential Positive Analog Output 8                                   |  |
| 27  | DAC8B     | 0   | Differential Negative Analog Output 8                                   |  |
| 28  | DAC6B     | 0   | Differential Negative Analog Output 6                                   |  |
| 29  | DAC6      | 0   | Differential Positive Analog Output 6                                   |  |



# PIN DESCRIPTIONS (continued)

| Pin | Name     | I/O | Description                                    |  |
|-----|----------|-----|------------------------------------------------|--|
| 30  | ADDR     | I   | Chip Address Select                            |  |
| 31  | AVCC_R   | -   | Analog Power (+3.3V) for Right channels        |  |
| 32  | GND      | -   | Ground (Analog)                                |  |
| 33  | DAC4     | 0   | Differential Positive Analog Output 4          |  |
| 34  | DAC4B    | 0   | Differential Negative Analog Output 4          |  |
| 35  | DAC2B    | 0   | Differential Negative Analog Output 2          |  |
| 36  | DAC2     | 0   | Differential Positive Analog Output 2          |  |
| 37  | GND      | -   | Ground (Digital)                               |  |
| 38  | DATA8    | I   | DSD Data8                                      |  |
| 39  | DATA7    | I   | DSD Data7                                      |  |
| 40  | DATA6    | I   | DSD Data6                                      |  |
| 41  | DATA5    | I   | DSD Data5 OR PCM Data CH7/CH8                  |  |
| 42  | DATA4    | I   | DSD Data4 OR PCM Data CH5/CH6                  |  |
| 43  | DATA3    | I   | DSD Data3 OR PCM Data CH3/CH4                  |  |
| 44  | DATA2    | I   | DSD Data2 OR PCM Data CH1/CH2                  |  |
| 45  | DATA1    | I   | DSD Data1 OR PCM Frame Clock OR SPDIF Input    |  |
| 46  | DATA_CLK | I   | PCM Bit Clock OR DSD Bit Clock                 |  |
| 47  | VDD      | -   | Digital Power (+1.2V) for core of chip         |  |
| 48  | DVCC_T   | -   | Digital Power (+3.3V) for top pad ring of chip |  |

#### Table 1

### **5V Tolerant Pins**

The following pins are 5V tolerant:

- DATA\_CLK
- DATA 1-8
- SCL
- SDA
- RESET
- ADDR



#### **FUNCTIONAL DESCRIPTION**

#### **NOTATATIONS for Sampling Rates**

| Mode                     | fs                  |
|--------------------------|---------------------|
| DSD                      | DATA_CLK/64         |
| Serial (PCM) Normal Mode | DATA_CLK/64         |
| SPDIF                    | SPDIF Sampling Rate |

### PCM, SPDIF and DSD Pin Connections

The following tables show how the pins are used for PCM and DSD audio formats.

#### **PCM Audio Format**

Note: XI clock (MCLK) must be > 192 x fs when using PCM input (normal mode)

| Pin Name  | Description                    |
|-----------|--------------------------------|
| DATA1     | Frame clock                    |
| DATA[2:5] | 8-channel PCM serial data      |
| DATA_CLK  | Bit clock for PCM audio format |

Table 2

#### **SPDIF Audio Formant**

Note: XI clock (MCLK) must be > 386 x fs when using SPDIF input

| Pin Name | Description |
|----------|-------------|
| DATA1    | SPDIF input |

Table 3

#### **DSD Audio Format**

Note: XI clock (MCLK) must be > 192 x fs when using DSD input

| Pin Name  | Description                  |
|-----------|------------------------------|
| DATA[1:8] | 8-channel DSD data input     |
| DATA_CLK  | Bit clock for DSD data input |

Table 4

# **Feature Description**

#### **Soft Mute**

When Mute is asserted the output signal will ramp to the  $-\infty$  level. When Mute is reset the attenuation level will ramp back up to the previous level set by the volume control register. Asserting Mute will not change the value of the volume control register. The total time is  $8192/(2^{\text{Register#16[2:0]}} \times \text{fs})$  seconds, where fs = DATA\_CLK/64 in PCM serial or DSD modes, or SPDIF sampling rate in SPDIF mode.



#### **AUTOMUTE**

AUTOMUTE is used to achieve the absolute maximum signal-to-noise ratio on an idle channel.

- In PCM serial mode, AUTOMUTE will become active once the audio data is continuously below the threshold set by <Register Automute\_lev>, for a length of time defined by 2096896/(<Register#9> x DATA\_CLK) Seconds.
- In SPDIF mode, the AUTOMUTE will become active once the audio data is continuously below the threshold set by <Register Automute\_lev>, for a length of time defined by 2096896/(<Register#9> x (64 x fs) Seconds, where fs is the SPDIF sampling rate.
- o In the DSD Mode, AUTOMUTE will become active when any 8 consecutive values in the DSD stream have as many 1's and 0's for a length of time defined by 2096896/(<Register Automute\_time> x DATA\_CLK) Seconds. The following table summarizes the conditions.

| Mode                                | Detection Condition                   | Time                                                          |  |
|-------------------------------------|---------------------------------------|---------------------------------------------------------------|--|
| PCM Data is continuously lower than |                                       | 2096896/( <register automute_time=""> x DATA_CLK)</register>  |  |
|                                     | <register automute_lev=""></register> |                                                               |  |
| SPDIF                               | Data is continuously lower than       | 2096896/( <register automute_time=""> x (64 x fs))</register> |  |
| SPDIF                               | <register automute_lev=""></register> | where fs is the SPDIF sampling rate                           |  |
| DSD                                 | Equal number of 1s and 0s in every 8  | 2006906// «Degister Automute time» × DATA CLK                 |  |
| טטט                                 | bits of data                          | 2096896/( <register automute_time=""> x DATA_CLK)</register>  |  |

#### Table5

#### **De-emphasis**

The de-emphasis feature is included for audio data that has utilized the 50/15µs pre-emphasis for noise reduction. There are three de-emphasis filters, one for 32kHz, one for 44.1kHz, and one for 48kHz.

#### Volume Control

Each output channel has its own attenuation circuit. The attenuation for each channel is controlled independently. Each channel can be attenuated from 0dB to -127dB in 0.5dB steps.

Each 0.5dB step transition takes 64 intermediate levels. The result being that the level changes are done using small enough steps so that no switching noise occurs during the transition of the volume control. When a new volume level is set, the attenuation circuit will ramp softly to the new level.

#### **Master Trim**

Themaster trim sets the 0dB reference level for the volume control of each DAC. The master trim is programmable via registers 24-27 and is a 32-bit signed number. Therefore it should never exceed 32'h7FFFFFFF (as this is full-scale signed).

#### **PCM Audio Interface Formats**

Several interface formats are provided so that direct connection to common audio processors is possible. The available formats and their accompanying diagrams are listed in the following table. The audio interface format can be set by programming the registers.

