

GPX2-EVA-KIT

TDC-GPX2 Evaluation Kit SC-001264-UG User Guide

GPX2-EVA-Kit User Guide

Revision:5Release Date:202

5 2021-01-25

Content Guide

Content	Guide 2
1	Introduction 3
1.1	Ordering Information 3
2	Quick Start Guide 4
2.1	Install the Software 4
2.2	Install the Hardware:5
2.3	Software 5
3	Hardware Description5
3.1	Introduction 5
3.2	Input Signals lines6
3.2.1	CMOS Inputs7
3.2.2	LVDS Inputs7

4	Software Description7
4.1	Main Window, REFCLK Page7
4.2	STOP Page9
4.3	Interface Page10
4.4	Avoiding Configuration Conflicts10
4.5	Register Content12
4.6	Graph Window13
4.7	Known Errors14
5	Schematics, Layers and BOM15
6	Copyrights & Disclaimer22
7	Document Status23
8	Revision Information23

1 Introduction

The GPX2-EVA-KIT evaluation system is designed as a platform for a quick and easy start of evaluation of the TDC-GPX2 time-to-digital converter. The kit offers a graphical user interface for user-friendly configuration and extensive testing of the TDC-GPX2. For a proper use of the evaluation system, we strongly recommended to refer to the latest TDC-GPX2 datasheet.

Features are:

- PC supported system with USB communication interface
- Easy to use evaluation and measurement software
- Different power options, selectable by jumpers
- Three reference clock sources for alternate clock options
- Data collection to ASCII text files
- Visualization of measurement results

Figure	1:	Kit	Content

Pos.	Item	Comment
1	PICOPROG V3.0	Programmer and interface
2	GPX2-EVA BOARD	Based on TDC-GPX2, V1.0
3	High density DSUB15 cable	Connecting Evaluation board to programmer
4	USB cable	Connects PicoProg V3.0 to PC

1.1 Ordering Information

Ordering Code	Part Number	Description
GPX2-EVA-KIT	220310001	TDC-GPX2 Eval Kit for QFN40 version including
		PICOPROG and cables
GPX2-EVA-BOARD	220310003	TDC-GPX2 evaluation board for QFN64

2 Quick Start Guide

This section describes how to set up the GPX2-EVA-KIT, establish basic operation and make measurements quickly.

2.1 Install the Software

Please download the latest software for the kit from:

Link: https://downloads.sciosense.com/tdc-gpx2/

It is crucial to install the software before connecting the evaluation kit to your computer. A default driver loading of your OS may interfere with correct installation.

Figure 2: Installation steps

Step	Screen
Download the latest software installation package to the desired directory. Unzip the package to the desired directory. Open "setup.exe" from the unzipped directory. Follow the instructions on the screen.	 CD-GPX2-EVA Configurations Documentation Driver Software GPX2_v1_0_5 Installer bin GPX2_v1_0_5 Installer bin setup setup setup
When connecting the PicoProg to the USB port it will be listed first as "picoprog v2.0 un- programmed" device. This is true also for PicoProg V3.0.	picoprog v2.0 unprogram med
Starting the software will download a special firmware into the PICOPROG, picoprog_gpx2_v005.hex or higher, and the device will now be listed as "UNIPRO":	UNIPRO
St Open the START Menu and open the software from C:\Program files\\GPX2\GPX2 Frontpanel	7-Zip acam Accessories ams ams AG GPX2 Business Explorer Camtasia Studio 7 Cisco Back Search programs and files

2.2 Install the Hardware:

- Make sure software is installed correctly before proceeding with this step!
- Connect your computer with the PicoProg V3.0 using USB cable.
- Connect PicoProg V3.0 and the evaluation kit motherboard using the DB15 interfaces or directly.
- Connect the power supply. Make sure it is set to 6 V supply voltage.
- The green LED on the evaluation kit should be on.
- Connect your signal source.

2.3 Software

- Execute the GPX2 Frontpanel Software. The communication status should be green
- The software starts with an initial configuration, that can be opened the default configuration file config_default.cfg.
- Press "Power On Reset! "Write Config" "Init Reset"
- Press "Start Measurement"

The measurement should run and results should be displayed now.

3 Hardware Description

3.1 Introduction

An on-board FPGA [1] manages the communication to the TDC-GPX [2]. It writes the configuration into the chip via the SPI interface and can use the same to read data. In addition, the FPGA manages the readout from the serial LVDS outputs of the TDC-GPX2. The SPI signals are available via additional pads [3]. A jumper selects the supply voltage as 3.0 V, 3.3 V or 3.6 V [4]. A separate jumper allows measuring the current into the TDC-GPX2 [5].

