

This product, formerly sold by ams AG, and before that optionally by either Applied Sensors GmbH, acam-messelectronic GmbH or Cambridge CMOS Sensors, is now owned and sold by

ScioSense

The technical content of this document under ams / Applied Sensors / acammesselectronic / Cambridge CMOS Sensors is still valid.

Contact information Headquarters: ScioSense B.V. High Tech Campus 10 5656 AE Eindhoven The Netherlands info@sciosense.com www.sciosense.com

Ultrasonic-Flow-Converter Data Sheet

TDC-GP30Y

System-Integrated Solution for Ultrasonic Flow Meters Volume 2: CPU, Memory and Firmware

September 19 , 2019 Document-No: DB_GP30Y_Vol2_en V0.2

acam-messelectronic gmbh is now a member of ams group

Copyrights & Disclaimer

Copyright acam-messelectronic gmbh, Friedrich-List-Str. 4, 76297 Stutensee, Germany-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by acam-messelectronic gmbh are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. acam-messelectronic gmbh makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. acam-messelectronic gmbh reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with acam-messelectronic gmbh for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by acam-messelectronic gmbh for each application. This product is provided by acam-messelectronic gmbh "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

acam-messelectronic gmbh shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of acam-messelectronic gmbh rendering of technical or other services.

"Preliminary" product information describes a product which is not in full production so that full information about the product is not yet available. Therefore, acam-messelectronic gmbh ("acam") reserves the right to modify this product without notice.

Support / Contact

For direct sales, distributor and sales representative contacts, visit the acam web site at: www.acam.de www.ams.com

For technical support you can contact the acam support team: support@acam.de or by phone +49-7244-74190.

Notational Conventions

Throughout the GP30 documentation, the following stile formats are used to support efficient reading and understanding of the documents:

- Hexadecimal numbers are denoted by a leading 0x, e.g. 0xAF = 175 as decimal number.
 Decimal numbers are given as usual.
- Binary numbers are denoted by a leading 0b, e.g. 0b1101 = 13. The length of a binary number can be given in bit (b) or Byte (B), and the four bytes of a 32b word are denoted B0, B1, B2 and B3 where B0 is the lowest and B3 the highest byte.
- Abbreviations and expressions which have a special or uncommon meaning within the context of GP30 application are listed and shortly explained in the list of abbreviations, see following page. They are written in plain text. Whenever the meaning of an abbreviation or expression is unclear, please refer to the glossary at the end of this document.
- Variable names for hard coded registers and flags are in bold. Meaning and location of these variables is explained in the datasheet (see registers CR, SRR and SHR).
- Variable names which represent memory or code addresses are in bold italics. Many of these addresses have a fixed value inside the ROM code, others may be freely defined by software. Their meaning is explained in the firmware and ROM code description, and their physical addresses can be found in the header files. These variable names are defined by the header files and thus known to the assembler as soon as the header files are included in the assembler source code. Note that different variable names may have the same address, especially temporary variables.
- Physical variables are in italics (real times, lengths, flows or temperatures).

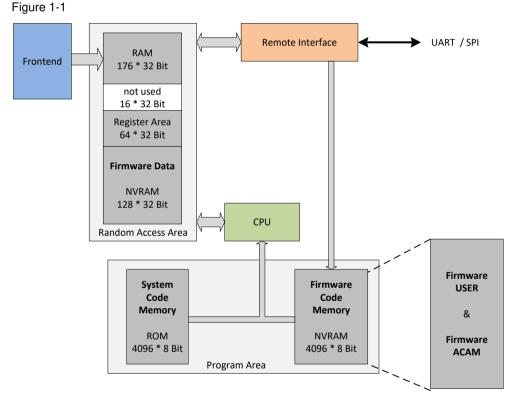
Abbrevations

AM	Amplitude measurement
CD	Configuration Data
CPU	Central Processing Unit
CR	Configuration Register
CRC	Cyclic Redundancy Check
DIFTOF,	Difference of up and down ->TOF
DIFTOF_ALL	
DR	Debug Register
FEP	Frontend Processing
FDB	Frontend data buffer
FHL	First hit level
FW	Firmware, software stored on the chip
FWC	Firmware Code
FWD	Firmware Data
FWD-RAM	Firmware Data memory
GPIO	General purpose input/output
Hit	Stands for a detected wave period
HSO	High speed oscillator
INIT	Initialization process of ->CPU or -> FEP
IO	Input/output
12C	Inter-Integrated Circuit bus
LSO	Low speed oscillator
MRG	Measurement Rate Generator
NVRAM, NVM	Programmable Non-Volatile Memory
PI	Pulse interface
PP	Post Processing
PWR	Pulse width ratio
R	RAM address pointer of the CPU, can also stand for the addressed
	register
RAA	Random Access Area
RAM	Random Access Memory
RI	Remote Interface
ROM	Read Only Memory
ROM code	Hard coded routines in ROM
SHR	System Handling Register
SPI	Serial Peripheral Interface
SRAM	Static RAM
SRR	Status & Result Register
SUMTOF	Sum of up and down TOF
Task	Process, job
TDC	Time-to-digital-converter
TOF, TOF_ALL	Time of Flight
TS	Task Sequencer
TM	Temperature measurement
UART	Universal Asynchronous Receiver & Transmitter
USM	Ultrasonic measurement
Vref	Reference voltage
X,Y,Z	Internal registers of the CPU
ZCD ZCL	Zero cross detection
ZUL	Zero cross level

For details see the glossary in section 9.

Content

С	opyrigh	ts & Disclaimer1-	·2
1	Intro	duction1-	·1
	1.1	CPU & Environment1-	·1
2	Prog	gram Area2-	·1
3	Ran	dom Access Area (RAA)3-	·1
	3.1	RAM	·2
	3.2	Direct mapped register	.3
	3.3	NVRAM	.3
4	CPL	J4-	·1
	4.1	Registers and Accumulators4-	·1
	4.2	CPU Flags4-	·1
	4.3	Arithmetic Operations4-	·2
	4.4	Branch Instructions4-	·2
	4.5	Instruction Set4-	.3
	4.6	Detailed Description of Commands4-	4
5	Libra	aries and pre-defined routines5-	·1
	5.1	common.h5-	·2
6	CPL	J Handling6-	·1
	6.1	CPU Handling6-	·1
7	Asse	embler Software7-	·1
	7.1	Assembly Programs7-	4
	7.2	Basic Structure7-	-6
	7.3	Example 1: Simple TOF Difference via Pulse Interface	·6
8	Misc	ellaneous8-	·1
	8.1	Bug Report8-	·1
	8.2	Last Changes8-	-1



1 Introduction

TDC-GP30 stands for a new generation of ultrasonic flow converters. Besides an improved ToF front end it also includes a 32-bit CPU and memory for on-chip data post-processing and, in a final stage, the complete flow calculation. This volume 2 of TDC-GP30 datasheet describes the CPU, the instruction set and the memory organization. Further, it describes the assembler and basics in software development. This will enable customers to write their own programs. The description of the general hardware and the analog front end basics is given in volume 1.

1.1 CPU & Environment

There is a 32-bit CPU in Harvard architecture integrated in TDC-GP30 which is acam proprietary design. It is optimized for ultra-low power operation with the target to do the flow calculation. Figure 1-1 shows the memory organization and how the frontend, the CPU and the remote interface interact.

After completion of a measurement, the frontend writes the various results for time-of-flight or temperature, for amplitude, pulse width and voltage into the front end data buffer (FDB), which is part of the RAM. From there, the user can read directly the raw data via the remote interface. This would be the situation in time conversion mode.

In the case of flow meter mode, the frontend processing is followed by a CPU processing. The CPU post-processing is activated by setting bit PP_EN in configuration register CR_MRG_TS and CPU_REQ_EN_PP in configuration register CR_IEH.

Figure 1-2 Flow Meter Mode

The programmable firmware will be in a non-volatile 4k NVRAM. Additionally, many functions are already implemented as ROM routines. The CPU uses a separate 176x32 bit RAM to do its calculations and to write back the final results. Configuration data is stored in the register area of the RAM and a special firmware data are in the RAM is reserved for firmware specific data.

The firmware code memory and the firmware data memory are zero static power NVRAMs. It is not necessary to switch them down to save operation current.

The various main elements will be described in detail in the following.

2 Program Area

The program area consists of two memory parts:

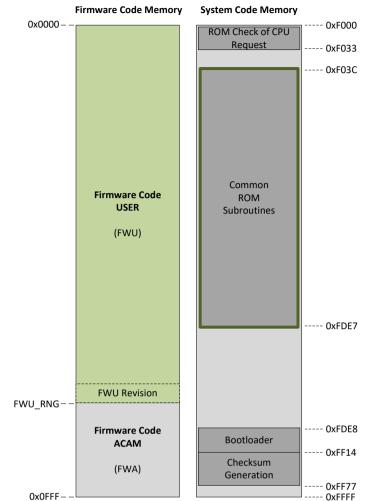
- A 4-kbyte NVRAM, called Firmware Code Memory for re-programmable program code
- A 4-kbyte ROM, called System Code Memory with read-only program code.

The firmware code consists of:

- A USER part which can be programmed by customer (green colored)
- An optional acam part, pre-programmed by acam including general subroutines addressable by customers. For details on this option please contact acam.

The NVRAM in GP30 is a combination of a volatile SRAM and a non-volatile FLASH memory. Access to/from NVRAM is only given via the SRAM part, where volatile data can be read and written in an unlimited number of times, while non-volatile data resides in FLASH part.

The complete data transfer from SRAM to FLASH is performed by a STORE. From FLASH to SRAM the data are completely transferred by a RECALL. The execution of both transactions has to be enabled first.


The Firmware Code is read protected all the time. Additionally, the GP30 has the ability of a firmware lock, which causes:

- A write protection for Firmware Code
- A read protection for Firmware Data
- A read protection for Configuration Register

The available size of USER Firmware (FWU) is defined in register SRR_FWU_RNG which can be read by customer. The USER firmware has also a 4-byte reserved area at the end of the code memory, which can be used to implement a revision number. The revision can be read via register SRR_FWU_REV. Additionally the revision of ACAM firmware can be read via SRR_FWA_REV. The code in the ROM memory (read-

only) includes system subroutines like bootloader, checksum generation and general subroutines which are also addressable by customer. It also handles the initial check of CPU requests set in SHR_CPU_REQ register.

The bootloader is always requested after a system reset has been occurred. However, bootloader actions are only performed if the bootloader release code is set. In a final initialization the bootloader also sets CPU request for "FW Init" and, if configured, a request for "Checksum Generation". At minimum the bootloader clears its request in SHR_CPU_REQ and jumps back to ROM Check of CPU Request.

Note: For details about how to write firmware and to check it please see section 7 of the user manual, volume 3.

3 Random Access Area (RAA)

The random access area can be distinguished in 3 sections:

- Random access memory (RAM) storing volatile firmware data and including frontend data buffer
- Register area
- Non-volatile RAM (NVRAM) storing non-volatile firmware data

The RAA has the following structure:

IP	Address	DWORD	Section	Description	on	RI
	0x000–0x07F	128	FWV	Firmware	variables	RW
	0x080–0x087	8	FDB	Frontend of	data buffer	RW
RAM 176*32	0x088–0x09B	20	FDB / (FWV)	Frontend of Firmware	data buffer / variables	RW
170 02	0x09C-0x09F	4	FWV	Firmware	variables	RW
	0x0A0-0x0AF	16	FWV or (TEMP)	Firmware temporary	variables or variables	RW
	0x0B0-0x0BF	16	NU	not used		-
	0x0C0-0x0CF	16	CR	Configurat	tion registers	RW
	0x0D0-0x0DF	16	SHR	System Ha	andling registers	RW
Direct	0x0E0-0x0EF	16	SRR	Status & result registers		RO
Mapped Register	0x0F0-0x0F7	8	NU	not used		-
	0x0F8-0x0FB	4	DR	Debug registers		RO
	0x0FC-0x0FF	4	NU	Not used		-
	0x100-0x11F	32	FWD1	Firmware data		RW
	0x120-0x16B	76	FWD2	Firmware data		RW
	0x16C-0x17A	15		CD	Configuration data	RW
NVRAM	0x17B	1		BLD_RL S	Bootloader release code	RW
128*32	0x17C	1		FWD1 Checksum		RW
	0x17D	1		FWD2 Checksum		RW
	0x17E	1		FWU Checksum		RW
	0x17F 1 FW_CS FWA Checksum		cksum	RW		
	0x180-0x1FF 128 NU Not used			-		

RI = Remote Interface

Vol. 2 TDC-GP30

3.1 RAM

The front end data buffer (**FDB**) is the area that contains the measurement data. The content alternates for ToF and temperature measurements:

RAA Address	Name	Description
0x080	FDB_US_TOF_ADD_ALL_U	Ultrasonic TOF Add All Value Up
0x081	FDB_US_PW_U	Ultrasonic Pulse Width Ratio Up
0x082	FDB_US_AM_U	Ultrasonic Amplitude Value Up
0x083	FDB_US_AMC_VH	Ultrasonic Amplitude Calibrate Value High
0x084	FDB_US_TOF_ADD_ALL_D	Ultrasonic TOF Add All Value Down
0x085	FDB_US_PW_D	Ultrasonic Pulse Width Ratio Down
0x086	FDB_US_AM_D	Ultrasonic Amplitude Value Down
0x087	FDB_US_AMC_VL	Ultrasonic Amplitude Calibrate Value Low
0x088 to 0x08F	FDB_US_TOF_0_U	Ultrasonic TOF Up Value 0 to Value 7
0x090 to 0x097	FDB_US_TOF_0_D	Ultrasonic TOF Down Value 0 to Value 7

Table 3-1 FDB after TOF measurements

Table 3-2 FDB after temperature measurements

RAA Address	Name	Description
0x080	FDB_TM_PP_M1	Offset Delay Compensation Value
0x081	FDB_TM_PTR_RAB_M1	PT Ref: Impedance Value
0x082	FDB_TM_PTC_CAB_M1	PT Cold: Impedance Value
0x083	FDB_TM_PTH_HAB_M1	PT Hot: Impedance Value
0x084	FDB_TM_PTR_RA_M1	PT Ref: 1 st Offset resistance Value
0x085	FDB_TM_PP_M2	Offset Delay Compensation Value
0x086	FDB_TM_PTR_RAB_M2	PT Ref: Impedance Value
0x087	FDB_TM_PTC_CAB_M2	PT Cold: Impedance Value
0x088	FDB_TM_PTH_HAB_M2	PT Hot: Impedance Value
0x089	FDB_TM_PTR_RA_M2	PT Ref: 1 st Offset resistance Value
0x08A	FDB_TM_PTR_4W_RB_M1	PT Ref: 2 nd Offset resistance Value
0x08B to 0x08E	FDB_TM_PTC_4W_CA_M1	PT Cold: 1 st to 4 th Offset resistance Value
0x08F to 0x092	FDB_TM_PTH_4W_HA_M1	PT Hot: 1st to 4th Offset resistance Value
0x093	FDB_TM_PTR_4W_RB_M2	PT Ref: 2 nd Offset resistance Value
0x094 to 0x097	FDB_TM_PTC_4W_CA_M2	PT Cold: 1 st to 4 th Offset resistance Value
0x098 to 0x09B	FDB_TM_PTH_4W_HA_M2	PT Hot: 1 st to 4 th Offset resistance Value

For details about the **FDB** please refer to volume 1.