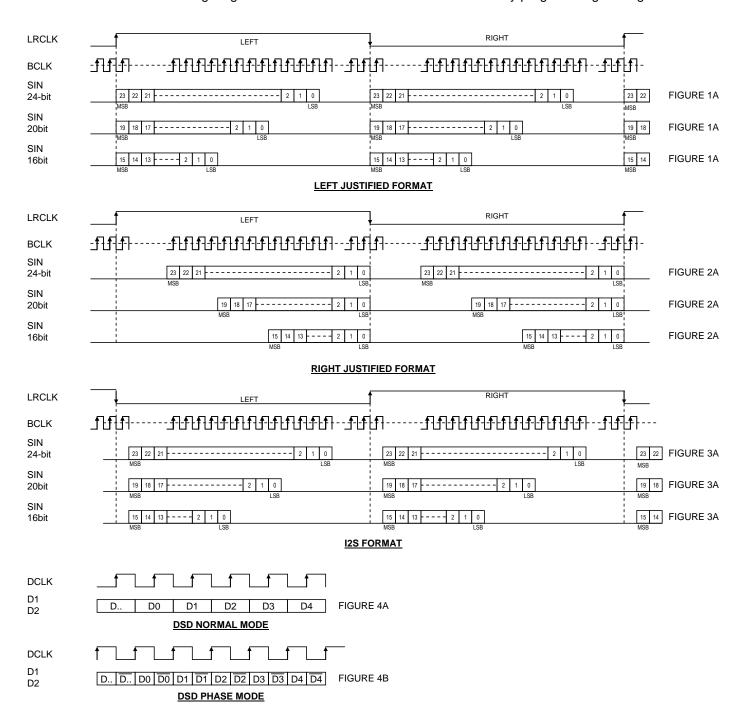
| Format | Description                                  |    |
|--------|----------------------------------------------|----|
| 0      | MSB First, Left Justified, up to 24-bit data | 1A |
| 1      | I <sup>2</sup> S, up to 24-bit data          | 2A |
| 2      | MSB First, Right Justified, 24-bit data      | 3A |
| 3      | MSB First, Right Justified, 20-bit data      | 3B |
| 4      | MSB First, Right Justified, 16-bit data      | 3C |
| 5      | DSD Normal Mode                              | 4A |
| 6      | DSD Phase Mode                               | 4B |

Table 6



#### Programmable FIR filter

A two stage interpolating FIR design is used. The interpolating FIR filter is generated using MATLAB, and can then be downloaded using a custom C code.


#### Example Source Code for Loading a Filter

```
// only accept 128 or 16 coefficients
// Note: The coefficients must be quantized to 24 bits for this method!
// Note: Stage 1 consists of 128 values (0-127 being the coefficients)
// Note: Stage 2 consists of 16 values (0-13 being the coefficients, 14-15 are zeros)
// Note: Stage 2 is symmetric about coefficient 13. See the example filters for more information.
byte reg19 = (byte)(coeffs.Count == 128 ? 0 : 128);
for (int i = 0; i < coeffs.Count; i++)</pre>
// stage 1 contains 128 coefficients, while stage 2 contains 16 coefficients
registers.WriteRegister(19, (byte)(reg26 + i));
// write the coefficient data
    registers.WriteRegister(20, (byte)(coeffs[i] &0xff));
registers.WriteRegister(21, (byte)((coeffs[i] >>8) &0xff));
    registers.WriteRegister(22, (byte)((coeffs[i] >>16) &0xff));
registers.WriteRegister(23, 0x02);// set the write enable bit
// disable the write enable bit when'we're done
registers.WriteRegister(23, (byte)(setEvenBit ? 0x04 : 0x00));
```



### **Audio Interface Formats**

Several interface formats are provided so that direct connection to common audio processors is possible. The available formats are shown in the following diagrams. The audio interface format can be set by programming the registers.





#### System Clock (XI / MCLK)

A system clock is required for proper operation of the digital filters and modulation circuitry.

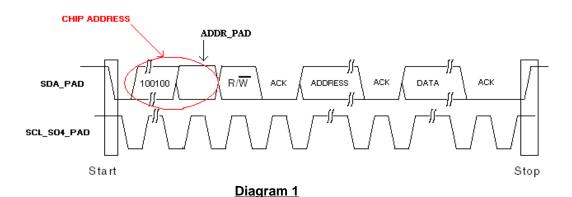
The system clock must be greater than 192 x fs for SERIAL/DSD inputs, or greater than 386 x fs for SPDIF input.

| Data Type   | Valid MCLK Frequencies                      |
|-------------|---------------------------------------------|
| DSD Data    | 50MHz > MCLK > 192 x fs , fs = 2.8224MHz/64 |
| Serial Mode | 50MHz > MCLK > 192 x fs                     |
| SPDIF Data  | 50MHz > MCLK > 386 x fs                     |

#### **Data Clock**

This must be 64 x fs for SERIAL / DSD modes, and is not required for SPDIF mode.

#### **Digital Filters**


There are numerous applications for a stereo DAC so for added flexibility; two digital filter settings are possible, sharp roll-off and a slow roll-off for PCM mode. For DSD mode, there is 1 available filter with cutoff at 50kHz.

#### **Serial Control Interface**

The registers inside the chip are programmed via an I<sup>2</sup>C interface. The diagram below shows the timing for this interface. The chip address can be set to 2 different settings via the "ADDR" pin. The table below summarizes this.

| ADDR | CHIP ADDRESS |
|------|--------------|
| 0    | 0x90         |
| 1    | 0x92         |

Table 7



#### Notes:

- 1. The "ADDR" pin is used to create the CHIP ADDRESS. (0x90, 0x92)
- The first byte after the chip address is the "ADDRESS" this is the register address.
- 3. The second byte after the CHIP ADDRESSis the "DATA" this is the data to be programmed into the register at the previous "ADDRESS".
- 4. Compatible with I<sup>2</sup>C-bus specification version 2.1 Standard-mode/Fast-mode.



### Register Settings:

Register #0: Volume of DAC0

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #1: Volume of DAC1

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #2: Volume of DAC2

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #3: Volume of DAC3

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #4: Volume of DAC4

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #5: Volume of DAC5

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #6: Volume of DAC6

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #7: Volume of DAC7

(default = 8'd0)

Volume in dBs = -REG\_VALUE/2

Register #8: Automute\_lev

(default = 1'b0,7'd104)

[7]: SPDIF\_ENABLE.

1'b0 = Use either I2S or DSD input

1'b1 = Use SPDIF input

[6:0]: Auto-mute trigger point in dB = -REG\_VALUE

Register #9: Automute\_time

(default = 8'd4)

Larger REG\_VALUE = less time. Smaller REG\_VAULE = longer time.