Figure 3: GPX2-EVA-BOARD

Solder pads are prepared to apply an external oscillator. This may be used as a reference instead of the RefClk input. [6]

Further, solder pads are available to connect the signal lines. Here the user may solder cables directly, apply pin connectors, or in case of CMOS signals pads for SMB connectors are prepared.

Note: The FPGA manages the SPI communication and blocks the lines. Therefore, if you want to communicate directly with TDC-GPX2 via SPI [3] then remove 00hm resistors R75, R76 and R77 first [7].

3.2 Input Signals lines

The board is prepared to connect directly CMOS input signals or LVDS signals.

Figure 4: Input section

3.2.1 CMOS Inputs

On the board there is a 10 Ohm series resistor.

3.2.2 LVDS Inputs

On the board there are 100kOhm pull-up resistors to TVDD33. The resistors interconnecting P and N inputs are not assembled.

4 Software Description

4.1 Main Window, REFCLK Page

The software will start with the following main window:

Figure 5: GPX2 evaluation software main window

acam GPX2 Evaluation Software			-		-		• X
File Tools Help							
REFCLK STOP SPI/LVDS						am	
PIN_ENA_REFCLK	•	REFCLK_DIVIS 100000 Pls. use picos the reference Must fit with	IONS ps conds value o clock period STOP_DATA_B	10 M f ITWIE	Hz DTH.	Start Measur	ement
CMOS_INPUT Select LVDS		PIN_ENA_R	STIDX			Init Res Write Con Power On Communication	et nfig Reset Status: ======
	Results	Filter	Offset		Final Result	Mean 🛔 100	Std Dev
STOP1	009978	none 💌	0 ps	AO	39288 ps	57665 ps	6975,3 ps
STOP2	00994B	none 👻	0 ps	AO	39243 ps	57643 ps	6976,4 ps
STOP3	000000	none 👻	0 ps	AO	0 ps	0 ps	0,0 ps
STOP4	000000	none 👻	0 ps	AO	0 ps	0 ps	0,0 ps
DELTA STOP2 - STOP1 - STOP1	018673	none 👻	0 ps	AO	99955 ps	99978 ps	29,4 ps
DELTA OFF - STOP1 MATH	000000	none 💌	0 ps	AO	0 ps	0 ps	0,0 ps

The main menu offers the typical functions to load and save configurations, to run a measurement, to open the graph and register windows as well as a help.

The two figures on the right indicate the communication status. Both bar indicators should be green.

Figure 6: Menu selections

acam GPX2 Evaluation Software	acam GPX2 Evaluation Software acam GPX2 Evaluation Software
File Tools Help	File Tools Help
Load Config Strg+O Save Config Strg+S	Run Measurement Strg+R Help Contents F1 Dp REFCLK Online Help Online Help
Save Graph Data 🕨 only STOPs Strg+Shift+S	Graph Strg+G About F1
Close Strg+W STOPs + REFNOs	Registers Strg+P

As a first step we recommend to load the standard configuration config_default.cfg, then press "Power On Reset", "Write Config" and "Init Reset".

The first page, "REFCLK", allows the user to select the reference input as well as the definition of the LSB. REFCLK_DIVISIONS defines the LSB at the output interface as fraction of the reference

clock period. The most convenient way is applying an LSB of 1ps by configuring REFCLK_DIVISIONS to the picosecond value of the reference clock period.

In the middle section the user selects between CMOS and LVDS.

At the bottom, visible on all tabulators, is the numerical display of the measurement results STOP1 to STOP2. In addition, the software allows to calculate the difference between two stop results. The select box "Math" defines the formula:

Calculation Formula:

- On: [STOP1 STOP2]
- Off: [REFNO1 REFNO2] * REFCLK_DIVISIONS + [STOP1 STOP2]

Various software filters, sinc or median, can be applied.

4.2 STOP Page

This page is for the PIN and HIT enable selection as well as the high resolution and combined channel settings.