The firmware variables area (FWV) can be used by the firmware for temporarily data storage.

3.2 Direct mapped register

This section contains the configuration registers **CR** that define the operation of the chip. After a system reset, the content is copied from configuration data (**CD**) in the NVRAM into this RAM cells.

Further, in this section there are the system handling registers as well as the status and result registers.

For debugging purposes also the ALU registers and flags can be read there (read only).

For details about the RAM and the please refer to volume 1.

3.3 NVRAM

This section is a combination of a volatile SRAM and a non-volatile FLASH memory.

After a system reset, the configuration data (**CD**) in the NVRAM is copied into the configuration register (**CR**) by the bootloader if the bootloader release code (**BLD_RLS** = $0 \times ABCD_{-7654}$) is set.

Finally, there are four checksums. Those registers contain the nominal values for the user firmware, the acam firmware and the two firmware data sections. A checksum execution will generate the actual GP30 checksums and compare them with those in **FWD1**, **FWD2**, **FWU** and **FWA**. The checksum execution is done typically after the bootloader, by the checksum timer (register **CR_MRG_TS** : **TS_CST**) or by a remote command. In case of discrepancies error flags will be set for each section (register **CR_IEH**).

4 CPU

Figure 4-1 shows in detail how the CPU is structured and implemented. It has access to the RAM, including the result registers and the status registers.

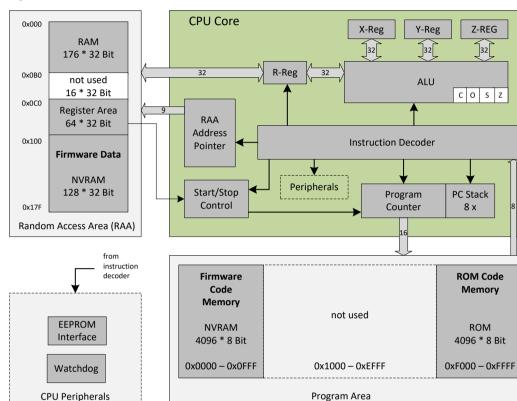


Figure 4-1

4.1 Registers and Accumulators

The 32 bit-CPU operates on three internal registers, the X, Y, and Z-accumulators, and on one register or RAM cell, addressed by the CPU's RAM address pointer. The latter register is denoted with R, it can be any accessible cell within the **RAA** address range. R is handled in the same way as an accumulator by most commands. One specialty of R is the byte coding and decoding by the bytesel and bytedir command, which only acts on R in read direction (details see below). This function is built in for simplified and accelerated byte operations.

4.2 CPU Flags

The CPU uses four flags to classify the results of operations: Carry (C), equal Zero (Z), Sign (S) and Overflow (O). Zero and Sign flags are set with each CPU write access to any register, RAM or accumulator. Additionally, the Carry and Overflow flags are set in case of a calculation, shift or rotation. Flags which are not actively changed by an operation remain in their former state. It is possible to query each flag in a jump or skip instruction.

Vol. 2 TDC-GP30

4.2.1 Carry (C)

Shows the carry over in an addition or subtraction. Note that the carry flag is calculated assuming unsigned binary numbers, in contrast to the overflow flag. Thus it may produce confusing results, refer to the detail description of instructions for usage. With shift operations (shiftL, shiftR, rotL, shiftR.), the carry flag is set to the (last) bit that has been shifted out.

4.2.2 **Overflow (O)**

Indicates an overflow during an addition or subtraction of two numbers in two's complement representation. This is strictly an overflow for positive numbers, underflow in case of negative numbers is not indicated. If the eventuality of a negative underflow can't be avoided, additional calculations to indicate the underflow are required.

4.2.3 Zero (Z)

The zero flag indicates if the last number written into a register (by add, sub, move, swap, etc.) was zero or not equal to zero.

4.2.4 Sign (S)

The sign flag indicates if the last number written into a register (by add, sub, move, swap, etc.) has the highest bit (MSB) set to 1 or to 0. It thus indicates the sign of this number, with zero indicated positive. The sign flag assumes a two's complement number representation.

4.3 Arithmetic Operations

An arithmetic command processes two of the registers X, Y, Z or R, and writes back the result into the first mentioned register (or, for commands with 64 bit results, into both). These operations also affect flags of the CPU. In particular, the carry (C) and overflow (O) flags should be checked to ensure correctness of the last operation.

All arithmetic operations process a 32 bit wide input, (mostly) based on the common two's complement operations. This means that the MSB (the most significant bit of the binary word, here bit 31) defines the sign of the binary number, with negative signs having MSB=1. Number values of positive numbers are as usual, while the value of a negative number A follows the rule |A| = NOT(A) + 1, in words: negative numbers are converted into positives by bitwise inversion, and then adding 1 (see the instructions "compl" and "invert")

4.4 Branch Instructions

There are 4 principles of jumping within the code:

Goto: Jumps with relative or absolute addressing. Within an address vicinity of -128 to +127, the assembler automatically uses relative addressing ("Branch"). For wide distances, absolute addressing within the whole address space of 64 kB is automatically used ("Jump"). The latter is more flexible, but needs one code byte more.

Jsub: Absolute or relative jump, used to call a subroutine. The difference to goto is that the code returns to the calling address at jsubret (for example at the end of the subroutine). The CPU keeps up to 8 calling addresses in its address stack. When no return to the calling address is desired, it is better (and of course possible) to use goto instead of jsub.

Skip: Suppress the execution of the next 1, 2 or 3 instructions. Note that the skipped instructions are in fact processed, but they produce no result or further activity. Thus skip does not save processing time of the skipped instructions, in contrast to goto or jsub. However, the skip command itself is only one byte short, and in addition it is highly suitable for structured programming.

Goto and skip come in different flavors, as unconditional command as well as controlled by some bit or CPU flag. Refer to the detail instruction list below for details.

4.5 Instruction Set

The complete instruction set of the GP30 consists of 70 core instructions that have unique op-codes decoded by the CPU. It is widely identical to the instruction set of acam's PSØ9 chip. Table 4-1 gives an overview of all available expressions, details are given further below.

Logic	Simple Arithmetic	Complex Arithmetic	Shift & Rotate	Bitwise
and	abs	div	rotl	bitclr
eor	add	divmod	rotR	bitinv
eorn	compare	mult	shiftL	bitset
invert	compl		shiftR	
nand	decr		Flags	Registerwise
nor	incr		clrC	clear
or	sign		getflag	move
	sub		setC	swap
RAM access	Jsub	Jump	Skip	Miscellaneous
bytedir	jsub	goto	skip	clkmode
bytesel	jsubret	gotoBitC	skipBitC	clrwdt
decramadr		gotoBitS	skipBitS	equal
getramadr		gotoCarC	skipCarC	equal1
incramadr		gotoCarS	skipCarS	i2cclk
ramadr		gotoEQ	skipEQ	i2creq
		gotoNE	skipNE	i2crw
		gotoNeg	skipNeg	mcten
		gotoOvrC	skipOvrC	nop
		gotoOvrS	skipOvrS	revfwa
		gotoPos	skipPos	revfwu
				stop

Table 4-1: Instruction set overview

4.6 Detailed Description of Commands

The following description lists every GP30 instruction which is recognized by the assembler. Most of them directly correspond to an op-code, which is a sequence of bytes in an executable code for GP30, as it is produced by the assembler. The tabular lines have the following meaning and usage:

Command	Short Description
Syntax:	Command name, followed by parameters p1, p2, p3
Parameters:	Description of parameters. They may be registers REG [x, y, z, r] or numbers in a given range.
Calculus:	Mathematical operation in <u>Verilog notation</u> (uncommon syntax is explained in case). This line also defines the result output, which is most of the time simply p1. Note that this means that the content of p1 is changed by the operation.
Flags affected:	Some or all of the flags C (carry), Z (Zero), S (sign) and O (Overflow) are affected by the described operation, according to the result
Bytes:	Length of the complete op-code, including parameter designation
Cycles:	Number of calculation cycles needed by the CPU
Description:	Literal description an remarks on the operation
Category:	One of the categories in the overview

There are some more expressions used in the list:

- PC: The program counter; this is actually the code address where the next CPU op-code is read.
- JUMPLABEL: Label for a jump destination, which becomes an actual code address after code assembly. In assembler code, this is usually a placeholder for a position within the code, it may also be a fixed number (not recommended). To define a jump destination by a jump label in assembler code, write the label followed by a colon. Labels must be followed by an instruction. Add one nop if the label would be followed directly by ORG.
- LSB: Least significant bit, the rightmost bit of a binary number
- MSB: Most significant bit, the leftmost bit of a binary number. In the common two's complement representation, the MSB is used to indicate the sign of a number; MSB = 1 defines a negative number.
- ">>" or "<<": right shift and left shift, e.g. "1<<p2": a 1 shifted left by p2 bit positions

4.6.1 List of instructions

In the following there is a list of all CPU instructions in alphabetic order.

abs	Absolute value of register		
Syntax:	abs p1		
Parameters:	p1 = REG [x, y, z, r]		
Calculus:	p1 = p1		
Flags affected:	COZS		
Bytes:	2		
Cycles:	2		
Description:	Absolute value of register		
Category:	Simple arithmetic		
add	Addition		
Syntax:	add p1, p2		
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number		
Calculus:	p1 = p1 + p2		
Flags affected:	COZS		
Bytes:	1 (p2 = REG) 5 (p2 = number)		
Cycles:	1 (p2 = REG) 5 (p2 = number)		
Description:	Addition of two registers or addition of a constant to a register		
Category:	Simple arithmetic		
and	Logic AND		
Syntax:	and p1, p2		
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number		
Calculus:	p1 = p1 AND p2 in the resulting bit sequence in p1, a bit is 1 when the corresponding bits of P1 and P2 are both equal to 1		
Flags affected:	ZS		
Bytes:	2 (p2 = REG) 6 (p2 = number)		
Cycles:	3 (p2 = REG) 7 (p2 = number)		
Description:	Bitwise logic AND of 2 registers or Logic AND of register and constant		
Category:	Logic		

bitclr	Clear single bit
Syntax:	bitclr p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = number 0 to 31
Calculus:	p1 = p1 and not (1<< $p2$) "1<< $p2$ ": a "1" shifted left by p2 bit positions
Flags affected:	ZS
Bytes:	2
Cycles:	2
Description:	Clear the single bit on position p2 in the destination register p1, other bits remain unchanged Note: Don't use on register R in combination with bytesel $\neq 0$
Category:	Bitwise
bitinv	Invert single bit
Syntax:	bitinv p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = number 0 to 31
Calculus:	p1 = p1 XOR (1< <p2) "1"="" "1<<p2":="" a="" bit="" by="" left="" p2="" positions<="" shifted="" td=""></p2)>
Flags affected:	ZS
Bytes:	2
Cycles:	2
Description:	Invert the single bit on position 1< <p2 bits="" destination="" in="" other="" p1,="" register="" remain="" the="" unchanged<br="">Note: Don't use on register R in combination with bytesel $\neq 0$</p2>
Category:	Bitwise
bitset	Set single bit
Syntax:	bitset p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = number 0 to 31
Calculus:	p1 = p1 OR (1 << p2) "1<< p2": a "1" shifted left by p2 bit positions
Flags affected:	ZS
Bytes:	2
Cycles:	2
Description:	Set the single bit on position p2 in the destination register p1, other bits remain unchanged Note: Don' t use on register R in combination with bytesel $\neq 0$
Category:	Bitwise
Category: bytedir	
	Bitwise
bytedir	Bitwise Define configuration for bytesel

Flags affected:

Bytes:

-

1

Cycles:	1
Description:	 Basic definition for the configuration of bytesel (see description of bytesel) p1 = 0 : align read data at LSB p1 = 1 : shift read byte(s) to various positions Important remarks: Bytedir permanently sets the read configuration until it is changed. Bytedir is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.
Category:	RAM access
bytesel	Define RAM reading mode
Syntax:	bytesel p1
Parameters:	p1 = number 0 to 7
Calculus:	-
Flags affected:	-
Bytes:	1
Cycles:	1
Description:	Read from addressed register R using a byte-oriented shift operation in various configurations. The bytesel command is implemented to simplify bytewise operations, for example read and write from an external EEPROM, or internal selection of coefficients which are shorter than 32 Bit. It actually provides a means for fast bytewise shifting. Denoting the four bytes in the 32-Bit word in R by B3/B2/B1/B0, the following content of R is actually read, depending on the last bytedir setting: After "bytedir 0" (or without using bytedir): p1 = 0 : R is read as B3/B2/B1/B0 (default setting, no shifts) p1 = 1 : R is read as 00/00/B2/B1 p1 = 2 : R is read as 00/00/B3/B2 p1 = 4 : R is read as 00/00/00/B1 p1 = 5 : R is read as 00/00/00/B1 p1 = 6 : R is read as 00/00/00/B2 p1 = 7 : R is read as 00/00/00/B3 After "bytedir 1":
	 p1 = 0 : R is read as B3/B2/B1/B0 (default setting, no shifts) p1 = 1 : R is read as 00/B1/B0/00 p1 = 2 : R is read as 00/00/B1/B0 p1 = 3 : R is read as B1/B0/00/00 p1 = 4 : R is read as 00/00/B0/00 p1 = 5 : R is read as 00/00/B0/00 p1 = 6 : R is read as 00/B0/00/00 p1 = 7 : R is read as B0/00/00/00 Important remarks: Bytesel affects the read direction for any register addressed as R. Any read access to R is affected, so the content of R for any operation is configured according to the list above.
	 Bytesel has no effect in write direction. Bytesel permanently sets the read configuration until it is changed.