Time in Seconds = 2096896/(REG\_VALUE x DATA\_CLK).



#### Register #10: Mode Control 1

(default = 8'b00000110)

Default is 24-bit, 12S, NO-DEEMP, UNMUTE. [7:6]: 24-/20-/16-Bit for Serial Data Modes.

2'b00 = 24-Bit

2'b01 = 20-Bit

2'b10 = 16-Bit

2'b11 = 24-Bit

[5:4]: LJ/I<sup>2</sup>S/RJ Serial Data Modes.

 $2'b00 = I^2S$ 

2'b01 = LJ

2'b10 = RJ

 $2'b11 = I^2S$ 

[3]: RESERVED

[2]: JITTER\_REDUCTION\_ENABLE.

1'b0 = Bypass and stop JITTER REDUCTION.

1'b1 = Use JITTER\_REDUCTION.

[1]: BYPASS\_DEEMPHASIS FILTER

1'b0 = Use De-emphasize Filter

1'b1 = Bypass De-emphasis Filter

[0]: MUTE DACS

1'b0 = Unmute All DACs

1'b1 = Mute All DACs

### Register #11: Mode Control 2

(default = 8'b00000101)

[7:5]: RESERVED.

[4:2]: DPLL BANDWIDTH

3'b000 => No Bandwidth

3'b001 => Lowest Bandwidth

3'b010 => Low Bandwidth

3'b011 => Med-Low Bandwidth

3'b100 => Medium Bandwidth

3'b101 => Med-High Bandwidth

3'b110 => High Bandwidth

3'b111 => Highest Bandwidth

[1:0]: DE-EMPHASIS DELECT

2'b00 = 32kHz

2'b01 = 44.1kHz

2'b10 = 48kHz

2'b11 = RESERVED

Register #12: Mode Control 3

(default = 8'b00000000)

[7:0]: RESERVED

Register #13: RESERVED

(default = 8'b00000000)

[7:0]: RESERVED



Register #14: FIR Rolloff

(default = 8'b00000001)

[7:1]: RESERVED

[0]: FIR ROLLOFF SPEED

1'b0 = Slow Rolloff

1'b1 = Fast Rolloff

Register #15: Mode Control 4

(default = 8'b0000000)

[7:0]: RESERVED

Register #16: VOLUME\_CONFIG

(default = 8'b01111000)

[7]: CHANNEL MAPPING

1'b0 = 8 Channels

1'b1 = 2 Channels

[6:4]: RESERVED

[3]: AUTOMUTE LOOPBACK

1'b0 => Auto-mute condition will not reduce volume to -infinity

1'b1 => Auto-mute condition will reduce volume to -infinity

[2:0]: VOL\_RAMP\_RATE (Time =  $8192/(2^{vrr} x fs)$ 

3'b000 => Time = 8192/(fs)

3'b001 => Time = 4096/(fs)

3'b010 => Time = 2048/(fs)

3'b011 => Time = 1024/(fs)

3'b100 => Time = 512/(fs)

3'b101 => Time = 256/(fs)

3'b110 => Time = 128/(fs)

3'b111 => Time = 64/(fs)

Register #17: Mode Control 4

(default = 8'b00001110)

[7:4]: Reserved

[3:2]: Input select

2'b00 =>serial

2'b01 =>DSD

2'b10 => auto detect

2'b11 => auto detect (default)

[1]: dpll\_bw\_128x

1'b1 => Multiply the DPLL BANDWIDTH setting by 128.

1'b0 => Use the DPLL BANDWIDTH setting.

[0]: spfi\_auto\_deemph

1'b1: Automatically enable the de-emphasis filters depending on the channel status bits

1'b0: Do not automatically enable the de-emphasis filters depending on the channel status bits



#### Register #19: Programmable Filter Address

8 bit, Read-Write Register, Default = 0x00

| Bits     | [7]              | [6:0]           |  |  |   |  |  |
|----------|------------------|-----------------|--|--|---|--|--|
| Mnemonic | prog_coeff_stage | prog_coeff_addr |  |  |   |  |  |
| Default  | 0                | 0 0 0 0 0 0     |  |  | 0 |  |  |

| Bit   | Mnemonic         | Description                                                      |
|-------|------------------|------------------------------------------------------------------|
|       |                  | Selects which stage of the filter to write.                      |
| [7]   | prog_coeff_stage | 1'b0 = Stage 1 of the oversampling filter (128 coefficients).    |
|       |                  | 1'b1 = Stage 2 of the oversampling filter (16 coefficients)      |
| [6,0] | prog coeff oddr  | Selects the coefficient address when writing custom coefficients |
| [6:0] | prog_coeff_addr  | for the oversampling filter.                                     |

### Register #22-20: Programmable Filter Coefficient

8 bit, Read-Write Register, Default = 0x000000

| ,        | ,          |  |  |  |
|----------|------------|--|--|--|
| Bits     | [23:0]     |  |  |  |
| Mnemonic | prog_coeff |  |  |  |
| Default  | 24'd0      |  |  |  |

| Bit    | Mnemonic   | Description                                                                    |
|--------|------------|--------------------------------------------------------------------------------|
| [23:0] | prog_coeff | A 24-bit filter coefficient that will be written to address 'prog_coeff_addr'. |

### Register #23: Programmable Filter Control

8 bit, Read-Write Register, Default = 0x00

| Bits     | [7:3]      |  |   |      |   | [2]               | [1]           | [0]           |
|----------|------------|--|---|------|---|-------------------|---------------|---------------|
| Mnemonic | reserved * |  |   | ed * |   | even_stage2_coeff | prog_coeff_we | prog_coeff_en |
| Default  | 0 0 0 0 0  |  | 0 | 0    | 0 | 0                 |               |               |

| Bit   | Mnemonic          | Description                                                                                                                                                                                                                         |
|-------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:3] | reserved *        |                                                                                                                                                                                                                                     |
| [2]   | even_stage2_coeff | Sets the type of symmetry of the stage 2 programmable filter.  1'b0 = Uses a sine symmetric filter (27 coefficients).  1'b1 = Uses a cosine symmetric filter (28 coefficients).                                                     |
| [1]   | prog_coeff_we     | 1'b0 = Disable writing to the custom filter coefficients.  1'b1 = Enable writing to the custom filter coefficients.  Note: When set to 1'b1 the custom filter will be bypassed regardless of the state of register 21[0].           |
| [0]   | prog_coeff_en     | 1'b0 = Use one of the built-in oversampling filters.  1'b1 = Use the custom oversampling filter.  Note: The custom filter is not programmed to anything on reset, valid coefficients must be written to the filter before enabling. |

<sup>\*</sup> All Reserved Bits in Register #23 must be set to the indicated logic level to ensure correct device operation.