Figure 7: STOP page

acam GPX2 Evaluation Software		-	-		Report 1		
File Tools Help							
REFCLK STOP SPI/LVDS					_ 3	am	
		V HIT_ENA	STOP1	ŀ	Ł		
	2	HIT_ENA_	STOP2	ŀ	₹	Start Measur	rement
		V HIT_ENA	STOP3				
	4	HIT_ENA_	STOP4				
HIGH_RESOLUTION 4 Pulse 2		CHANNEL_C Pulse Width	COMBINE			Init Res Write Con Power On	et nfig Reset
		PIN_ENA_	DISABLE			Communication	Status: ≡Щ≡
	Results	Filter	Offset		Final Result	Mean 100	Std Dev
STOP1	000000	none 🗨	0 ps	AO	0 ps	0 ps	0,0 ps
STOP2	000000	none 🗖	• 0 ps	AO	0 ps	0 ps	0,0 ps
STOP3	000000	none	0 ps	AO	0 ps	0 ps	0,0 ps
STOP4	000000	none	0 ps	AO	0 ps	0 ps	0,0 ps
DELTA STOP3 STOP1 - MATH	000000	none	0 ps	AO	0 ps	0 ps	0,0 ps
DELTA OFF - STOP1 - MATH	000000	none	0 ps	AO	0 ps	0 ps	0,0 ps

GPX2-EVA-Kit User Guide SC-001264-UG-5 / 2021-01-25 / Product

4.3 Interface Page

On this page the communication as well as the output data format is defined. In any case, on the evaluation kit all communication is done via the on-board FPGA.

Figure 8: Interface page

acam GPX2 Evaluation Software					-		
File Tools Help							
REFCLK STOP SPI/LVDS						am	
COMM. INTERFACE		STOP_DAT 18 Bits	A_BITWIDTH			Start Measur	rement
READOUT_FREQUENCY 100 MHz on Evalkit of Eval FPGA		REF_INDE) 8 Bits	C_BITWIDTH				
LVDS_DOUBLE_DATA_RATE		PIN_EN	A_LVDS_OUT			Init Res	et
-Expert FIFO		GPX2 LVDS E	xpert	Write Co	Write Config		
BLOCKWISE_FIFO_READ		LVDS_TES off	PATTERN			Power On	Reset
COMMON_FIFO_READ		LVDS_DAT	A_VALID_ADJU	ST		Communication	Status:
		0 ps	• 1			-=	≡Щ≡
R	Results	Filter	Offset		Final Result	Mean 100	Std Dev
STOP1 0	01675	none 👻	0 ps	AO	5749 ps	151040 ps	7907,8 ps
STOP2 0	00000	none 🗨	0 ps	AO	0 ps	0 ps	0,0 ps
STOP3 0	1A5E0	none 👻	0 ps	AO	108000 ps	61425 ps	4938,6 ps
STOP4 0	00000	none 👻	0 ps	AO	0 ps	0 ps	0,0 ps
DELTA STOP3 STOP1 - MATH 0	18F6B	none 👻	0 ps	AO	102251 ps	102385 ps	74,6 ps
DELTA OFF - STOP1 MATH 0	00000	none 💌	0 ps	AO	0 ps	0 ps	0,0 ps

Note: The read out speed of the evaluation software is much less than the TDC sample rate. Therefore, in most cases BLOCKWISE_FIFO_READ will give more reasonable display. In addition, often the difference between channels is of interest only and DELTA should be used for display. To have this calculated correctly, Math should be enabled.

COMMOM_FIFO_READ helps if the same number of data from several channels is expected.

4.4 Avoiding Configuration Conflicts

Some combinations of parameter settings can prohibit operation or cause erroneous results. Some of these combinations are indicated with a red bar. User should avoid such configurations since the results may be difficult to interpret or faulty at all.

Some examples of configuration conflicts:

Figure 9: Avoiding conflicts

Δ	Bad	REFCLK_DIVISIONS 80000 ps 12,500 MHz Pls. use picoseconds value of the reference clock period Must fit with STOP_DATA_BITWIDTH.	STOP_DATA_BITWIDTH 16 Bits 1 REF_INDEX_BITWIDTH 2 Bits 1 1
	Good	REFCLK_DIVISIONS 40000 ps 25,000 MHz Pls. use picoseconds value of the reference clock period Must fit with STOP_DATA_BITWIDTH.	STOP_DATA_BITWIDTH 16 Bits 1 REF_INDEX_BITWIDTH 2 Bits 1 1
Р	Bad	Image: PIN_ENA_STOP Image: PIN_ENA_STOP1 Image: PIN_ENA_STOP Image: PIN_ENA_STOP2	
В	Good	Image: PIN_ENA_STOP Image: PIN_ENA_STOP Image: PIN_ENA_STOP Image: PIN_ENA_STOP	
6	Bad	Image: Pin_ena_stop 1 Image: Pin_ena_stop Image: Pin_ena_stop 2 Image: Pin_ena_stop Image: Pin_ena_stop 3 Image: Pin_ena_stop Image: Pin_ena_stop 4 Image: Pin_ena_stop	
C	Good	Image: PIN_ENA_STOP 1 Image: PIN_ENA_STOP1 Image: PIN_ENA_STOP 2 Image: PIN_ENA_STOP2 Image: PIN_ENA_STOP 3 Image: PIN_ENA_STOP3 Image: PIN_ENA_STOP 4 Image: PIN_ENA_STOP4	Pulse Distance 1
6	Bad	Image: PIN_ENA_STOP Image: PIN_ENA_STOP Image: PIN_ENA_STOP Image: PIN_ENA_STOP	
ט	Good	Image: PIN_ENA_STOP Image: PIN_ENA_STOP Image: PIN_ENA_STOP Image: PIN_ENA_STOP	Pulse Width 2
E		The LVDS readout frequency is recommended up to 360MHz in SDR mode only. Nevertheless 400 MHz is possible to configure and operate	READOUT_FREQUENCY 310 Image: MHz