Category:	 command. Usage within the range of any skip command is not recommended. Note that the commands bitset, bitclr or bitinv and shiftL, shiftR, rotL and rotR include read access. Set bytesel = 0 before applying one of these commands to R, to avoid undefined results. RAM access
clear	Clear register
Syntax:	clear p1
Parameters:	p1 = REG [x, y, z, r]
Calculus:	p1 = 0
Flags affected:	ZS
Bytes:	1
Cycles:	1
Description:	Clear addressed register to 0
Category:	Registerwise
clkmode	Clock mode
Syntax:	clkmode p1
Parameters:	p1 = number 0 or 1
Calculus:	-
Flags affected:	-
Bytes:	2
Cycles:	2
Description:	 p1 = 0 : CPU clock is the internal oscillator p1 = 1 : CPU clock is 2 MHz, derived from the high speed clock (HSC) Remark: clkmode sets the clock mode permanently until the next change or until stop. After stop or after power up, clkmode is 0. Is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.
Category:	Miscellaneous
clrC	Clear flags
Syntax:	clrC
Parameters:	-
Calculus:	-
Flags affected:	со
Bytes:	2
Cycles:	2
Description:	Clear Carry and Overflow flags
Category:	Flags
clrwdt	Clear watchdog

clrwdt	Clear watchdog
Syntax:	clrwdt

Parameters:	-
Calculus:	
Flags affected:	
-	2
Bytes:	2
Cycles:	Clear watchdog. This instruction is used to restart the watchdog timer at the
Description:	Clear watchdog. This instruction is used to restart the watchdog timer at the end of a program run. Apply clrwdt right before ,stop' to avoid a reset by the watchdog, if enabled.
Category:	Miscellaneous
compare	Compare two values
Syntax:	compare p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number
Calculus:	no register change; only the flags are set to the result of the operation p2 - p1
Flags affected:	COZS
Bytes:	1 (p1 = REG, p2 = REG) 5 (p1 = REG, p2 = number)
Cycles:	1 (p1 = REG, p2 = REG) 5 (p1 = REG, p2 = number)
Description:	Comparison of the two inputs by subtraction. The flags are changed according to the subtraction result, but not the register contents themselves.
Category:	Simple arithmetic
compl	Complement
Syntax:	compl p1
Parameters:	p1 = REG[x, y, z, r]
Calculus:	
	p1 = - p1 = (NOT p1) + 1
Flags affected:	p1 = - p1 = (NOT p1) + 1 Z S
Flags affected: Bytes:	
Bytes:	ZS
Bytes:	Z S 2
Bytes: Cycles:	Z S 2 2
Bytes: Cycles: Description:	Z S 2 2 two's complement of register
Bytes: Cycles: Description: Category: decr	Z S 2 2 two's complement of register Simple arithmetic
Bytes: Cycles: Description: Category: decr	Z S 2 2 two's complement of register Simple arithmetic Decrement
Bytes: Cycles: Description: Category: decr Syntax:	Z S 2 2 two's complement of register Simple arithmetic Decrement decr p1
Bytes: Cycles: Description: Category: decr Syntax: Parameters:	Z S 2 2 two's complement of register Simple arithmetic Decrement decr p1 p1 = REG [x, y, z, r]
Bytes: Cycles: Description: Category: decr Syntax: Parameters: Calculus: Flags affected:	Z S 2 2 two's complement of register Simple arithmetic Decrement decr p1 p1 = REG [x, y, z, r] p1 = p1 - 1
Bytes: Cycles: Description: Category: decr Syntax: Parameters: Calculus: Flags affected: Bytes:	Z S 2 2 two's complement of register Simple arithmetic Decrement decr p1 p1 = REG [x, y, z, r] p1 = p1 - 1 C O Z S
Bytes: Cycles: Description: Category: decr Syntax: Parameters: Calculus: Flags affected:	Z S 2 2 two's complement of register Simple arithmetic Decrement decr p1 p1 = REG [x, y, z, r] p1 = p1 - 1 C O Z S 1

decramadr	Decrement RAM address pointer
Syntax:	decramadr
Parameters:	-
Calculus:	-
Flags affected:	-
Bytes:	1
Cycles:	1
Description:	Decrement RAM address pointer by one
Category:	RAM access
div	Signed division 32 Bit
Syntax:	div p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r]
Calculus:	$p1 = (p1 << 32) / p2$ " $p1 << 32$ ": $p1$ shifted left by 32 bit positions or $p1 = p1^*232 / p2$ in standard notationcondition for correct calculation: $ p1 < 2^*p2 $ In consequence, the result integers in p1 are between -0.5^*2^{32} and 0.5^*2^{32}
Flags affected:	Z and S according to the result in p1
Bytes:	2
Cycles:	38
Description:	Signed division of 2 registers: 32 fractional bits of the division of 2 registers are assigned to p1; p2 remains unchanged
Category:	Complex arithmetic
divmod	Signed modulo division
Syntax:	divmod p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r]
Calculus:	p1 = integer (p1 / p2) p2 = p1 % p2 "%" is the modulo operation
Flags affected:	Z and S according to the result in p1
Bytes:	2
Cycles:	Similar to div
Description:	Signed modulo division of 2 registers, 32 higher bits of the integer division of 2 registers, result is assigned to p1; the remainder is assigned to p2
Category:	Complex arithmetic
eor	Exclusive OR
Syntax:	eor p1, p2

Syntax:	eor p1, p2	
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number	
Calculus:	p1 = p1 XOR p2 in the resulting bit sequence in p1, a bit is 0 when the corresponding bits of P1 and P2 are equal, or 1 otherwise	
Flags affected:	ZS	
Bytes:	2 (p1 = REG, p2 = REG)	

	6 (p1 = REG, p2 = number)	
Cycles:	3 (p1 = REG, p2 = REG)	
-,	7 (p1 = REG, p2 = number)	
Description:	Bitwise Logic exclusive OR (antivalence) of the two given parameters	
Category:	Logic	
eorn	Exclusive NOR	
Syntax:	eorn p1, p2	
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number	
Calculus:	p1 = p1 XNOR p2 <i>in the resulting bit sequence in p1, a bit is 1 when the corresponding bits of P1 and P2 are equal, or 0 otherwise</i>	
Flags affected:	ZS	
Bytes:	2 (p1 = REG, p2 = REG) 6 (p1 = REG, p2 = number)	
Cycles:	3 (p1 = REG, p2 = REG) 7 (p1 = REG, p2 = number)	
Description:	Bitwise Logic, exclusive not OR (equivalence) of the two given parameters	
Category:	Logic	
equal	Write 3 given Bytes to the executable code	
Syntax:	equal p1	
Parameters:	p1 = 3-Byte string	
Calculus:	-	
Flags affected:	-	
Bytes:	3	
Cycles:	3 (or more if an executable command was written)	
Description:	This instruction is recognized by the assembler. It writes exactly the three bytes given in p1 to the executable code. This can be used to add customized information like version numbers. Handle with care, since the bytes will be interpreted as code when the PC points to them. Important Note: Has unpredictable effects under the influence of any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.	
Category:	Miscellaneous	
equal1	Write 1 given Bytes to the executable code	
Syntax:	equal1 p1	
Parameters:	p1 = Byte string	
Calculus:	-	
Flags affected:	-	
Bytes:	1	
Cycles:	1 (or more if an executable command was written)	
Description:	This instruction is recognized only by the assembler. It writes exactly the one byte given in p1 to the executable code. This can be used to add customized	

	 information like version numbers. Handle with care, since the byte will be interpreted as code when the PC points to it. Important Note: Has unpredictable effects under the influence of any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.
Category:	Miscellaneous
getflag	Set S and Z flags
Syntax:	getflag p1
Parameters:	p1 = REG [x, y, z, r]
Calculus:	Signum flag S is set if p1 < 0 Zero flag Z indicates Zero if p1 = 0
Flags affected:	ZS
Bytes:	1
Cycles:	1
Description:	Set the signum and zero flag according to the addressed register, content of the register is not affected
Category:	Simple arithmetic

getramadr	Set RAM address pointer to the value in Z
Syntax:	getramadr
Parameters:	- The input address is always taken from Z
Calculus:	RAM address pointer = Z
Flags affected:	-
Bytes:	1
Cycles:	1
Description:	Set the RAM address pointer to the value given in Z
Category:	RAM access

goto	jump without condition	
Syntax:	goto p1	
Parameters:	p1 = JUMPLABEL	
Calculus:	PC = p1	
Flags affected:	-	
Bytes:	2 (relative jump) 3 (absolute jump)	see section "branch instructions"
Cycles:	3 (relative jump) 4 (absolute jump)	see section "branch instructions"
Description:	Jump without condition. Program counter target address is given by using a jump la Jump range: 0 to 4095 (Firmware code) a	abel or by an absolute number.
Category:	Jump	

gotoBitC	Jump on bit clear	
Syntax:	gotoBitC p1, p2, p3	
Parameters:	p1 = REG [x, y, z, r] p2 = number [031] p3 = JUMPLABEL or number	
Calculus:	if (bit p2 of register p1 == 0) PC = p3 if ((1< <p2)<="" 0="" and="" p1)="=" td=""></p2>	
Flags affected:	-	
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)	
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)	
Description:	Jump on bit clear. Program counter (PC) is set to target address if selected bit p2 in register p1 is clear. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)	
Category:	Jump	
gotoBitS	Jump on bit set	
Syntax:	gotoBitS p1, p2, p3	
Parameters:	p1 = REG [x, y, z, r] p2 = number [031] p3 = JUMPLABEL or number	
Calculus:	if (bit p2 of register p1 == 1) if ($(2^{p^2} AND p1) == 1$) PC = p3	
Flags affected:	-	
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)	
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)	
Description:	Jump on bit set. Program counter (PC) is set to target address if selected bit p2 in register p1 is set. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)	
Category:	Jump	
gotoCarC	Jump on carry clear	
Syntax:	gotoCarC p1	
Parameters:	p1 = JUMPLABEL or number	
Calculus:	if (carry is clear) PC = p1	
Flags affected:	-	
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)	
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)	
Description:	Jump on carry clear. Program counter (PC) is set to target address if the last operation that affected the carry (C) flag left it clear.	

	The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)
Category:	Jump
gotoCarS	Jump on carry set
Syntax:	gotoCarS p1
Parameters:	p1 = JUMPLABEL or number
Calculus:	if (carry is set) PC = p1
Flags affected:	-
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)
Description:	Jump on carry set. Program counter (PC) is set to target address if the last operation that affected the carry (C) flag left it set. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)
Category:	Jump
gotoEQ	Jump on equal zero
Syntax:	gotoEQ p1
Parameters:	p1 = JUMPLABEL or number
Calculus:	if (Z indicates zero) PC = p1
Flags affected:	-
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)
Description:	Jump on equal zero. Program counter (PC) is set to target address if the last operation that affected the zero (Z) flag indicated a zero result. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)
Category:	Jump
gotoNE	Jump on not equal zero
Syntax:	gotoNE p1
Parameters:	p1 = JUMPLABEL or number
Calculus:	if (Z indicates not-equal zero) PC = p1
Flags affected:	-
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)
Description:	Jump on not-equal zero. Program counter (PC) is set to target address if the last operation that affected the zero (Z) flag indicated a not-equal zero result.

	The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)	
Category:	Jump	
wete New		
gotoNeg	Jump on negative	
Syntax:	gotoNeg p1	
Parameters:	p1 = JUMPLABEL or number	
Calculus:	if (S indicates negative) PC = p1	
Flags affected:	-	
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)	
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)	
Description:	Jump on negative. Program counter (PC) is set to target address if the last operation that affected the sign (S) flag indicated a result below 0. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)	
Category:	Jump	
gotoOvrC	Jump on overflow clear	
Syntax:	gotoOvrC p1	
Parameters:	p1 = JUMPLABEL or number	
Calculus:	if (O is clear) PC = p1	
Flags affected:	-	
Bytes:	2 (relative jump) see section "branch instructions" 3 (absolute jump)	
Cycles:	3 (relative jump) see section "branch instructions" 4 (absolute jump)	
Description:	Jump on overflow clear. Program counter (PC) is set to target address if the last operation that affected the overflow (O) flag indicated no overflow. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)	
Category:	Jump	
gotoOvrS	Jump on overflow set	
Syntax:	gotoOvrS p1	
Parameters:	p1 = JUMPLABEL	
Calculus:	if (O is set) PC = p1	
Flags affected:	-	
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)	
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)	
Description:	Jump on overflow set. Program counter (PC) is set to target address if the	

	The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)
Category:	Jump
gotoPos	Jump on positive
Syntax:	gotoPos p1
Parameters:	p1 = JUMPLABEL or number
Calculus:	if (S indicates positive) PC = p1
Flags affected:	-
Bytes:	2 (relative jump)see section "branch instructions"3 (absolute jump)
Cycles:	3 (relative jump)see section "branch instructions"4 (absolute jump)
Description:	Jump on positive. Program counter (PC) is set to target address if the last operation that affected the sign (S) flag indicated a result equal or above 0. The target address is given by using a jump label or by an absolute number. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)
Category:	Jump

The following three I2C instructions are very basic and listed for the sake of completeness only. The user is asked to access the ready-made ROM routines as described in section 5.1.1.

i2cclk	I2C clock
Syntax:	i2cclk
Description:	Triggers the simplified I2C-interface Is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.