**Notes:** even\_stage2\_coeff sets the type of symmetry used by the second stage filter. The actual RAM is 16 coefficients, but only the first 14 coefficients are used when applying the oversampling filter. The first 14 coefficients are mirrored using either sine or cosine symmetry, resulting in a filter length of either 27 or 28 taps. This means that the second stage RAM should only contain half of the impulse response of the second stage filter, and the impulse peak value will be contained in the 14<sup>th</sup> coefficient. Also note that, due to the symmetry of the filter, only linear phase filters may be used in the second stage



### Register #27-24: Master Trim (default = 32'h7FFFFFFF)

This is a 32 bit value that sets the 0dB level for all volume controls. This is a signed number, so it should never exceed 32'h7fffffff (which is 2<sup>31</sup> - 1). Register 27contains the MSBs, Register 24 contains the LSBs.

#### Register #64: DAC Status

[7:5]: Chip\_id

Returns 3'd4 (SABRE9006A)

[3:2]: Reserved

[1]: Automute\_status

1'b1 => Auto-mute condition is active.

1'b0 => Auto-mute condition is inactive.

[0]: Lock\_status

1'b1 => The Jitter Eliminator is locked to an incoming signal.

1'b0 => The Jitter Eliminator is not locked to an incoming signal.

#### Register #69-66: DPLL\_NUM

32-bit, Read-Only Register. Register 69 contains the MSBs, Register 66 contains the LSBs

This is a read-only 32-bit value that can be used to calculate the sample rate. The sample rate ( $F_{in}$ ) can be calculated using:  $F_{in} = (DPLL_NUM \times F_{MCLK}) / 2^{32}$ .

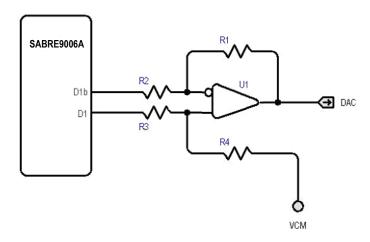
#### Register #93-70

Register 93 contains the MSBs, Register 70 contains the LSBs. Format is [191:0]

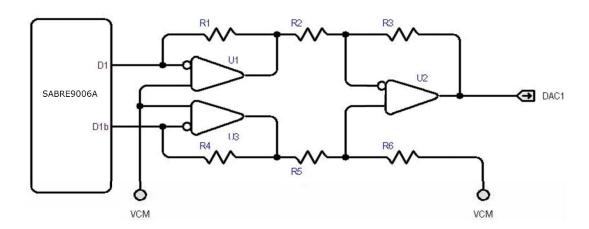
These registers allow read back of the SPDIF channel status. The status definition is different for the consumer configuration and professional configuration. Please refer to the following two tables for details.



| SPDIF CHANNEL STATUS - Consumer configuration |                                                                                                                                                                                                                                       |               |                                                                             |          |                                                                                                                       |                                                                                                                                    |                   |                                                 |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|--|--|
| Address<br>Offset                             | [7]                                                                                                                                                                                                                                   | [6]           | [5]                                                                         | [4]      | [3]                                                                                                                   | [2]                                                                                                                                | [1]               | [0]                                             |  |  |
| 0                                             | Reserved                                                                                                                                                                                                                              | Reserved      | 0:2Channel<br>1:4Channel                                                    | Reserved | 0:No-Preemph<br>1:Preemph                                                                                             | 0:CopyRight<br>1:Non-CopyRight                                                                                                     | 0:Audio<br>1:Data | 0:Consumer<br>1:Professional                    |  |  |
| 1                                             | Category Code 0x00: General 0x01:Laser-Optical 0x02:D/D Converter 0x03:Magnetic 0x04:Digital Broadcast 0x05:Musical Instrument 0x06:Present A/D Converter 0x08:SolidState Memory 0x16:Future A/D Converter 0x19:DVD 0x40:Experimental |               |                                                                             |          |                                                                                                                       |                                                                                                                                    |                   |                                                 |  |  |
| 2                                             | Channel Nu<br>0x0:Don't C<br>0x1:A (Left)<br>0x2:B (Righ<br>0x3:C<br>0x4:D<br>0x5:E<br>0x6:F<br>0x7:G<br>0x8:H<br>0x9:I<br>0xA:J<br>0xB:K<br>0xC:L<br>0xD:M<br>0xE:N<br>0xF:O                                                         | umber<br>Care |                                                                             |          | Source Number 0x0:Don't Care 0x1:1 0x2:2 0x3:3 0x4:4 0x5:5 0x6:6 0x7:G 0x8:8 0x9:9 0xA:10 0xB:11 0xC:12 0xD:13 0xE:14 |                                                                                                                                    |                   |                                                 |  |  |
| 3                                             | Reserved                                                                                                                                                                                                                              | Reserved      | Clock Accuracy<br>0x0:Level 2 +-10<br>0x1:Level 1 +-50<br>0x2:Level 3 varia | ppm      | 0xF:15 Sample Frequer 0x0:44.1k 0x2:48k 0x3:32k 0x4:22.05k 0x6:24k 0x8:88.2k 0xA:96k 0xC:176.4k 0xE:192k              | ncy                                                                                                                                |                   |                                                 |  |  |
| 5-23                                          | Reserved                                                                                                                                                                                                                              | Reserved      | Reserved                                                                    | Reserved | Word Length:<br>If Word Field Siz                                                                                     | te=0   f Word Field S<br>ed  000=Not indicate<br> 100 = 19bits<br> 010 = 18bits<br> 110 = 17bits<br> 001 = 16bits<br> 101 = 20bits |                   | Word Field Size<br>0:Max 20bits<br>1:Max 24bits |  |  |