4.5 **Register Content**

A separate window shows the register content in the GUI and the TDC-GPX2. Separate pages display configuration data and result data. Changing the hexadecimal values will change the configuration in the GUI accordingly. With "Write Config" the updated configuration is downloaded into the chip.

Figure 10: Registers Window: Configuration

	sters	L	Resu	ilts																	
Frontpanel Sof	twa	re –								- c	MG	PX2	-								
Register addr. Registers (hex)								Register addr. Registers (hex									s (hex)				
[03] [02] [01] [00] : × 13330515							[03] [02] [01] [00] : × 0000000									00000					
[07] [06] [05] [04] : × 500				C41	2ED	1	[07] [06] [05] [04] : ×							x	000	00000					
[11] [10] [09] [08] :			× 0A0003A1							[11] [10] [09] [08] :							:	× 0000000			
[15] [14] [13] [12] :			× 8E31BBBB							[15] [14] [13] [12] :							:	× 00000000			
[19] [18] [17] [16	5]:	× 00000004								[19] [18] [17] [16] :							:	× 00000000			
		W	vite 02	Reg 03	str. 04	05	06	07	08	09	10	11	12	13	14	15	16	Re	ad F	legstr. 19	
Register addr	.00																				
Register addr.	00		_			1.11	C 4	- 1A	A 1	64.2	CALA	GA /L	BB	BR	31	RE	94	CAG.	GIA	1313	

Figure 11: Registers Window: Results

onfiguration Regi	sters	Results				
– Reference Inde	exes /	/ Stops				
	Ref.	Indexes (dec.)		Stop	s (dec.)	
Channel 1 :	d	1012040	Channel 1 :	d	102094	
Channel 2 :	d	0	Channel 2 :	d	0	
Channel 3 :	d	1012541	Channel 3 :	d	100389	
Channel 4 :	d	0	Channel 4 :	d	0	

4.6 Graph Window

The graphical display allows to select which data shall be displayed. The shape of the individual curves can be modified individually. Move the mouse over the line symbol and press the right mouse button. A menu with many options will pop up.

There are dedicated buttons for zoom to all or zoom in X or Y only. In addition, the standard Labview zoom functions are available (see the icons on the top right).

Figure 12: Graph Window

The displayed data can be exported into a text file. The maximum is 128,000 data sets.

Figure 13: Save data menu

The text file can then be analyzed with a table calculation program.

Figure 14: Exported data format

1	A	B	C	D	E	F	
1	STOP1	STOP3	Delta 1-3	REFNO1	REFNO3		
2	8258.5	8103.5	154	23	19		
3	8258.5	8102	156	95	91		
4	8258.5	8102	150	163	159		
5	8258.5	8103.5	138	236	231		
6	8258	8103	140	47	43		
7	8258	8104.5	131	121	117		
8	8258	8105.5	133	187	183		
9	8257	8107	145	4	0		
10	0250	0107	164	71	67		

4.7 Known Errors

- Software Hang-up
 - Occasionally, typically during tests in the temperature chamber, it may happen that the software hangs up. This is most likely to erroneous reading from the FIFO and related in the FPGA. The error will be removed in the next revision of the FPGA.