i2creq	I2C request
Syntax:	i2creq p1
Parameters:	p1 = number 0 or 1
Description:	 p1 = 0 : clears the I2C request p1 = 1 : sets the I2C request ls not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.

i2crw	I2C read / write
Syntax:	i2crw p1
Parameters:	p1 = number 0 or 1
Description:	 p1 = 0 : I2C write p1 = 1 : I2C read Is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.

incr	Increment
Syntax:	incr p1
Parameters:	p1 = REG [x, y, z, r]

Calculus:	p1 = p1 + 1
Flags affected:	COZS
Bytes:	1
Cycles:	1
Description:	Increment register by one
Category:	Simple arithmetic
outogory.	
incramadr	Increment RAM address
Syntax:	incramadr
Parameters:	-
Calculus:	-
Flags affected:	-
Bytes:	1
Cycles:	1
Description:	Increment RAM address pointer by 1
Category:	RAM access
invert	Bitwise inversion
invert Syntax:	Bitwise inversion invert p1
Syntax:	invert p1
Syntax: Parameters:	invert p1 p1 = REG [x, y, z, r]
Syntax: Parameters: Calculus:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1
Syntax: Parameters: Calculus: Flags affected:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S
Syntax: Parameters: Calculus: Flags affected: Bytes:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2
Syntax: Parameters: Calculus: Flags affected: Bytes: Cycles:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2 2
Syntax: Parameters: Calculus: Flags affected: Bytes: Cycles: Description: Category:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2 2 Bitwise inversion of register Logic
Syntax: Parameters: Calculus: Flags affected: Bytes: Cycles: Description: Category: jsub	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2 2 Bitwise inversion of register Logic Unconditional jump to a subroutine
Syntax: Parameters: Calculus: Flags affected: Bytes: Cycles: Description: Category: jsub Syntax:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2 2 Bitwise inversion of register Logic Unconditional jump to a subroutine jsub p1
Syntax: Parameters: Calculus: Flags affected: Bytes: Cycles: Description: Category: jsub Syntax: Parameters:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2 2 Bitwise inversion of register Logic Unconditional jump to a subroutine jsub p1 p1 = JUMPLABEL or number
Syntax: Parameters: Calculus: Flags affected: Bytes: Cycles: Description: Category: jsub Syntax:	invert p1 p1 = REG [x, y, z, r] p1 = NOT p1 Z S 2 2 Bitwise inversion of register Logic Unconditional jump to a subroutine jsub p1

Bytes:	2 (relative jump) 3 (absolute jump)	see section "branch instructions"
Cycles:	3 (relative jump) 4 (absolute jump)	see section "branch instructions"
Description:	Jump to subroutine without condition. The program counter is loaded by the address given through the parameter. The subroutine is processed until the keyword ,jsubret' occurs. Then a jump back is performed and the next command after the jsub instruction is executed. Jsub needs temporarily a place in the program counter (PC) stack to remember the return address. The PC stack has a depth of 8, so jsub works for up to 8 nested calls. Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)	
Category:	Jsub	

jsubret	Return from subroutine
Syntax:	jsubret
Parameters:	-
Calculus:	PC = PC after last jsub operation
Flags affected:	-
Bytes:	1
Cycles:	3
Description:	Return from subroutine. A subroutine called via ,jsub' has to be exited by using jsubret. The program is continued at the next command following the calling jsub instruction. The address for continuing is stored in the program counter (PC) stack, which has a depth of 8. This means, the combination jsub-jsubret can be used for up to 8 nested calls.
Category:	Jsub
mcten	Enable / disable measure cycle timer
Syntax:	mcten p1
Parameters:	p1 = number 0 or 1
Calculus:	-
Flags affected:	-
Bytes:	2
Cycles:	2
Description:	 p1 = 0 : Measure cycle timer disabled p1 = 1 : Measure cycle timer enabled Remark: Is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.
Category:	Miscellaneous
Move	Move
Syntax:	move p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-bit number
Calculus:	p1 = p2
Flags affected:	ZS
Bytes:	1 (p1 = REG, p2 = REG) 5 (p1 = REG, p2 = number)
Cycles:	1 (p1 = REG, p2 = REG) 5 (p1 = REG, p2 = number)
Description:	Move content of p2 to p1 (p1 = REG, p2 = REG) Move constant to p1 (p1 = REG, p2 = number)
Category:	Registerwise
mult	Signed 32-Bit multiplication
Syntax:	mult p1, p2
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r]

Calculus:	p1, p2 = p1 * p2 the 32-bit numbers p1 and p2 are multiplied to a 64-bit	
	result witch is stored in p1 (upper 32 bits and sign) and p2 (lower 32 bits)	
Flags affected:	Z and S according to p1	
Bytes:	2	
Cycles:	38	
Description:	Signed multiplication of two registers. Higher 32 bits of the multiplication result are placed to p1; lower 32 bits of the multiplication result are placed to p2. Note that the sign of the whole number is defined through the MSB of p1, while the MSB of p2 is just bit 31 of the result (p2 is unsigned). This can lead to misinterpretation by subsequent operations which assume signed numbers.	
Category:	Complex arithmetic	
nand	Logic NAND	
Syntax:	nand p1, p2	
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number	
Calculus:	p1 = p1 NAND p2 a bit is 0 when the corresponding bits of P1 and P2 are both equal to 1, otherwise the bit is 1	
Flags affected:	ZS	
Bytes:	2 (p1 = REG, p2 = REG) 6 (p1 = REG, p2 = number)	
Cycles:	3 (p1 = REG, p2 = REG) 7 (p1 = REG, p2 = number)	
Description:	Bitwise logic NAND (negated AND) of the two input parameters	
Category:	Logic	
nop	No operation	
Syntax:	nop	
Parameters:	-	
Calculus:	-	
Flags affected:	-	
Bytes:	1	
Cycles:	1	
Description:	Placeholder code or timing adjust, no operation. May be needed sometimes to separate two code bytes to prevent an assembler error message.	
Category:	Miscellaneous	
nor	Logic NOR	
Syntax:	nor p1, p2	
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number	
Calculus:	p1 = p1 NOR p2 p1 = not (p1 OR p2); in the resulting bit sequence in p1, a bit is 1 when the corresponding bits of P1 and P2 are both equal to 0, otherwise the bit is 0	

Bytes:	2 (p1 = REG, p2 = REG) 6 (p1 = REG, p2 = number)	
Cycles:	3 (p1 = REG, p2 = REG) 7 (p1 = REG, p2 = number)	
Description:	Bitwise logic NOR (negated OR) of the two input parameters	
Category:	Logic	
or	Logic OR	
Syntax:	or p1, p2	
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r] or 32-Bit number	
Calculus:	p1 = p1 OR p2 in the resulting bit sequence in p1, a bit is 0 when the corresponding bits of P1 and P2 are both equal to 0, otherwise 1	
Flags affected:	ZS	
Bytes:	2 (p1 = REG, p2 = REG) 6 (p1 = REG, p2 = number)	
Cycles:	3 (p1 = REG, p2 = REG) 7 (p1 = REG, p2 = number)	
Description:	Bitwise logic OR of the two input parameters	
Category:	Logic	
ramadr	Set RAM address pointer	
Syntax:	ramadr p1	
Parameters:	p1 = RAM cell name or 9-Bit number	
Calculus:	-	
Flags affected:	-	
Bytes:	1 (address range 0x000 to 0x03F) 2 (any address > 0x03F)	
Cycles:	1 (address range 0x000 to 0x03F) 2 (any address > 0x03F)	
Description:	Set pointer to RAM address (range: 0511)	
Category:	RAM access	

The following two routines are low-level and listed for the sake of completeness only. The user is

asked to access the ready-made ROM routines as described in section 5.1.1

revfwa	Store acam firmware revision number
Syntax:	revfwa
Description:	Stores content of X-Register to SRR_FWA_REV Used by FW ROM Code when bootloader is executed Is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.

revfwu	Store user firmware revision number
Syntax:	revfwu
Description:	Stores content of X-Register to SRR_FWU_REV Used by FW ROM Code when bootloader is executed

Is not affected by any conditional or unconditional skip command. Usage within the range of any skip command is not permitted.

rotL	Rotate left	
Syntax:	rotL p1(, p2)	
Parameters:	p1 = REG [x, y, z, r] p2 = no entry or number 215	
Calculus:	case rotL p1, without p2: p1 = (p1 << 1) + carry ; carry = MSB(p1)	
	p1 = 2*p1 + carry ; carry = MSB(p1) case rotL p1, p2: p1 = repeat (p2 times) rotL p1 Adding carry finally lets the bits of p1 circulate left over 1 or p2 positions.	
Flag affected:	C O (resulting from the last rot step), Z S (according to the final result in p1)	
Bytes:	1 (p1 = REG, p2 = none) 2 (p1 = REG, p2 = number)	
Cycles:	1 (p1 = REG, p2 = none) 1 + p2 (p1 = REG, p2 = number)	
Description:	Without p2 or p2 = 1 : Rotate p1 left by one bit position over carry. This means in detail, shift p1 register to the left, fill LSB with present carry, then move the former MSB to carry. With $2 \le p2 \le 15$: Rotate p1 left by p2 bit positions over carry. This means in detail, shift p1 register p2 times to the left, in each step fill LSB with the present carry and then move the former MSB to carry. Note: Don't use on register R in combination with bytesel $\ne 0$	
Category:	Shift and rotate	
rotR	Rotate right	
Syntax:	rotR p1(, p2)	
Parameters:	p1 = REG [x, y, z, r] p2 = no entry or number 215	
Calculus:	case rotR p1, without p2: $p1 = (p1 >> 1) + (carry << 31)$; carry = LSB(p1) \rightarrow Carry is shifted left to position 31, or p1 = integer (p1 / 2) + (carry*2 ³¹); carry = LSB(p1) case rotR p1, p2: $p1 = repeat (p2 times) rotL p1$ <i>Placing carry at MSB lets the bits of p1 circulate right over 1 or p2 positions.</i>	
Flags affected:	C O (resulting from the last rot step), Z S (according to the final result in p1)	
Bytes:	1 (p1 = REG, p2 = none) 2 (p1 = REG, p2 = number)	
Cycles:	1 (p1 = REG, p2 = none) 1 + p2 (p1 = REG, p2 = number)	
Description:	Without p2 or p2 = 1 : Rotate p1 right by one bit position over carry. This means in detail, shift p1 register to the right, fill MSB with present carry, then move the former LSB to carry. With $2 \le p2 \le 15$: Rotate p1 right by p2 bit positions over carry. This means in detail, shift p1 register p2 times to the right, in each step fill MSB with the present carry and then move the former LSB to carry. Note: Don' t use on register R in combination with bytesel $\neq 0$	

Category:	Shift and rotate	
setC	Set carry flag	
Syntax:	setC	
Parameters:	-	
Calculus:	-	
Flags affected:	СО	
Bytes:	2	
Cycles:	2	
Description:	Set carry flag and clear overflow flag	
Category:	Flags	
shiftL	Shift Left	
Syntax:	shiftL p1(, p2)	
Parameters:	p1 = REG [x, y, z, r] p2 = no entry or number 215	
Calculus:	case shiftL p1, without p2:p1 = (p1 << 1); carry = MSB(p1)"p1 << 1": p1 shifted left by 1 bit, actually means p1 multiplied by 2	
Flags affected:	C O (resulting from the last shift step), Z S (according to the final result in p1)	
Bytes:	1 (p1 = REG, p2 = none) 2 (p1 = REG, p2 = number)	
Cycles:	1 (p1 = REG, p2 = none) 1 + p2 (p1 = REG, p2 = number)	
Description:	Without p2 or p2 = 1 : Unsigned Shift p1 left by one bit position, LSB set to zero, MSB shifted out to carry. Note that this can cause fake sign changes. With $2 \le p2 \le 15$: Unsigned Shift p1 left by p2 bit positions, b2 lower bits set to zero, MSB of last step shifted out to carry. Note that this operation can cause fake sign changes. Check by OVL flag Note: Don't use on register R in combination with bytesel $\neq 0$	
Category:	Shift and rotate	
shiftR	Shift right	
Syntax:	shiftR p1(, p2)	
Parameters:	p1 = REG [x, y, z, r] p2 = no entry or number 215	
Calculus:	case shiftR p1, without p2:p1 = (p1 >> 1); carry = LSB(p1)"p1 >> 1": p1 shifted right by 1 bit, actually means p1 divided by 2in standard notation:p1 = p1 /2 with a truncation error if LSB(p1)=1case shiftR p1, p2:p1 = repeat (p2 times) shiftR p1in standard notation:p1 = p1/2p2with some truncation error due to lost lower bits	
Flags affected:	C O (resulting from the last shift step), Z S (according to the final result in p1)	
Bytes:	1 (p1 = REG, p2 = none)	

	2 (p1 = REG, p2 = number)
Cycles:	1 (p1 = REG, p2 = none) 1 p^{2} (p1 p^{2} = none)
	1 + p2 (p1 = REG, p2 = number)
Description:	Without p2 or p2 = 1 : Signed Shift p1 right by one bit position, MSB duplicated to keep sign unchanged, LSB shifted out to carry. The latter can be used to correct a possible truncation error. With $2 \le p2 \le 15$: Signed Shift p1 right by p2 bit positions, p2 leading bits set to initial MSB to keep sign unchanged. Carry is set to the last LSB shifted out, which can be used to reduce a possible truncation error. Note: Don't use on register R in combination with bytesel $\ne 0$
Category:	Shift and rotate
sign	Sign
Syntax:	sign p1
Parameters:	p1 = REG [x, y, z, r]
Calculus:	$p1 = 1 = 0x0000001$ if $p1 \ge 0$
	p1 = -1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Flags affected:	ZS
Bytes:	2
Cycles:	2
Description:	Sign of addressed register in complement of two notations. A positive value returns 1, a negative value returns -1 Zero is assumed to be positive