|                   | SPDIF                                                                                                                                                                                                                                                                                 | CHA                                                                                                                                            | NNEL STATU                                                                                | JS - Pr                                                                                                     | ofessi                                                                                                                                                                                                                                                                                                                                              | onal conf           | iguration                            |                              |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------|------------------------------|--|
| Address<br>Offset | [7]                                                                                                                                                                                                                                                                                   | [6]                                                                                                                                            | [5]                                                                                       | [4]                                                                                                         | [3]                                                                                                                                                                                                                                                                                                                                                 | [2]                 | [1]                                  | [0]                          |  |
| 0                 | sampling frequency: 00: not indicated (or see byte 4) 10: 48 kHz 01: 44.1 kHz 11: 32 kHz                                                                                                                                                                                              |                                                                                                                                                |                                                                                           | emphasis:<br>000: Emphasis not indicated<br>001: No emphasis<br>011: CD-type emphasis<br>111: J-17 emphasis |                                                                                                                                                                                                                                                                                                                                                     |                     | 0:Audio<br>1:Non-audio               | 0:Consumer<br>1:Professional |  |
| 1                 | User bit management:<br>0000: no indication<br>1000: 192-bit block as cha<br>0100: As defined in AES1<br>1100: user-defined<br>0010: As in IEC60958-3 (                                                                                                                               | 8                                                                                                                                              |                                                                                           |                                                                                                             | Channel mode: 0000: not indicated (default to 2 channel) 1000: 2 channel 0100: 1 channel (monophonic) 1100: primary / secondary 0010: stereo 1010: reserved for user applications 0110: reserved for user applications 1110: SCDSR (see byte 3 for ID) 0001: SCDSR (stereo left) 1001: SCDSR (stereo right) 1111: Multi-channel (see byte 3 for ID) |                     |                                      |                              |  |
| 2                 | alignment level:<br>00: not indicated<br>10: –20dB FS<br>01: –18.06dB FS                                                                                                                                                                                                              | Source Word Lengt<br>If max =20-bits<br>000=Not indicated<br>100 = 23-bits<br>010 = 22-bits<br>110 = 21-bits<br>001 = 20-bits<br>101 = 24-bits | h:<br> If max=2-1000=Not<br> 100 = 19<br> 010 = 18<br> 110 = 17<br> 001 = 16<br> 101 = 20 | 4-bits indicated -bits -bits -bits -bits -bits -bits                                                        | Use of aux sample word: 000: not defined, audio max 20-bits 100: used for main audio, max 24-bits 010: used for coord, audio max 20-bits 110: reserved bits                                                                                                                                                                                         |                     |                                      |                              |  |
| 3                 | Channel identification: if bit 7 = 0 then channel not if bit 7 = 1 then bits 4-6 do                                                                                                                                                                                                   |                                                                                                                                                | s 1 plus the numeric v                                                                    | alue of bits                                                                                                | 0-6 (bit re                                                                                                                                                                                                                                                                                                                                         |                     | nnel number withir                   | n that mode                  |  |
| 4                 | if bit 7 = 1 then bits 4–6 define a multi-channel mode and bits 0–3 (bit reversed) give the channel number within that mode.  Is scaling:  O: no scaling  1: apply factor of  1 / 1.001 to value  O1: 001: 22.05kHz  1001: 22.05kHz  1011: 176.4kHz  0011: 192kHz  1111: User defined |                                                                                                                                                |                                                                                           |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                     |                     | udio reference signal): e 2 (±10ppm) |                              |  |
| 5                 | Reserved                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                           |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                     |                     | •                                    |                              |  |
| 6-9               | Alphanumerical channelo                                                                                                                                                                                                                                                               | rigin: fo                                                                                                                                      | ur-character label usir                                                                   | ng 7-bit AS                                                                                                 | Cllwith no                                                                                                                                                                                                                                                                                                                                          | parity. Bits 55, 63 | 3, 71, 79 = 0.                       |                              |  |
| 10-13             | Alphanumerical channeld                                                                                                                                                                                                                                                               | estinatio                                                                                                                                      | on: four-character labe                                                                   | el using 7-b                                                                                                | it ASCIIwit                                                                                                                                                                                                                                                                                                                                         | h no parity. Bits   | 87, 95, 103, 111 =                   | 0.                           |  |
| 14-17             | Local sample addresscod                                                                                                                                                                                                                                                               | e: 32-bi                                                                                                                                       | t binary number repre                                                                     | sentingthe                                                                                                  | sample co                                                                                                                                                                                                                                                                                                                                           | unt of the first sa | mpleof the channe                    | el status block.             |  |
| 18-21             | time of day code: 32-bit b                                                                                                                                                                                                                                                            | nary nu                                                                                                                                        | mber representingtim                                                                      | e of source                                                                                                 | encoding                                                                                                                                                                                                                                                                                                                                            | in samplessince     | midnight                             |                              |  |
| 22                | reliability flags<br>0: data in byte range is re<br>1: data in byte range is ur                                                                                                                                                                                                       |                                                                                                                                                |                                                                                           |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                     |                     |                                      |                              |  |
| 23                | CRCC<br>00000000: not implement<br>X: error check code for bit                                                                                                                                                                                                                        |                                                                                                                                                | 3                                                                                         |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                     |                     |                                      |                              |  |




### **APPLICATION DIAGRAMS**

# Differential Voltage Mode



### **Differential Current Mode**





#### ABSOLUTE MAXIMUM RATINGS

| PARAMETER                          | RATING                                              |
|------------------------------------|-----------------------------------------------------|
| Storage temperature                | –65°C to +105°C                                     |
| Voltage range for 5V tolerant pins | -0.5V to +5.5V                                      |
| Voltage range for all other pins   | -0.5V to (DVCC_T+0.5V) or<br>-0.5V to (DVCC_B+0.5V) |

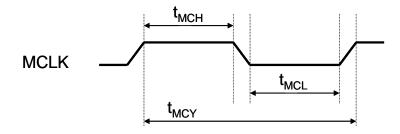
**WARNING:** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

WARNING: Electrostatic Discharge (ESD) can damage this device. Proper procedures must be followed to avoid ESD when handling this device.

### RECOMMENDED OPERATING CONDITIONS

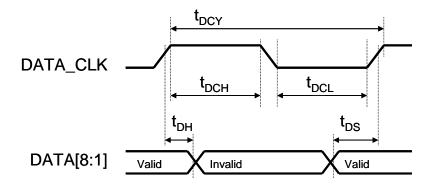
| PARAMETER                    | SYMBOL         | CONDITIONS                       |
|------------------------------|----------------|----------------------------------|
| Operating temperature        | TA             | 0°C to 70°C                      |
| Ojmax                        | TjMax          | 125°C                            |
| θја                          | Tja            | 60°C/W                           |
| θјс                          | Tjc            | 17°C/W                           |
| Digital core supply voltage  | VDD            | 1.2V ± 5%, 23mA nominal (Note 1) |
| Digital power supply voltage | DVCC_T, DVCC_B | 3.3V ± 5%, 9mA nominal (Note 1)  |
| Analog power supply voltage  | AVCC_L, AVCC_R | 3.3V ± 5%, 16mA nominal (Note 1) |

#### **Note**


### DC ELECTRICAL CHARACTERISTICS

| SYMBOL            | PARAMETER                 | MIN  | MAX              | UNIT | COMMENTS                                                    |
|-------------------|---------------------------|------|------------------|------|-------------------------------------------------------------|
| V <sub>IH</sub>   | High-level input voltage  | 2.0  | DVCC_T or DVCC_B | V    | All inputs TTL levels except CLK and 5V tolerant input pins |
|                   |                           | 2.0  | 5.5              | V    | All 5V tolerant inputs                                      |
| VIL               | Low-level input voltage   | -0.3 | 0.8              | V    | All input TTL levels except CLK                             |
| Vclkh             | CLK high-level input      | 2.0  | DVCC_B+0.25      | V    | TTI level input                                             |
| V <sub>CLKL</sub> | CLK low-level input       | -0.3 | 0.8              | V    | TTL level input                                             |
| Vон               | High-level output voltage | 3.0  |                  | V    | I <sub>OH</sub> = 1mA                                       |
| Vol               | Low-level-output voltage  |      | 0.45             | V    | I <sub>OL</sub> =4mA                                        |
| ILI               | Input leakage current     |      | ±15              | Δ.   |                                                             |
| I <sub>LO</sub>   | Output leakage current    |      | ±15              | μΑ   |                                                             |
| Cin               | Input capacitance         |      | 10               | ,r   | fc = 1MHz                                                   |
| Со                | Input/output capacitance  |      | 12               | pF   |                                                             |
| C <sub>CLK</sub>  | CLK capacitance           |      | 20               | pF   | fc = 1MHz                                                   |