5 Schematics, Layers and BOM

Figure 15: GPX2-EVA BOARD Schematics 1

Figure 16: GPX2-EVA BOARD Schematics 2

Figure 17: GPX2-EVA BOARD Schematics 3

Figure 19: GPX2-EVA BOARD Layout: GND Layer

Figure 20: GPX2-EVA BOARD Layout: VDD Layer

Figure 21: GPX2-EVA BOARD Layout: Bottom layer

Figure 22: GPX2-EVA BOARD Layout: Assembly layer

Figure 23: Bill of Materials for GPX2-EVA BOARD

QTY	DESIGNATOR	VALUE	PART DESC	ТҮРЕ
1	C5	10n	CHIP-CAPACITOR 0805	
17	C2 C6 C7 C11 C14 C16 C17 C18 C20 C21 C22 C30 C33 C45 C46 C56 C57	100n	CHIP-CAPACITOR 0805	
11	C3 C8 C12 C15 C19 C23 C29 C31 C43 C49 C60	33u	TANTAL	F950J336MPAAQ2
2	C9 C13	100u	TANTAL	F950J107MPAAQ2
1	C32	220u	TANTAL	F950J227MBAAM1Q2
1	C1	330u/25V	ELECTROLYTIC CAPASITOR	Radial 8mm Raster 2,5mm
10	R2 R16 R22 R23 R24 R25 R26 R27 R33 R35	100R	CHIP-RESISTOR 0603	
2	R30 R31	165R	CHIP-RESISTOR 0603	
3	R75 R76 R77	0R	CHIP-RESISTOR 0805	
1	R49	4R7	CHIP-RESISTOR 0805	
5	R6 R67 R69 R71 R72	10R	CHIP-RESISTOR 0805	
1	R45	56R	CHIP-RESISTOR 0805	
2	R17 R28	68R	CHIP-RESISTOR 0805	
2	R10 R51	100R	CHIP-RESISTOR 0805	

1	R43	270R	CHIP-RESISTOR 0805	
2	R46 R47	470R	CHIP-RESISTOR 0805	
1	R48	1k	CHIP-RESISTOR 0805	
1	R41	3k3	CHIP-RESISTOR 0805	
1	R1	9k1	CHIP-RESISTOR 0805	
1	R14	19k1	CHIP-RESISTOR 0805	
1	R12	60k4	CHIP-RESISTOR 0805	
15	R7 R8 R38 R39 R44 R50 R52 R53 R54 R55 R56 R57 R58 R59 R60	100k	CHIP-RESISTOR 0805	
1	R5	604k	CHIP-RESISTOR 0805	
1	R13	820k	CHIP-RESISTOR 0805	
1	R4	910k	CHIP-RESISTOR 0805	
8	R29 R61 R62 R64 R65 R66 R68 R70	1M	CHIP-RESISTOR 0805	
1	R11	1M1	CHIP-RESISTOR 0805	
1	R9	1M87	CHIP-RESISTOR 0805	
6	R3 R15 R18 R19 R63 R110	OR	CHIP-RESISTOR 1206	
6	R20 R37	10R	CHIP-RESISTOR 1206	
1	D1		Recovery Power Rectifier	MRA4007T3
1	D2	green	Surface Mount LED PLCC2	SMTL2-PGC
1	X2	5MHz	Crystal Oscillator	KXO-V97
1	U1		GPX2	
1	U2		ProASIC3 Flash Family FPGA	A3P250VQG100
1	U3		Linear Voltage Regulator	LM317EMP
1	U6		Linear Voltage Regulator	ADP163AUJZ-R7
2	U9 U12		Linear Voltage Regulator 3,3V	BD733L2FP3-CE2
1	J1		Male Connector DSUB15HD 90°	618015330923
1	J4		Box Header Straight 10pin	1-1634688-0
1	J9		DC Power Jack	PJ-059B
4	J10 J11 J12 J13		Male Connector 2x1x180° 2,54	

6 Copyrights & Disclaimer

Copyright **ScioSense B.V High Tech Campus 10, 5656 AE Eindhoven, The Netherlands**. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ScioSense B.V. are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ScioSense B.V. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ScioSense B.V. reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ScioSense B.V. for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ScioSense B.V. for each application. This product is provided by ScioSense B.V. "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ScioSense B.V. shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ScioSense B.V. rendering of technical or other services.

7 Document Status

Figure 24: Document Status

Document Status	Product Status	Definition
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ScioSense B.V. standard warranty as given in the General Terms of Trade.
Datasheet (Discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ScioSense B.V. standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs.

8 **Revision Information**

Figure 25: Revision History

Revision	Date	Comment	Page
4	2018-Oct-18	Update of download links for evaluation software package	
		Jump in revision number from 1-03 to 4-00 to fit to a new	
		document management system	
5	2021-01-25	Transfer to ScioSense format	All
		Download links updated	

Note(s) and/or Footnote(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

ScioSense is a Joint Venture of ams AG

Headquarters: ScioSense B.V. High Tech Campus 10 5656 AE Eindhoven The Netherlands

Contact: www.sciosense.com info@sciosense.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ScioSense:

GPX2-EVA-KIT GPX2-EVA-BOARD