Category:	Simple arithmetic

skip	Skip	
Syntax:	skip p1	
Parameters:	p1 = number [1, 2, 3]	
Calculus:	PC = PC + code bytes of next p1 instructions	
Flags affected:	-	
Bytes:	1	
Cycles:	1 + cycles of the skipped commands	
Description:	Skip p1 instructions without conditions. The one, two or three active instructions following the skip command produce no result, except some instructions that may not be skipped (see below). Note that the skipped instructions are processed, but they produce no result or further activity. Use the skip commands (conditional or unconditional) for structured programming or to ignore very short code sequences – for long sequences goto is more effective. Note: The following instructions may not be skipped:	
	bitclr, bitinv, bitset, bytedir, bytesel, equal, equal1, i2cclk, i2creq, i2crw, revfwa, revfwu, clkmode, mcten	
Category:	Skip	
skinBitC	Skin on hit clear	

skipBitC	Skip on bit clear
Syntax:	skipBitC p1, p2,p3
Parameters:	p1 = REG[x, y, z, r]

	p2 = number [031] p3 = number [1, 2, 3]
Calculus:	if (bit p2 of register p1 == 0) PC = PC + code bytes of next p3 instructions
Flags affected:	-
Bytes:	2
Cycles:	2 + cycles of the skipped commands
Description:	Skip p3 commands if bit p2 of register p1 is clear. See "skip" for more details.
Category:	Skip
skipBitS	Skip on bit set
Syntax:	skipBitS p1, p2,p3
Parameters:	p1 = REG [x, y, z, r] p2 = number[031] p3 = number[1, 2, 3]
Calculus:	if (bit p2 of register p1 == 1) PC = PC + code bytes of next p3 instructions
Flags affected:	-
Bytes:	2
Cycles:	2 + cycles of the skipped commands
Description:	Skip p3 commands if bit p2 of register p1 is set. See "skip" for more details.
Category:	Skip
skipCarC	Skip carry clear
Syntax:	skipCarC p1
Parameters:	p1 = number [1, 2, 3]
Calculus:	if (carry == 0) PC = PC + code bytes of next p1 instructions
Flags affected:	-
Bytes:	1
Cycles:	1 + cycles of the skipped commands
Description:	Skip p1 commands if carry clear. See "skip" for more details.
Category:	Skip
skipCarS	Skip carry set
Syntax:	skipCarS p1
Parameters:	p1 = number [1, 2, 3]
Calculus:	if (carry == 1) PC = PC + code bytes of next p1 instructions
Flags affected:	-

skipEQ	Skip on zero	
Syntax:	skipEQ p1	
Parameters:	p1 = number [1, 2, 3]	
Calculus:	if (Z indicates zero) PC = PC + code bytes of next p1 instructions	
Flags affected:	-	
Bytes:	1	
Cycles:	1 + cycles of the skipped commands	
Description:	Skip p1 commands if result of previous operation is equal to zero. See "skip" for more details.	
Category:	Skip	
skipNE	Skip on non-zero	
Syntax:	skipNE p1	
Parameters:	p1 = number [1, 2, 3]	
Calculus:	if (Z indicates not-equal zero) PC = PC + code bytes of next p1 instructions	
Flags affected:	-	
Bytes:	1	
Cycles:	1 + cycles of the skipped commands	
Description:	Skip p1 commands if result of previous operation is not equal to zero. See "skip" for more details.	
Category:	Skip	
skipNeg	Skip on negative	
Syntax:	skipNeg p1	
Parameters:	p1 = number [1, 2, 3]	
Calculus:	if (S indicates negative) PC = PC + code bytes of next p1 instructions	
Flags affected:	-	
Bytes:	1	
Cycles:	1 + cycles of the skipped commands	
Description:	Skip p1 commands if result of previous operation was smaller than 0. See "skip" for more details.	
Category:	Skip	
skipOvrC	Skip on overflow clear	
Syntax:	skipOvrC p1	
Parameters:	p1 = number [1, 2, 3]	
Calculus:	if (O is clear) PC = PC + code bytes of next p1 instructions	
Flags affected:	-	
Bytes:	1	
Cycles:	1 + cycles of the skipped commands	
Description:	Skip p1 commands if overflow is clear. See "skip" for more details.	

Category:	Skip
skipOvrS	Skip on overflow set
Syntax:	skipOvrS p1
Parameters:	p1 = number [1, 2, 3]
Calculus:	if (O is set) PC = PC + code bytes of next p1 instructions
Flags affected:	-
Bytes:	1
Cycles:	1 + cycles of the skipped commands
Description:	Skip p1 commands if overflow is set. See "skip" for more details.
Category:	Skip
skipPos	Skip on positive
Syntax:	skipPos p1
Parameters:	p1 = number [1, 2, 3]
Calculus:	if (S indicates positive) PC = PC + code bytes of next p1 instructions
Flags affected:	-
Bytes:	1
Cycles:	1 + cycles of the skipped commands
Description:	Skip p1 commands if result of previous operation was greater or equal to 0. See "skip" for more details.
Category:	Skip
stop	Stop
Syntax:	stop
Parameters:	-
Calculus:	-
Flags affected:	-
Bytes:	1
Cycles:	1
Description:	The CPU and the CPU clock are stopped. Usually this instruction is the last command in the assembler listing, it ends any CPU activity. New activity starts by request of the task sequencer or over external communication. Note that the request flag that started the CPU activity must be cleared by the CPU before stop, to indicate that this request was processed.
Category:	Miscellaneous
sub	Substraction
Syntax:	sub p1, p2

Syntax:	sub p1, p2
Parameters:	p1 = REG [x, y, z, r]
	p2 = REG[x, y, z, r] or 32-Bit number
Calculus:	p1 = p2 - p1
Flags affected:	COZS

Bytes:	1 (p1 = REG, p2 = REG) 5 (p1 = REG, p2 = number)	
Cycles:	1 (p1 = REG, p2 = REG) 5 (p1 = REG, p2 = number)	
Description:	Subtraction of the two parameters	
Category:	Simple arithmetic	
swap	Swap	
Syntax:	swap p1, p2	
Parameters:	p1 = REG [x, y, z, r] p2 = REG [x, y, z, r]	
Calculus:	p1 = p2 and $p2 = p1$	
Flags affected:	-	
Bytes:	1	
Cycles:	3	
Description:	Swap of 2 registers. The value of two registers is exchanged between each other.	

5 Libraries and pre-defined routines

GP30Y comes with a number of predefined routines in its ROM. Some of them are ready-to-use and freely available. The ROM routines are organized in a library, defined by a so called header file which relates routine and variable names to their call addresses and memory addresses, respectively:

common.h General purpose routines

File "common.h" that comes with the assembler must be included in codes that use any of these routines (use the "include" statement in the main *.asm file). The routines are called using their ROM routine name after jsub or any goto statement. The ROM routine name is a synonym of the call address, as defined in the header file. The call address may be used alternatively.

Some routines come in different alternative versions or with alternative start addresses. To some extent, this allows the user to select different RAM cells for data storage. A typical example would be a routine which needs some cells of usual RAM, and an alternative version where cells in the firmware data (FWD) range are used instead – this second one frees up RAM space and could make use of automated non-volatile storage, at the cost of firmware data space. Another reason for alternative start addresses is to skip a part of the routine if some part of the preparation work is not needed or undesired (for example when some numbers calculated at the start of the routine are already known). The differences between the versions are explained for each routine in detail in the subsequent sections.

Number format: As usual in fixed decimal-point arithmetic, care has to be taken to set values in the right format. Unless differently noted, all numbers are in **two's complement** (MSB determines sign). The binary representation B_bin of a fractional number is defined with a fixed number N of fractional binary digits, such that the corresponding decimal number B_dec is calculated as: B_dec = Bin_into_decimal(B_bin)/2^N. Throughout this document, such a format will be labeled "**fd N**" – N **fractional digits**. A typical value format is fd 16, covering a fractional number range from about - 32768.0 to 32768.0 (when using 32 bit RAM cells).

The second factor to be considered in calculations is the unit, which in many cases comes with a fixed factor, for example whenever values are related to a particular physical value. A typical example is measured TOF time, which is always given as fd 16 in HSC periods (250 ns for 4 MHz operation). This means, the measured Time-of-flight value in time units TOF relates to the measured number TOF_bin as: TOF = $(Bin_into_decimal(TOF_bin)/2^16) * 250$ ns. Another example is the first hit level FHL, which is given as an integer binary number FHL_bin with an LSB of about 0.88mV: FHL = $Bin_into_decimal(FHL_bin) * 0.88$ mV.

Due to the internal calculation processes, the range of values which generate correct results in some calculation is limited and depends on the format definition. For example, a multiplication of two 32 bit numbers always generates a correct 2*32 bit result (in two words, Y and X register). But if this result is formatted into one single word in fd 16 format (for example using ROM_FORMAT_64_to_32BIT)

for further calculations, the result can only be right when the leading 16 bit of the original result where 0 (and of course, some accuracy is lost by cutting the lowest 16 bit, too). Such effects have to be considered in any routine that deals with actual calculations. Wherever applicable, number formats and additional range limitations are given in the subsequent routine descriptions.

5.1 common.h

The general purpose routines defined in common.h are listed in the following. Note that not all of them can be used in the same code, depending on memory allocation. Some routines are included in alternative versions, to enable optimized memory usage. In the following sections, the ROM routines defined in common.h are grouped according to their usage. The table gives an overview:

Name	Description	Remarks
Filtering	· · ·	
ROM_INIT_FILTER	Routine to initialize the RAM cells for any filter (rolling average or median) with a given value	
ROM_ROLL_AVG	Routine to filter the FILTER_IN values using a rolling average filter	Filter length can be configured
ROM_ROLLAVG_OUTLIER	Routine to filter the FILTER_IN values using a rolling average filter. One value which deviates most is always ignored.	Filter length can be configured
ROM_MEDIAN	Routine to filter the FILTER_IN values using a median filter	Filter length can be configured
ROM_FILTER_FLOW	Routine to filter flow values used by acam firmware	Filter length is fixed N=16
Error detection and handling		
ROM_EH	This routine checks all error flags and suppresses processing of wrong results.	many RAM cells fixed
ROM_PP_AM_MON	Monitor the amplitude values and check limits to identify bad measurements	alternative calls exist
ROM_PP_AM_CALIB	This routine gets the Amplitude Calibration values (H & L) and evaluates the gradient and offset that can be used for calculating the actual amplitude.	alternative calls exist
Pulse interface and flow volume		
ROM_CFG_PULSE_IF	This routine configures the pulse interface with the parameters calculated from the given configuration.	
ROM_PI_UPD	Pulse Interface Update Routine	
ROM_PP_PI_UPD	Pulse Interface Update Routine with input from RAM	
ROM_RECFG_PULSEIF_FOROM R_ERROR1	Reconfiguring the pulse interface outputs GPIO0 and GPIO1 as normal GPIOs to signal an error	
ROM_SIGNAL_ERROR_ON_PUL SEIF1	Signaling error on the pulse interface GPIO0 and GPIO1	
ROM_RECFG_PULSEIF_FOR_P ULSE1	Configuring GPIO0 and GPIO1 as pulse interface outputs	

Table 5-1 ROM-routines for common usage

ROM_SAVE_FLOW_VOLUME	This routine is used to store the converted	alternative
	flow (in LPH), cumulatively to flow volume	versions exist
	in cubic meter.	
Sensor temperature measurement		
ROM_TEMP_POLYNOM	Calculates the temperature of a PT sensor	
DOM TEMP LINEAR EN	using a polynomial approximation	
ROM_TEMP_LINEAR_FN	This routine is used to calculate the	
	temperature of any sensor as a linear function of sensor resistance using the	
	nominal resistance and sensor slope.	
ROM_TM_SUM_RESULT	Sums up the results of double temperature	
nom_nm_som_nesser	measurements. The double measurements	
	are performed to eliminate the 50/60 Hz	
	disturbance.	
Interface communication		
ROM_I2C_ST	I2C Start Byte Transfer	Low-level
ROM_I2C_BT	I2C Byte Transfer	routines,
ROM_I2C_LT	I2C Last Byte Transfer	covered bythe
		ones following
ROM_I2C_DWORD_WR	Write 4 bytes of data to a specified	3
_	address through the I2C interface	
ROM_I2C_BYTE_WR	Write a single byte of data to a specified	
	address through the I2C interface	
ROM_I2C_DWORD_RD	Sequentially read 4 data bytes from the	
	I2C interface	
ROM_I2C_BYTE_RD	Sequentially read a single data byte from	
	the I2C interface	
ROM_COPY_UART_PRB_DATA	This routine is used to copy the relevant	alternative
	data for the UART Master into the Probe	calls for
	data area. The data is then sent over	optimized
Hausakaaning	UART interface to the master.	memory
Housekeeping ROM CPU CHK	Check kind of CDU request. This routing is	automoti collu
ROM_CPU_CHK	Check kind of CPU request: This routine is called by hardware design after any Post	automati-cally started
	Processing (PP) request, it is the starting	Starteu
	point of any CPU activity, including the	
	firmware call at MK CPU REQ .	
ROM_USER_RAM_INIT	Initialize the entire user RAM with 0	
High speed oscillator		
ROM_HSO_WAIT_SETTL_TIME	This routine is used to switch on the High	
	speed oscillator clock and wait out its	
	settling time (122 us)	
ROM_HSC_CALIB	This routine evaluates the high speed	
	clock scaling factor for the 4MHz / 8 MHz	
	clock	
ROM_SCALE_WITH_HSC	Routine to scale the input parameter with	
	the HS Clock Calibration factor	
Configuration		
ROM_RESTORE_TOF_RATE	Routine to reconfigure TOF_RATE	alternative
_	generator from a lower rate after ZERO	version for free
	FLOW ends	configuration
ROM_RECFG_TOF_RATE	Routine to reconfigure TOF_RATE	
	generator to a lower rate, depending on	
	the parameter N	
Mathematics		

ROM_FORMAT_64_TO_32BIT	Routine to format a 64-bit value (in Y and X) into a 32 bit result with 16 integer + 16 fractional bits. Useful for formatting 64 bit multiplication results with 32 integer + 32 fractional bits	alternative version: faster, but needs tem- porary RAM
ROM_DIV_BY_SHIFT	Perform the division of a value Y by X, where X=2^N is an integer power of two	
ROM_SQRT	Evaluate the square root accurately for values in the range (196 <= X <= 5476)	
ROM_LINEAR_CORRECTION	Linear interpolation of a coefficient between two sampling points	alternative version is fixed to interpolation over THETA
ROM_FIND_SLOPE	Used to find the slope between two points, given the coefficient values and parameter values at the two points.	