<sup>1)</sup> fs =48kHz, MCLK=40MHz, I<sup>2</sup>S input, output unloaded




# **MCLK Timing**



| Parameter             | Symbol           | Min   | Max   | Unit |
|-----------------------|------------------|-------|-------|------|
| MCLK pulse width high | T <sub>MCH</sub> | 6     |       | ns   |
| MCLK pulse width low  | T <sub>MCL</sub> | 6     |       | ns   |
| MCLK cycle time       | T <sub>MCY</sub> | 20    |       | ns   |
| MCLK duty cycle       |                  | 45:55 | 55:45 |      |

# **Audio Interface Timing**



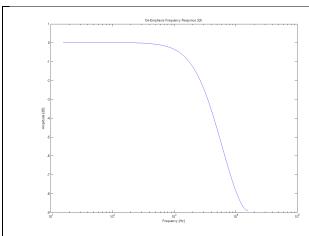
| Parameter                                | Symbol           | Min   | Max   | Unit |
|------------------------------------------|------------------|-------|-------|------|
| DATA_CLK pulse width high                | tосн             | 20    |       | ns   |
| DATA_CLK pulse width low                 | tDCL             | 20    |       | ns   |
| DATA_CLK cycle time                      | t <sub>DCY</sub> | 60    |       | ns   |
| DATA_CLK duty cycle                      |                  | 45:55 | 55:45 |      |
| DATA set-up time to DATA_CLK rising edge | t <sub>DS</sub>  | 2     |       | ns   |
| DATA hold time to DATA_CLK rising edge   | tон              | 2     |       | ns   |

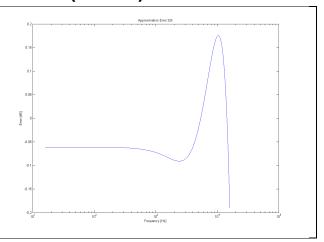


### **ANALOG PERFORMANCE**

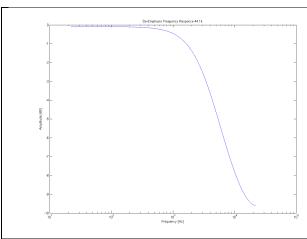
#### **Test Conditions (unless otherwise stated)**

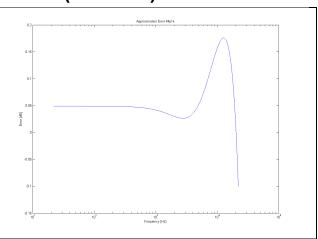
- 1. T<sub>A</sub>=25°C, AVCC=3.3V, DVCC=1.2V, fs =44.1kHz, MCLK=27MHz and 24-bit data
- SNR/DNR: A-weighted over 20Hz-20kHz in averaging mode
- 3. THD+N: un-weighted over 20Hz-20kHz bandwidth


| PARAMETER                                             | CONDITIONS                                           | MIN     | TYP                       | MAX     | UNIT   |
|-------------------------------------------------------|------------------------------------------------------|---------|---------------------------|---------|--------|
| Resolution                                            |                                                      |         | 24                        |         | Bits   |
| MCLK (Note: fs=DATACLK/64 in DSD mode)                | Serial/DSD in                                        | 192     |                           | 4096    | fs     |
|                                                       | SPDIF in                                             | 386     |                           | 4096    | fs     |
| DYNAMIC PERFORMANCE                                   |                                                      |         |                           |         |        |
| DNR                                                   | -60dBFS                                              |         | 120                       |         | dB-A   |
| THD+N                                                 | 0dBFS                                                |         | -102                      |         | dB     |
| PCM sampling frequency (fs)                           |                                                      |         |                           | 200     | kHz    |
| ANALOG OUTPUT                                         |                                                      |         |                           |         |        |
| Differential (+ or –) voltage output range            | Full-scale out                                       |         | 3.05<br>(0.924 x<br>AVCC) |         | Vp-p   |
| Differential (+ or –) voltage output offset           | Bipolar zero out                                     |         | 1.65<br>(AVCC/2)          |         | V      |
| Differential (+ or –) current output range (Note *1)  | Full-scale out                                       |         | 3.656                     |         | mAp-p  |
| Differential (+ or –) current output offset (Note *1) | Bipolar zero out to virtual ground at voltage Vg (V) |         | 2.112 – 1000 x<br>Vg/ 834 |         | mA     |
| Digital Filter Performance                            |                                                      |         |                           |         |        |
| De-emphasis error                                     |                                                      |         |                           | ±0.2    | dB     |
| Mute Attenuation                                      |                                                      |         | 127                       |         | dB     |
| PCM Filter Characteristics (Sharp Roll Off)           |                                                      |         |                           |         |        |
| Pass band                                             | ±0.0dB                                               |         |                           | 0.454fs | Hz     |
| Pass Dallu                                            | -3dB                                                 |         |                           | 0.49fs  | Hz     |
| Stop band                                             | <-100dB                                              | 0.546fs |                           |         | Hz     |
| Group Delay                                           |                                                      |         | 35/fs                     |         | S      |
| PCM Filter Characteristics (Slow Roll Off)            |                                                      |         |                           |         |        |
| Pass band                                             | ±0.05dB                                              |         |                           | 0.308fs | Hz     |
|                                                       | -3dB                                                 |         |                           | 0.454fs | Hz     |
| Stop band                                             | <-100dB                                              | 0.814fs |                           |         | Hz     |
| Group Delay                                           |                                                      |         | 6.25/fs                   |         | s      |
| DSD Filter Characteristics                            |                                                      |         |                           |         |        |
| Pass band                                             | -3dB                                                 |         | 1.1338fs                  |         | Hz     |
| Stop band attenuation                                 |                                                      |         | 18                        |         | dB/oct |

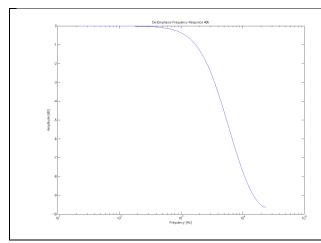

#### **Note**

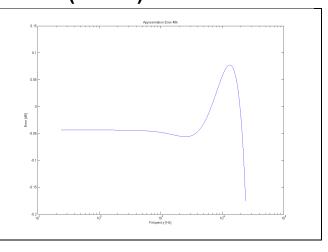
<sup>\*1.</sup> Differential (+ or –) current output is equivalent to a differential (+ or –) voltage source in series with an 834Ω±11% resistor. The differential (+ or –) voltage source has a peak-to-peak output range of (0.924 x AVCC) = 3.05V and an output offset of (AVCC/2) = 1.65V.