5.1.1 ROM Routines in Detail

Data Filtering:

ROM routine name	ROM_INIT_FILTER / ROM_INIT_FILTER1
Description	Routine to initialize the RAM cells for any block of RAM cells of size N and starting at a given address with a given value (use to initialize rolling average or median filter). The routine has an alternative start address <i>ROM_INIT_FILTER1</i> , where <i>RAM_R_V32_FILTER</i> remains unchanged, but Y returns undefined.
Prerequisite	-
Input parameters / register values	X: contains value to be initialised in the RAM cells(any format)Y: Number of RAM cells to be initialised N(integer)Z: Starting RAM Address of the filter(integer)
Output/Return value	NVRAM cells starting at the address in Z are initialised with the value in X
Temporary RAM	RAM_R_V32_FILTER (remains unchanged when using ROM_INIT_FILTER1)
Permanent RAM	-
Routines used	-
Unchanged registers	X, Z; (Y unchanged when using <i>ROM_INIT_FILTER</i>)

Description	This routine averages a list of the last N <i>FILTER_IN</i> values using a rolling average filter. With every call it removes the oldest value from the list end and adds the new one at the beginning. Then it determines the new average by calculating the arithmetic mean from the N list values. The final output value must not exceed the maximal representable number/N in the chosen format (else overflow occurs).
Prerequisite	For correct results, all N RAM cells of the filter must contain valid values. Use ROM_INIT_FILTER once before first routine call for proper initialization.
Input parameters / register values	X: new value to be added to the filter list (<i>FILTER_IN</i>) (any format)Y: filter length N(integer)Z: Starting address of the rolling average filter RAM cell block of lengthN
Output/Return value	X: new average (same format as X input)
Temporary RAM	RAM_R_V32_FILTER
Permanent RAM	-
Routines used	-
Unchanged registers	(all registers X, Y, Z and R are in use)

ROM routine name	ROM_ROLLAVG_OUTLIER	
Description	This routine averages a list of the last N FILTER_IN values using a rolling average filter. With every call it removes the oldest value from the list end and adds the new one at the beginning. Then it determines the new average by calculating the arithmetic mean from the N list values – except the one value that deviates the most from the last average (the OUTLIER). This one value is replaced by the previous one (ONLY for the calculation, the original value remains in the list), in order to filter out single error points. The final output value must not exceed the maximal representable	
	number/N in the chosen format (else overflow occurs).	
Prerequisite	For correct results, all N RAM cells of the filter must contain valid values. Use <i>ROM_INIT_FILTER</i> once before first routine call for proper initialization.	
Input parameters / register values	 X: new value to be added to the filter list (<i>FILTER_IN</i>) (any format) Y: filter length N (integer) Z: Starting address of the rolling average filter RAM cell block of length N <i>RAM_R_V30_PREV_AVG</i> with the previous averaged result 	
Output/Return value	X: new average (same format as X input) Z: last valid value that replaced the OUTLIER (same format as X input) Bit BNR_NEW_VAL_IS_OUTLIER in <i>RAM_R_FW_STATUS</i> is set if the current new value is then OUTLIER – to be recognized for later error handling, for example to replace the new value by Z in other calculations	
Temporary RAM	RAM_R_V32_FILTER, RAM_R_V31_FILTER_2, RAM_R_V33_FILTER_SUM	
Permanent RAM	RAM_R_FW_STATUS, RAM_R_V30_PREV_AVG	
Routines used	-	
Unchanged registers	(all registers X, Y, Z and R are in use)	
enenangea registere		

ROM routine name	ROM_MEDIAN
Description	This routine calculates the median of a list of the last N <i>FILTER_IN</i> values. With every call it removes the most different value from the ordered list and sorts the new one. Then it calculates the new median.
Prerequisite	For correct results, all N RAM cells of the filter must contain valid values. Use <i>ROM_INIT_FILTER</i> once before first routine call for proper initialization.
Input parameters / register values	X: new value to be added to the filter list (FILTER_IN)(any format)Y: filter length N(integer)Z: Starting address of median filter RAM cell block of length N
Output/Return value	X: new median (same format as X input)
Temporary RAM	RAM_R_V32_FILTER, RAM_R_V31_FILTER_2
Permanent RAM	-
Routines used	-
Unchanged registers	(all registers X, Y, Z and R are in use)

ROM routine name	ROM_FILTER_FLOW
Description	Routine to filter the flow value with a rolling average filter of length 16. The routine initializes the filter at its first call with its input value, and calculates with each new call a new averaged flow value with the oldest value replaced by the new input from RAM_R_VA2_FLOW_LPH_TO_FLT. The final output value must not exceed the maximal representable number/16 in the chosen format (else overflow occurs). Used by ams firmware only.
Prerequisite	All 16 filter cells in RAM, starting at RAM_R_ROLAVG_1 , must still contain the former values.
Input parameters / register values	RAM_R_VA2_FLOW_LPH_TO_FLT(any format)
Output/Return value	X: averaged flow value (same format as input) Values in 16 filter cells in RAM, starting at <i>RAM_R_ROLAVG_1</i> , are shifted by one cell, dropping the oldest value at the end and storing the new input value in <i>RAM_R_ROLAVG_1</i> First call: all 16 filter cells get initialized to <i>RAM_R_VA2_FLOW_LPH_TO_FLT</i> , and Bit BNR_FLOW_FILT_INIT_DONE in <i>RAM_R_FW_STATUS</i> is set.
Temporary RAM	-
Permanent RAM	RAM_R_FW_STATUS, RAM_R_VA2_FLOW_LPH_TO_FLT, RAM_R_ROLAVG_1, RAM_ ROLAVG_2 RAM_ROLAVG_16
Routines used	ROM_INIT_FILTER, ROM_ROLL_AVG
Unchanged registers	(all registers X, Y, Z and R are in use)

Error detection and handling:

ROM routine name	ROM_EH
Description	Error Handling: This routine checks all error flags and suppresses
	processing of wrong results.
Prerequisite	-
Input parameters /	error flags in SRR_ERR_FLAG
register values	
Output/Return value	error counters and flags are updated.
Temporary RAM	-
Permanent RAM	RAM_R_TM_ERR_CTR, RAM_R_AM_ERR_CTR,
	RAM_R_USM_ERR_CTR, RAM_R_FW_STATUS,
	RAM_R_PT_INT_TEMPERATURE, RAM_R_PTC_TEMPERATURE,

	RAM_R_PTC_TEMPERATURE, RAM_R_V2D_PT_INT_TEMPERATURE_OLDVAL, RAM_R_V2B_PTC_TEMPERATURE_OLDVAL, RAM_R_V2C_PTH_TEMPERATURE_OLDVAL, RAM_R_FHL_ERR_CTR, RAM_R_FLOW_LPH, RAM_R_THETA, RAM_R_V29_FLOW_LPH_OLDVAL,
	RAM_R_V2A_FLOW_THETA_OLDVAL
Routines used	ROM_REPLACE_WITH_OLD_TOFS
Unchanged registers	Ζ

ROM routine names	ROM_PP_AM_MON / ROM_PP1_AM_MON
Description	AM monitoring: This routine reads the raw amplitude values from the
	front end data buffer and checks if they are above the user given limit in
	<i>FWD_R_AM_MIN</i> . This is done by direct comparison of <i>FDB_US_AM_U</i>
	and <i>FDB_US_AM_D</i> with <i>RAM_R_AM_MIN_RAW</i> (provided by
	ROM_PP_AM_CALIB or ROM_PP1_AM_CALIB).
	The routine sets the flag BNR_AMP_VAL_TOO_LOW bit in
	RAM_R_FW_ERR_FLAGS register, if any of the amplitudes is too low,
	or clears it in the opposite case (sufficient signal amplitudes).
	The alternative call ROM_PP1_AM_MON does not need the RAM cell
	RAM_R_AM_MIN_RAW , it gets the same value from Z.
Prerequisite	An AM measurement must be done before, with valid results in
	FDB_US_AM_U and FDB_US_AM_D.
Input parameters /	RAM_R_AM_MIN_RAW: Min. amplitude raw value in HSC periods (fd
register values	16)
-	equivalent to the user's minimum amplitude limit FWD_R_AM_MIN in
	mV.
	or alternatively, with ROM_PP1_AM_MON , use Z instead as input:
	Z: Minimal. amplitude raw value in HSC periods (as above) (fd 16)
Output/Return value	BNR_AMP_VAL_TOO_LOW in RAM_R_FW_ERR_FLAGS register
Temporary RAM	·
Permanent RAM	RAM_R_FW_ERR_FLAGS
	only ROM_PP_AM_MON : RAM_R_AM_MIN_RAW
Routines used	-
Unchanged registers	X, Y

ROM routine name	ROM_PP_AM_CALIB / ROM_PP1_AM_CALIB
Description	These routines are used after an amplitude calibration measurement. Using the new amplitude calibration values (FDB_US_AMC_VH and FDB_US_AMC_VL), they calculate gradient RAM_R_AMC_GRADIENT and offset RAM_R_AMC_OFFSET that are needed for calculating actual amplitudes (this is not done here, see manual for equations). In addition, they scale the amplitude limit FWD_R_AM_MIN into an equivalent raw value RAM_R_AM_MIN_RAW, which can be directly compared to measured time values. This avoids frequent multiplications or divisions. Note that all calculated values change slowly over time, so they need to be updated rarely, but regularly. The routine ROM_PP_AM_CALIB uses a hard-coded typical AM amplitude value of 350mV as reference. The alternative call ROM_PP1_AM_CALIB has an input cell from firmware data (FWD_R_VCAL_TYP) instead, such that the voltage reference can be adapted if necessary. Applied formulae: RAM_R_AMC_GRADIENT = VCAL/ (FDB_US_AMC_VH - FDB_US_AMC_VL) RAM_R_AMC_OFFSET = (2 * FDB_US_AMC_VL - FDB_US_AMC_VH)

r	
	* RAM_R_AMC_GRADIENT
	(note: for subsequent amplitude calculations,
	RAM_R_AMC_OFFSET
	must be further corrected outside the routine:
	offset = RAM_R_AMC_OFFSET +(SHR_ZCD_LVL - 796)*0.9V/1024
	RAM_R_AM_MIN_RAW = (FWD_R_AM_MIN + AMC_OFFSET +
	AM_CORR_FACTOR) / AMC_GRADIENT
	AM_CORR_FACTOR= (SHR_ZCD_LVL - 796) * 0.9V /1024
	SHR ZCD LVL is the current zero cross detection level (LSB
	≈0.88mV).
Prerequisite	AM calibration measurements must be done before, with valid results in
	FDB US AMC VH and FDB US AMC VL. The zero cross detection
	level SHR ZCD LVL must be adjusted. All these parameters are
	assumed to change slowly enough to be considered constant between
	two AM calibrations.
Input parameters /	FWD R AM MIN : User given lower amplitude limit in mV (fd 16)
register values	only ROM PP1 AM CALIB :
	FWD R VCAL TYP : reference amplitude in mV
	(integer)
Output/Return value	X = RAM_R_AM_MIN_RAW in HSC periods:
	(fd 16)
	raw lower amplitude limit for direct measurement comparison
	$\mathbf{Y} = \mathbf{RAM}_{\mathbf{R}} \mathbf{AMC}_{\mathbf{GRADIENT}} \text{ in mV/HSC period,} \qquad (fd 16)$
	RAM R AMC OFFSET in mV:
	(fd 16)
	parameters for calculation of amplitudes in mV from
	FDB US AM U and FDB US AM D (use raw values in HSC
	periods)
Temporary RAM	RAM R VA9 AMC DIFF
Permanent RAM	FWD R AM MIN, RAM R AM MIN RAW, RAM R AMC GRADIENT,
	RAM_R_AMC_OFFSET;
	only ROM_PP1_AM_CALIB: FWD_R_VCAL_TYP
Routines used	ROM_FORMAT1_64_TO_32BIT
Unchanged registers	(all registers X, Y, Z and R are in use)
Chonangea registers	

Pulse interface and flow volume:

ROM routine name	ROM_CFG_PULSE_IF
Description	This routine configures the pulse interface with the parameters
	calculated from the given configuration. The routine thus prepares the
	use of <i>ROM_PI_UPD</i> for flow output over the pulse interface. The
	implemented configuration aims at generating not more than one pulse
	per auto update, to prevent multiple pulses.
Prerequisite	-
Input parameters /	X : Number of pulses per liter (<i>PULSE_PER_LITER</i>)
register values	(integer)
	Y: Maximum flow in liter per hour (MAX_FLOW) (integer)
	Z : <i>MEAS_RATE_INV</i> = ((TS_CM + 1) * TS_CT * TOF_RATE) /
	(1000 + (LP_MODE *24)) (fd 16)
	- TS_CM : Cycle mode (Task sequencer)
	- TS_CT : Cycle time (Task sequencer)
	- TOF_RATE: Time of Flight Rate
	 LP_MODE: Low Power Mode (accounts for change in task
	sequencer
	period in low power mode from 1ms to 1000/1024ms)
	LP_MODE - Low Power Mode
Output/Return value	Pulse interface registers SHR_PI_AU_NMB, SHR_PI_AU_TIME,
	SHR PI TPA and the PI TPW bits in CR PI are configured.
	X: FLOW_SCALE_FACT
	= PULSE_PER_LITER* MEAS_RATE_INV (fd 16)
	The FLOW_SCALE_FACT is used to be multiplied with the actual flow
	(I/h) for updating the pulse interface. It is typically applied by moving it
	to RAM_R_FLOW_SCALE_FACT before calling ROM_PI_UPD .
Temporary RAM	RAM_R_VA4_FLOWVAR_2, RAM_R_VA5_FLOWVAR_1
Permanent RAM	-
Routines used	ROM_DIV_BY_SHIFT
Unchanged registers	(all registers X, Y, Z and R are in use)
DOM routing name	ROM BLURD