# PCM DE-EMPHASIS FILTER RESPONSE (32kHz)

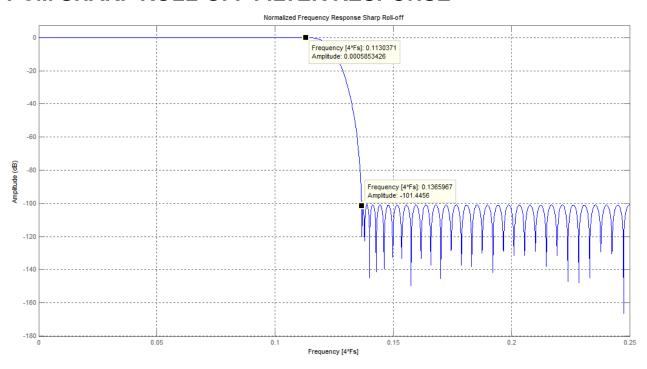




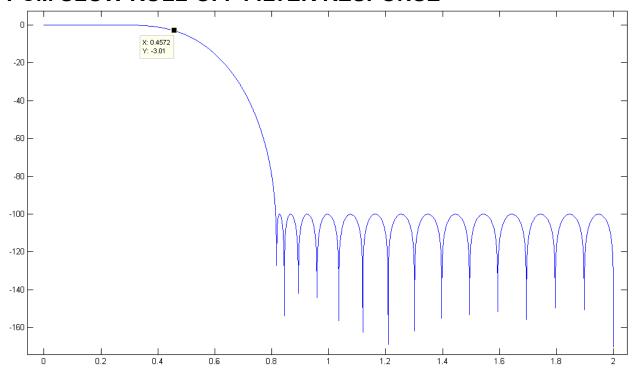


# PCM DE-EMPHASIS FILTER RESPONSE (44.1kHz)





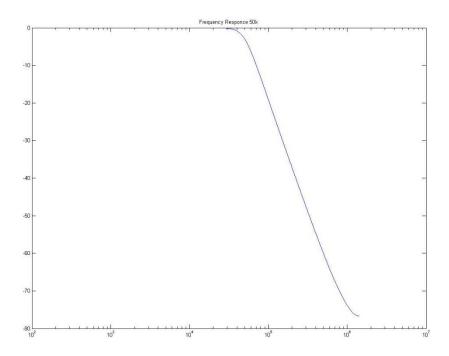

# PCM DE-EMPHASIS FILTER RESPONSE (48kHz)





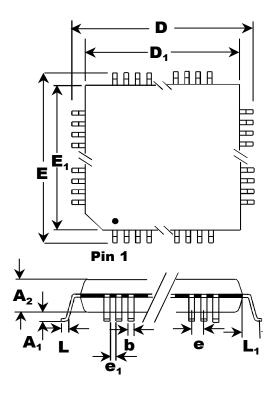



### PCM SHARP ROLL-OFF FILTER RESPONSE




### PCM SLOW ROLL-OFF FILTER RESPONSE






### **DSD FILTER RESPONSE**





# 48-Pin LQFP Mechanical Dimensions

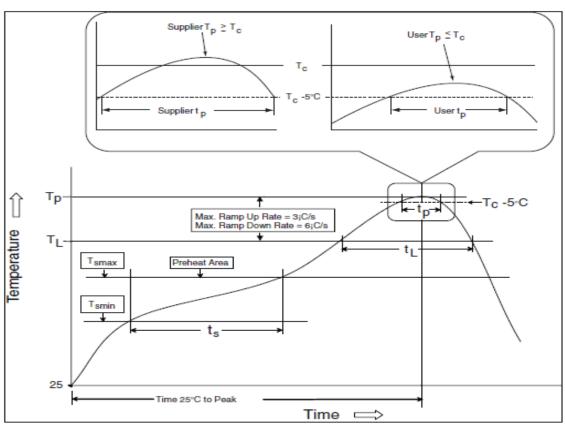


|                |                           | MILLIMETERS |          |            |
|----------------|---------------------------|-------------|----------|------------|
| Symbol         | Description               | Min.        | Nom.     | Max.       |
| D              | Lead-to Lead, X-axis      | 8.75        | 9.00     | 9.25       |
| D1             | Package's Outside, X-axis | 6.90        | 7.00     | 7.10       |
| E              | Lead-to Lead, Y-axis      | 8.75        | 9.00     | 9.25       |
| E1             | Package's Outside, Y-axis | 6.90        | 7.00     | 7.10       |
| <b>A</b> 1     | Board Standoff            | 0.05        | 0.10     | 0.15       |
| A2             | Package Thickness         | 1.35        | 1.40     | 1.45       |
| b              | Lead Width                | 0.17        | 0.20     | 0.27       |
| е              | Lead Pitch                |             | 0.50 BSC |            |
| e <sub>1</sub> | Lead Gap                  | 0.23        | 0.30     | 0.33       |
| L              | Foot Length               | 0.45        | 0.60     | 0.75       |
| L1             | Lead Length               |             | 1.00     |            |
|                | Co-planarity              |             |          | 0.102      |
|                | Foot Angle                | 00          |          | <b>7</b> º |
|                | No. of Leads in X-axis    |             | 12       |            |
|                | No. of Leads in Y-axis    |             | 12       |            |
|                | No. of Leads Total        |             | 48       |            |
|                | Package Type              |             | LQFP     |            |



#### **Reflow Process Considerations**

For lead-free soldering, the characterization and optimization of the reflow process is the most important factor you need to consider.


The lead-free alloy solder has a melting point of 217°C. This alloy requires a minimum reflow temperature of 235°C to ensure good wetting. The maximum reflow temperature is in the 245°C to 260°C range, depending on the package size (*Table RPC*-2). This narrows the process window for lead-free soldering to 10°C to 20°C.

The increase in peak reflow temperature in combination with the narrow process window makes the development of an optimal reflow profile a critical factor for ensuring a successful lead-free assembly process. The major factors contributing to the development of an optimal thermal profile are the size and weight of the assembly, the density of the components, the mix of large and small components, and the paste chemistry being used.

Reflow profiling needs to be performed by attaching calibrated thermocouples well adhered to the device as well as other critical locations on the board to ensure that all components are heated to temperatures above the minimum reflow temperatures and that smaller components do not exceed the maximum temperature limits (*Table RPC-2*).