ROM routine name	ROM_PI_UPD
Description	Pulse Interface Update routine This routine calculates the number of pulses equivalent to a given flow (in l/h), based on the configuration settings, and initializes it in the SHR_PI_NPULSE register.
Prerequisite	ROM_CFG_PULSE_IF must be called ONCE before using this routine, and the resulting FLOW_SCALE_FACTOR must be moved to RAM_R_FLOW_SCALE_FACT .
Input parameters / register values	X : Flow in liter per Hour (fd 16) RAM_R_FLOW_SCALE_FACT must contain FLOW_SCALE_FACT (fd 16) (using ROM_CFG_PULSE_IF routine, see above)
Output/Return value	SHR_PI_NPULSE register is updated with the Number of Pulses equivalent to the current flow in I/h.
Temporary RAM	RAM_R_VA5_FLOWVAR_1

Permanent RAM	RAM_R_FLOW_SCALE_FACT
Routines used	-
Unchanged registers	(all registers X, Y, Z and R are in use)
ROM routine name	ROM_PP_PI_UPD
Description	This routine organizes the update of the pulse interface by calling ROM_PI_UPD with RAM_R_FLOW_LPH as input argument.
Prerequisite	-
Input parameters / register values	RAM_R_FLOW_LPH : current flow in I/h (fd 16)
Output/Return value	SHR_PI_NPULSE register is updated with the Number of Pulses equivalent to the current flow in I/h.
Temporary RAM	-
Permanent RAM	RAM_R_FLOW_LPH
Routines used	ROM_PI_UPD
Unchanged registers	(all registers X, Y, Z and R are in use)

ROM routine name	ROM_RECFG_PULSEIF_FOR_ERROR1
Description	Reconfigure the pulse interface outputs GPIO0 and GPIO1 as normal
	GPIOs to signal an error. Use this routine once whenever the pulse
	interface has to signal an error, then repeat calling (e.g. once in every
	measurement cycle) ROM_SIGNAL_ERROR_ON_PULSEIF.
Prerequisite	-
Input parameters /	-
register values	
Output/Return value	Register CR_GPC is configured for using GPIO 0 and GPIO 1 as normal
	GPIO output, such that the CPU has direct control over the signals.
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	X, Y, Z

ROM routine name	ROM_SIGNAL_ERROR_ON_PULSEIF1
Description	Signaling error on the "pulse interface" outputs GPIO0 and GPIO1. GPIO0: Output =1 GPIO1 : Output - toggling signal (toggles after every routine call). Prepare signaling an error over the pulse interface by calling
	ROM_RECFG_PULSEIF_FOR_ERROR (to hand over signal control to the CPU). Then repeat calling ROM_SIGNAL_ERROR_ON_PULSEIF (e.g. once in every measurement cycle) as long as the error condition remains.
Prerequisite	Call ROM_RECFG_PULSEIF_FOR_ERROR once before
Input parameters / register values	The last state of GPIOs is stored in SHR_GPO
Output/Return value	GPIO0: Output =1
	GPIO1 : Output - toggling signal (toggles after every routine call).
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	Y, Z

ROM routine name	ROM_RECFG_PULSEIF_FOR_PULSE1
Description	Configures GPIO0 and GPIO1 as pulse interface outputs in direction mode. Use this routine to initialize the pulse interface on GPIO0 and GPIO1, or to end an error state after ROM_RECFG_PULSEIF_FOR_ERROR and ROM_SIGNAL_ERROR_ON_PULSEIF were applied.
Prerequisite	-
Input parameters /	-
register values	
Output/Return value	Register CR_GPC is configured for using GPIO 0 and GPIO 1 as pulse interface outputs in direction mode.
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	X, Y, Z

ROM routine names	ROM_SAVE_FLOW_VOLUME / R ROM_SAVE1_FLOW_VOLUME / ROM_SAVE2_FLOW_VOLUME / ROM_SAVE3_FLOW_VOLUME /	ROM_SAVE ROM_SAVE ROM_SAVE	11_FLOW_V 21_FLOW_V 31_FLOW_V	OLUME OLUME OLUME
Description	Scription These routines are used to calculate the flow volume of one measurement cycle from the present flow (usually in l/h), and sto cumulatively to flow volume (usually in cubic meter). Operation: FLOW_LPH * VOLUME_FACTOR (V.F.) -> flow (e.g. in cubic meters) per cycle -> accumulate (add to/subtract from) the flow (integer and fractional part)		nd store it	
	Calculation steps <i>for VOLUME_F</i> a) <i>FLOW_LPH</i> /3600 -> <i>FLOW_L</i>		iter -> I/h:	
	 b) <i>FLOW_LPS</i> * <i>MEAS_RATE_INV</i> -> <i>FLOW</i> in liter per meas. cycle c) Flow in liter per meas. cycle/1000 -> Flow in cubic meter per cycle d) Flow in cubic meter per cycle -> add it to the Flow Volume (integer and fractional part) Actual calculation of the <i>VOLUME_FACTOR</i> from configuration data: <i>VOLUME_FACTOR</i> = [(TS_CM + 1) * TS_CT * TOF_RATE] / [(1000 + (LP_MODE*24))*3600*1000] Here the following configuration parameters are used: - TS_CM : Cycle mode (Task sequencer) - TS_CT: Cycle time (Task sequencer) - TOF_RATE: Time of Flight Rate - LP_MODE: Low Power Mode (accounts for change in task sequencer period in low power mode from 1ms to 1000/1024ms) 			
	The actual decision on units is dor appropriate input scaling (I/h or so VOLUME_FACTOR.			ining the
Difference between the routine calls:	ROM routine name	RAM region:	input from:	parameterm eaning:
The routines operate	¹ ROM_SAVE_FLOW_VOLUME	RAM	RAM	Flow & V.F.
either on usual RAM	² ROM_SAVE1_FLOW_VOLUME	RAM	X,Y	Flow & V.F.
or on firmware data	³ ROM_SAVE2_FLOW_VOLUME	FWD	X,Y	Flow & V.F.
(FWD) RAM, which is	⁴ ROM_SAVE3_FLOW_VOLUME	FWD	FWD-RAM	Flow & V.F.
useful for regular per- manent storage. Their input comes from X, Y	⁵ ROM_SAVE01_FLOW_VOLUM E,	RAM	X,Y	Volume

			-	1
or RAM, and can have	^e ROM_SAVE11_FLOW_VOLUM			
different meaning	E			
(see below).				
	⁷ ROM_SAVE21_FLOW_VOLUM			
	E,		~ ~ ~	N/ 1
	⁸ ROM_SAVE31_FLOW_VOLUM	FWD	X,Y	Volume
	E			
Prerequisite	The RAM cells RAM_R_FLOW_V		C and	
depending on actual	RAM_R_FLOW_VOLUME_FRAC			w volume of
call, see above	previous measurements.			
	^{1,4} RAM cells used for input must c	ontain the ri	aht naramata	r (see above)
Input parameters /	^{2,3} X or ⁴ FWD R FLOW LPH or			
register values:				sually in I/h)
register values.	or ^{5,6,7,8} X: the additional flow value	lumo /fd		sually III I/II)
The meaning of input	^{2,3} Y or ⁴ FWD_R_VOLUME_FAC		32, usually cl	ubic meters)
depends on the actual	¹ FWD_R_VOLUME_FACTOR:	15-1-4	4	· · · · · · · · · · · · · · · · · · ·
call, see above.	VOLUME_FACTOR		4; note that th	
			so the upper	
		ero and "abo	ove" the actua	l data word)
	or $5,6,7,8$ Y = X			
Output/Return value	64-bit Volume Flow result in RAM			
	^{1,2,5,6} RAM_R_FLOW_VOLUME_IN			
Output may be in	RAM_R_FLOW_VOLUME_F	RACTION	(fd 32, usu	ally in cubic
usual RAM or FWD,	meters)			
depending on actual	or			
call, see above.	^{3,4,7,8} <i>FWD_R_FLOW_VOLUME_INT</i> (integer, usually in cubic meters)			
	FWD_R_FLOW_VOLUME_F	RACTION	(fd 32, usu	ally in cubic
	meters)			
Temporary RAM	-			
Permanent RAM	^{1,2,5,6} RAM_R_FLOW_VOLUME_IN			
depending on actual	RAM_R_FLOW_VOLUME_FRAC	ΤΙΟΝ		
call, see above	or			
	^{3,4,7,8} <i>FWD_R_FLOW_VOLUME_I</i> N	IT,		
	FWD_R_FLOW_VOLUME_FRACT	TION ;		
	¹ RAM_R_FLOW_LPH, RAM_R_V	OLUME_FA	CTOR	
	or			
	⁴ RAM_R_FLOW_LPH, RAM_R_V	OLUME_FA	CTOR	
Routines used	-			
Unchanged registers	(all registers X, Y, Z and R are in	use)		
2				

Sensor temperature measurement:

ROM routine name	ROM_TEMP_POLYNOM	
Description	This routine calculates the temperature of a PT sensor in °C using the polynomial approximation Temperature T = {[(PT_COEFF2 * PT_RATIO) + PT_COEFF1] * PT_RATIO } + PT_COEFF0 where PT_RATIOPT_PES (D0 of the DT sensor	
	where PT_RATIO = PT_RES / R0 of the PT sensor	(() ()
	<i>PT_COEFF2</i> = 10.115	(fd 16)
	PT_COEFF1 = 235.57	(fd 16)
	PT_COEFF0 = -245.683	(fd 16)
	This polynomial resembles the inverted R(T)-polynomial for PT	. ,
	(according to IEC 60751:2008) within 3mK accuracy between 0 100°C.	°C and
Prerequisite	-	

Input parameters / register values	X: PT_RATIO	(fd 16)
Output/Return value	X: Temperature in °C	(fd 16)
Temporary RAM	-	
Permanent RAM	-	
Routines used	ROM_FORMAT1_64_TO_32BIT	
Unchanged registers	(all registers X, Y, Z and R are in use)	

ROM routine name	ROM_TEMP_LINEAR_FN	
Description	This routine is used to calculate the temperature of any sense linear function of sensor resistance using the nominal resist sensor slope. Applied formula: Temperature T = (Sensor Resistance at T[°C] – Nominal resist RAM_R_VAF_REF_RES_VAL * S	ance and esistance) /
Prerequisite	-	
Input parameters / register values	 X: Nominal resistance Y: Sensor slope Z: Sensor resistance RAM_R_VAF_REF_RES_VAL: Reference Resistance 16) 	(fd 16) (fd 16) (fd 16) (fd
Output/Return value	X: Temperature	(fd 16)
Temporary RAM	-	
Permanent RAM	RAM_R_VAF_REF_RES_VAL	
Routines used	ROM_FORMAT1_64_TO_32BIT	
Unchanged registers	(all registers X, Y, Z and R are in use)	

ROM routine name	ROM_TM_SUM_RESULT
Description	In sensor temperature measurement, each single time measurement is repeated after some fixed delay time. Averaging these results eliminates a possible 50/60 Hz disturbance. This routine sums up all duplicate measurements (from the frontend data buffer in cells for measurement 1 and 2) and stores it in the frontend data buffer (in the cells of measurement 1). The routine works for all 2-wire or 4-wire temperature measurement results, it reads the configuration from CR_TM .
Prerequisite	The routine should be called directly after a temperature measurement.
Input parameters / register values	All frontend data buffer (FDB) cells (addresses 0x80 - 0x9B)
Output/Return value	The added results overwrite the original measurements in the first measurement FDB cells (addresses 0x80- 0x84 and 0x8A - 0x92)
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	(all registers X, Y, Z and R are in use)

Interface communication

ROM routine name	ROM_I2C_ST
Description	I2C Start Byte Transfer: Initiate an I2C read or write operation, depending on preceding i2crw-command (1=read, 0=write).
Prerequisite	I2C slave device address must be defined in CR_PI_I2C . Read or write direction must be defined by command i2crw (1=read, 0=write).
Input parameters / register values	-
Output/Return value	SRR_MSC_STF contains a flag to indicate I2C acknowledge (Bit I2C_ACK).
Temporary RAM	-

Permanent RAM	-
Routines used	-
Unchanged registers	X, Y, Z, R

ROM routine name	ROM_I2C_BT
Description	I2C Byte Transfer: Read or write one byte of data over I2C, depending
Prerequisite	on preceding i2crw-command (1=read, 0=write). I2C slave device address must be defined in CR_PI_I2C . Read or write direction must be defined by command i2crw (1=read, 0=write).In write case, R must point to the desired input RAM cell, and usually the bytedir and bytesel command must be used to select the desired byte part of the 4Byte-word in the RAM cell (use bytedir 0 and bytesel 4, 5, 6 or 7).
Input parameters / register values	R is not changed, but used as pointer to the data register by the chip hardware in write case (see "Prerequisite").
Output/Return value	SRR_MSC_STF contains a flag to indicate I2C acknowledge (Bit I2C_ACK). In read case, SRR_E2P_RD contains the transferred byte. For storing the received byte in a 4Byte RAM cell, use the bytedir and bytesel command to select the desired byte position (use bytedir 1 and bytesel 4, 5, 6 or 7, and the or command to add a new byte to a partly filled 4Byte-word).
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	X, Y, Z, R

ROM routine name	ROM_I2C_LT
Description	I2C Byte Transfer: Read or write the last transmitted byte of data over I2C, depending on preceding i2crw-command (1=read, 0=write). The
	routine sends the stop signal at the end of transmission.
Prerequisite	I2C slave device address must be defined in CR_PI_I2C . Read or write direction must be defined by command i2crw (1=read, 0=write). In write case, R must point to the desired input RAM cell, and usually the bytedir and bytesel command must be used to select the desired byte part of the 4Byte-word in the RAM cell (use bytedir 0 and bytesel 4, 5, 6 or 7).
Input parameters /	R is not changed, but used as pointer to the data register by the chip
register values	hardware in write case (see "Prerequisite" below).
Output/Return value	SRR_MSC_STF contains a flag to indicate I2C acknowledge (Bit I2C_ACK).
	In read case, SRR_E2P_RD contains the transferred byte. For storing
	the received byte in a 4Byte RAM cell, use the bytedir and bytesel command to select the desired byte position (use bytedir 1 and bytesel 4, 5, 6 or 7, and the or command to add a new byte to a partly filled 4Byte-word).
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	X, Y, Z, R