To ensure that all packages can be successfully and reliably assembled, the reflow profiles studied and recommended by ESS are based on the JEDEC/IPC standard J-STD-020 revision D.1.

Figure RPC-1. IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)



Note: Reflow is allowed 3 times. Caution must be taken to ensure time between re-flow runs does not exceed the allowed time by the moisture sensitivity label. If the time elapsed between the re-flows exceeds the moisture sensitivity time bake the board according to the moisture sensitivity label instructions.

#### Manual Soldering:

Allowed with maximum temperature of 350 degrees Centigrade for no longer than 3 seconds.



#### Table RPC-1 Classification reflow profile

| Profile Feature                                                                                    | Pb-Free Assembly                                                                                                                                   |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Preheat/Soak                                                                                       |                                                                                                                                                    |  |  |
| Temperature Min (Tsmin)                                                                            | 150°C                                                                                                                                              |  |  |
| Temperature Max (Tsmax)                                                                            | 200°C                                                                                                                                              |  |  |
| Time (ts) from (Tsmin to Tsmax)                                                                    | 60-120 seconds                                                                                                                                     |  |  |
| Ramp-up rate (TL to Tp)                                                                            | 3°C/second max.                                                                                                                                    |  |  |
| Liquidous temperature (TL)                                                                         | 217°C                                                                                                                                              |  |  |
| Time (tL) maintained above TL                                                                      | 60-150 seconds                                                                                                                                     |  |  |
| Peak package body temperature (Tp)                                                                 | For users Tp must not exceed the classification temp in Table RPC-2. For suppliers Tp must equal or exceed the Classification temp in Table RPC-2. |  |  |
| Time (tp)* within 5°C of thespecifiedclassification temperature(Tc), see Figure RPC-1              | 30* seconds                                                                                                                                        |  |  |
| Ramp-down rate (Tp to TL)                                                                          | °C/second max.                                                                                                                                     |  |  |
| Time 25 °C to peak temperature                                                                     | 8 minutes max.                                                                                                                                     |  |  |
| * Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum. |                                                                                                                                                    |  |  |

- Note 1: All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow (e.g., live-bug). If parts are reflowed in other than the normal live-bug assembly reflow orientation (i.e., dead-bug), Tp shall be within ±2°C of the live-bug Tp and still meet the Tc requirements, otherwise, the profile shall be adjusted to achieve the latter. To accurately measure actual peak package body temperatures refer to JEP140 for recommended thermocouple use.
- Note 2: Reflow profiles in this document are for classification/preconditioning and are not meant to specify board assembly profiles. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed the parameters in Table RPC-1. For example, if Tc is 260°C and time tp is 30 seconds, this means the following for the supplier and the user.

  For a supplier: The peak temperature must be at least 260°C. The time above 255°C must be at least 30 seconds.
  - For a user: The peak temperature must not exceed 260°C. The time above 255°C must not exceed 30 seconds.
- Note 3: All components in the test load shall meet the classification profile requirements.

#### Table RPC-2 Pb-Free Process - Classification Temperatures (Tc)

| Package Thickness | Volume mm3, <350 | Volume mm3, 350 to 2000 | Volume mm3, >2000 |
|-------------------|------------------|-------------------------|-------------------|
| <1.6 mm           | 260°C            | 260°C                   | 260°C             |
| 1.6 mm - 2.5 mm   | 260°C            | 250°C                   | 245°C             |
| >2.5 mm           | 250°C            | 245°C                   | 245°C             |

- Note 1: At the discretion of the device manufacturer, but not the board assembler/user, the maximum peak package body temperature (Tp) can exceed the values specified in Table RPC-2. The use of a higher Tp does not change the classification temperature (Tc).
- Note 2: Package volume excludes external terminals (e.g., balls, bumps, lands, leads) and/or non-integral heat sinks.
- Note 3: The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD packages may still exist.



#### ORDERING INFORMATION

| Part Number | Description                       | Package     |
|-------------|-----------------------------------|-------------|
| SABRE9006AS | Sabre Premier 8-channel Audio DAC | 48-pin LQFP |

The letter S at the end of the part number identifies the package type LQFP

# **Revision History**

| Revision | Date               | Notes                                                                                                                                |
|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 0.1      | May 20 2014        | Initial version                                                                                                                      |
| 0.2      | July 22, 2014      | Updated ESS' FAX number.Added medical usage legal disclaimer. Page 17, corrected polarity of U2 on differential current mode circuit |
| 0.3      | August 20, 2014    | Pins 13 & 25 changed from VDD to NC. Pins 21 & 47 remain as VDD pins                                                                 |
| 0.4      | September 16, 2014 | Updated DAC output resistance from 781.25Ω to 834Ω±11%                                                                               |
| 0.5      | January 22, 2015   | Updated formatting and corrected typos.                                                                                              |
| 0.6      | April 14, 2015     | Corrected formulae in Analog Performance Table. Updated ESS' address and phone number.                                               |
| 0.61     | April 30, 2015     | Updated the product overview on cover page.                                                                                          |
| 0.7      | May 26, 2015       | Corrected Master Trim register addresses. Added programmable FIR function.                                                           |
| 0.71     | May 27, 2015       | Added note that pins 13 & 25 can be connected to VDD or GND if desired.                                                              |
| 0.8      | February 18, 2016  | Corrected typical differential output current range from 3.903 mAp-p to 3.656 mAp-p                                                  |
| 0.9      | November 28, 2017  | Remove ESS logo from pin diagram                                                                                                     |
| 1.0      | January 15, 2019   | Added Tja and Tjc values for recommended operation conditions.                                                                       |
| 1.1      | September 12, 2019 | Changed Hyperstream™ to Hyperstream®                                                                                                 |
| 1.2      | May 4, 2020        | Update register 16: volume config                                                                                                    |
| 1.3      | March 31, 2021     | Added Sabre® technology trademark                                                                                                    |

ESS IC's are not intended, authorized, or warranted for use as components in military applications, medical devices or life support systems. ESS assumes no liability whatsoever and disclaims any expressed, implied or statutory warranty for use of ESS IC's in such unsuitable applications.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc. ESS Technology, Inc. makes no representations or warranties regarding the content of this document. All specifications are subject to change without prior notice. ESS Technology, Inc. assumes no responsibility for any errors contained herein. U.S. patents pending.

ESS IC's are not intended, authorized, or warranted for use as components in military applications, medical devices or life support systems. ESS assumes no liability whatsoever and disclaims any expressed, implied or statutory warranty for use of ESS IC's in such unsuitable applications.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc. ESS Technology, Inc. makes no representations or warranties regarding the content of this document. All specifications are subject to change without prior notice. ESS Technology, Inc. assumes no responsibility for any errors contained herein. U.S. patents pending.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ESS Technology: 4868-9006AS-8