ROM routine name	ROM_I2C_DWORD_WR
Description	This routine is used to write a 4 byte-word of data to the I2C slave device, starting at a given memory address. The device address for the I2C device is taken automatically from I2C slave address of CR_PI_I2C . The routine starts with switching on the HSC and switches it off after transmission. It thus causes a high current consumption and has a long runtime. In power critical applications, its use should thus be restricted. Timing properties of the I2C slave should also be considered (e.g. long storing times after some data transmission).
Prerequisite	-
Input parameters / register values	X: 16-bit memory address (start) where the data has to be written Y: 4 bytes of data
Output/Return value	The four bytes from Y are written to the I2C slave, starting at the address given in X. In case of an error, the transmission was not acknowledged by the I2C slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.
Temporary RAM	-
Permanent RAM	RAM_R_VA1_I2CADDR, RAM_R_VA2_I2CDATA, RAM_R_FW_STATUS
Routines used	ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT
Unchanged registers	Ζ

ROM routine name	ROM_I2C_BYTE_WR	
Description	This routine is used to write a single of data to the I2C slave device to given memory address. The device address for the I2C device is taken automatically from I2C slave address of CR_PI_I2C . The routine starts with switching on the HSC and switches it off after transmission. It thus causes a high current consumption and has a long runtime. In power critical applications, its use should thus be restricted. Timing properties of the I2C slave should also be considered (e.g. long storing times after some data transmission).	
Prerequisite	-	
Input parameters / register values Output/Return value	X: 16-bit address where the data has to be writtenY: 1 byte of data(B0 of the 32 bit-word in Y is transferred)Byte B0 from Y is written to the I2C slave to the address given in X.	
	In case of an error, the transmission was not acknowledged by the I2C slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.	
Temporary RAM	-	
Permanent RAM	RAM_R_VA1_I2CADDR, RAM_R_VA2_I2CDATA, RAM_R_FW_STATUS	
Routines used	ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT	
Unchanged registers	Z	

ROM routine name	ROM_I2C_DWORD_RD
Description	This routine is used to sequentially read 4 data bytes from the I2C slave device, starting at a given memory address. The device address for the I2C device is taken automatically from I2C slave address of CR_PI_I2C . The routine starts with switching on the HSC and switches it off after transmission. It thus causes a high current consumption and has a long runtime. In power critical applications, its use should thus be restricted. Timing properties of the I2C slave should also be considered.
Prerequisite	-
Input parameters / register values	X : 16-bit memory address (start) where the data is read.

Output/Return value	X: 4 bytes of read data In case of an error, the transmission was not acknowledged by the I2C slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.
Temporary RAM	-
Permanent RAM	RAM_R_VA1_I2CADDR, RAM_R_FW_STATUS
Routines used	ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT
Unchanged registers	Z

ROM routine name	ROM_I2C_BYTE_RD
Description	This routine is used to sequentially read one single byte from the I2C slave device from a given memory address. The device address for the I2C device is taken automatically from I2C slave address of CR_PI_I2C . The routine starts with switching on the HSC and switches it off after transmission. It thus causes a high current consumption and has a long runtime. In power critical applications, its use should thus be restricted. Timing properties of the I2C slave should also be considered.
Prerequisite	-
Input parameters / register values	X: 16-bit memory address where the data is read.
Output/Return value	X: Single data byte, stored in byte B0 of X
	In case of an error, the transmission was not acknowledged by the I2C slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.
Temporary RAM	-
Permanent RAM	RAM_R_VA1_I2CADDR, RAM_R_FW_STATUS
Routines used	ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT
Unchanged registers	Z

ROM routine names	ROM_COPY_UART_PRB_DATA / ROM_COPY1_UART_PRB_DATA
Description	This routine copies the relevant data flow, temperature and flow volume for the UART Master into the probe data area. When the system is setup for UART communication, the data is then sent over UART interface to the master after the firmware execution ended (see manual). Probe Data Area 0xA0 - 0xA3 The alternative call ROM_COPY1_UART_PRB_DATA takes input data from firmware data (FWD) cells instead of usual RAM cells, which in some cases is preferable for permanent storage or memory optimization.
Prerequisite	The probe data area has to be configured in CR_UART (UART_DATA_MSG_ADR=0xA0 and UART_DATA_MSG_LEN=4)
Input parameters / register values	RAM_R_FLOW_LPH, RAM_R_THETA, RAM_R_FLOW_VOLUME_INT, RAM_R_FLOW_VOLUME_FRACTION or, using ROM_COPY1_UART_PRB_DATA FWD_R_FLOW_LPH, FWD_R_THETA, FWD_R_FLOW_VOLUME_INT, FWD_R_FLOW_VOLUME_FRACTION
Output/Return value	using ROM_COPY_UART_PRB_DATA or ROM_COPY1_UART_PRB_DATA: RAM_R_VA0_UART_PRB_DATA1=RAM/ FWD_R_FLOW_LPH, RAM_R_VA1_UART_PRB_DATA2=RAM/ FWD_R_THETA, RAM_R_VA2_UART_PRB_DATA3=RAM/ FWD_R_FLOW_VOLUME_INT, RAM_R_VA3_UART_PRB_DATA4 = RAM/ FWD_R_FLOW_VOLUME_FRACTION
Temporary RAM	-
Permanent RAM	RAM_R_FLOW_LPH, RAM_R_THETA, RAM_R_FLOW_VOLUME_INT, RAM_R_FLOW_VOLUME_FRACTION

	or, using <i>ROM_COPY1_UART_PRB_DATA</i>
	FWD_R_FLOW_LPH, FWD_R_THETA, FWD_R_FLOW_VOLUME_INT,
	FWD_R_FLOW_VOLUME_FRACTION;
	RAM_R_VA0_UART_PRB_DATA1, RAM_R_VA1_UART_PRB_DATA2,
	RAM_R_VA2_UART_PRB_DATA3, RAM_R_VA3_UART_PRB_DATA4
Routines used	-
Unchanged registers	Y, Z

Housekeeping:

ROM routine name	ROM_CPU_CHK
Description	Check kind of CPU request: This routine is called by hardware design
	after any Post Processing (PP) request. It checks the system handling register SHR_CPU_REQ and calls the requested routines.
Prerequisite	-
Input parameters /	Flag settings in SHR_CPU_REQ
register values	
Output/Return value	The routine directly calls firmware (MK_CPU_REQ), boot loader (<i>ROM_BLD</i>) or checksum generation (<i>ROM_CSM</i>) using goto. These routines generally return, after execution, to the start of <i>ROM_CPU_CHK</i> to see if SHR_CPU_REQ has changed in the meantime.
Temporary RAM	(depending on called routines)
Permanent RAM	(depending on called routines)
Routines used	MK_CPU_REQ, ROM_BLD, ROM_CSM
Unchanged registers	(all registers X, Y, Z and R are in use)
Call Address	61440 / 0xF000

ROM routine name	ROM_USER_RAM_INIT
Description	This ROM routine is used to initialize the entire user RAM with 0 as
	default value.
Prerequisite	-
Input parameters /	-
register values	
Output/Return value	All 176 user RAM cells (addresses 0x00 - 0xAF) are initialised to 0
Temporary RAM	All 176 user RAM cells
Permanent RAM	-
Routines used	-
Unchanged registers	Υ, Ζ

High speed oscillator:

ROM routine name	ROM_HSO_WAIT_SETTL_TIME
Description	This routine is used to switch on the HSO clock and wait for a fixed settling time to get a stable oscillation. A settling time of 122 us (4 clock periods of the low speed clock) is waited, using the low speed clock count value SRR_LSC_CV .
Prerequisite	-
Input parameters /	-
register values	
Output/Return value	-
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	Z

ROM routine name	ROM_HSC_CALIB
Description	High speed clock (HSC) calibration is based on a measurement of 4 periods of the 32 kHz clock, which is done by the task sequencer as configured. The result is stored in SRR_HCC_VAL as number of high speed clock periods (fd 16, ideally 488.28125 or 976.5625 periods). This routine evaluates the high speed clock scaling factor for the 4 MHz or 8 MHz clock using the formula 4 MHz : <i>HSC_SCALE_FACT</i> = 4 MHz/(32.768kHz/4) / SRR_HCC_VAL 8 MHz : <i>HSC_SCALE_FACT</i> = 8 MHz/(32.768kHz/4) / SRR_HCC_VAL It additionally checks for the deviation of measured clock period from its ideal value. If the deviation is greater than the input value in Z, then no scaling is done and bit BNR_HS_CALIB_FAIL in the <i>RAM_R_FW_ERR_FLAGS</i> register is set.
Prerequisite	The measurement of SRR_HCC_VAL must be done (initiated by the task sequencer)
Input parameters / register values	Z : Maximum allowed clock deviation in periods of the HSC (fd 16) (usually from the firmware register value FWD_HSC_DEV before the call).
Output/Return value	Calibration factor in <i>RAM_R_HSC_SCALE_FACT</i> (fd 24)
	Bit BNR_HS_CALIB_FAIL (Bit 0) in RAM_R_FW_ERR_FLAGS register is set if the clock deviation is greater than allowed.
Temporary RAM	-
Permanent RAM	RAM_R_HSC_SCALE_FACT, RAM_R_FW_ERR_FLAGS
Routines used	-
Unchanged registers	Z

ROM routine name	ROM_SCALE_WITH_HSC	
Description	Routine to scale the input parameter with the HS Clock Calibration	
	factor (RAM_R_HSC_SCALE_FA	CT)
	Scaled output = Input / RAM_R_H	
Prerequisite	RAM_R_HSC_SCALE_FACT must have the valid HS Clock Calibration	
	factor (Use <i>ROM_HSC_CALIB</i> routine)	
Inputs	X - Parameter to be scaled	(any format, integer value < 2 ³⁰)
Output	X - Scaled parameter	(same format as input X)
Temporary RAM	-	
Permanent RAM	RAM_R_HSC_SCALE_FACT	
Routines used	-	
Unchanged registers	Z	

Configuration:

ROM routine name	ROM_RESTORE_TOF_RATE / ROM_RESTORE1_TOF_RATE
Description	Routine to reconfigure the TOF_RATE generator to the original setting, stored in <i>RAM_R_CFG_TOF_RATE</i> . The alternative call <i>ROM_RESTORE1_TOF_RATE</i> does not use <i>RAM_R_CFG_TOF_RATE</i> , but Y as input for the TOF rate and thus permits a differently chosen value. The routine can only be used for TOF rates up to 31.
Prerequisite	-
Input parameters / register values	RAM_R_CFG_TOF_RATE (using ROM_RESTORE_TOF_RATE) or Y (using <i>ROM_RESTORE1_TOF_RATE</i>): new TOF rate (< 32) (integer)

Output/Return value	The TOF rate is reconfigured in SHR_TOF_RATE according to the input, and bit BNR_TOF_RATE_REDUCED in <i>RAM_R_FW_STATUS</i> is cleared.
Temporary RAM	-
Permanent RAM	RAM_R_CFG_TOF_RATE, RAM_R_FW_STATUS
Routines used	-
Unchanged registers	X, Z

ROM routine name	ROM_RECFG_TOF_RATE
Description	Routine to reconfigure TOF_RATE generator for less measurements, depending on the parameter N: New TOF_RATE = Original TOF_RATE * N The actual measurement is done only every Nth time. The routine manipulates SHR_TOF_RATE for this adjustment. It is only usable for TOF_RATES up to 31.
Prerequisite	-
Input parameters / register values	X - Factor N for lowering the TOF_RATE
Output/Return value	Z - Original TOF_RATE value from SHR_TOF_RATE Register TOF_RATE bits in SHR_TOF_RATE Register are changed (see description). Bit BNR_TOF_RATE_REDUCED is set in <i>RAM_R_FW_STATUS</i> register to indicate that the TOF_RATE was reconfigured.
Temporary RAM	-
Permanent RAM	RAM_R_FW_STATUS
Routines used	-
Unchanged registers	(all registers X, Y, Z and R are in use)

Mathematics:

ROM routine name	ROM_FORMAT_64_TO_32BIT
Description	Routine to format a 64-bit value (in Y and X) into a 32 bit result with 16
	integer + 16 fractional bits
	This can be used to format 64 bit multiplication results with 32 integer +
	32 fractional bits into a usual fd 16 word. The MSB of the integer part in
	Y defines the sign, as if Y and X would be a single 64 bit word.
	This routine has the same function as ROM_FORMAT1_64_TO_32BIT ,
	but does not need RAM. It is, however, essentially slower.
Prerequisite	-
Input parameters /	Y: Higher 32 bits of the value
register values	(integer part with maximum 16 significant bits, signed !)
	X: Lower 32 bits of value (fractional part, unsigned !)
Output/Return value	X: 32-bit result with 16 Integer + 16 fractional bits (fd 16)
Temporary RAM	-
Permanent RAM	-
Routines used	-
Unchanged registers	Z, R

ROM routine name	ROM_FORMAT1_64_TO_32BIT
escription	Routine to format a 64-bit value (in Y and X) into a 32 bit result with 16
	integer + 16 fractional bits
	This can be used to format 64 bit multiplication results with 32 integer +
	32 fractional bits into a usual fd 16 word. The MSB of the integer part in
	Y defines the sign, as if Y and X would be a single 64 bit word.

	This routine has the same function as ROM_FORMAT_64_TO_32BIT , but is essentially faster at the cost of one temporary RAM cell.					
Prerequisite	-					
Input parameters /	Y: Higher 32 bits of the value					
register values	(integer part with maximum 16 signif	icant bits, signed !)				
	X: Lower 32 bits of value (fraction	al part, unsigned !)				
Output/Return value	X: 32-bit result with 16 Integer + 16 fractional bits	(fd 16)				
Temporary RAM	RAM_R_V1F_SHIFT					
Permanent RAM	-					
Routines used	-					
Unchanged registers	Ζ					

ROM routine name	ROM_DIV_BY_SHIFT					
Description	Routine to perform the division of a value Y by X , where $X=2^N$ is an integer power of two. Result = $Y/X = Y/2^N$					
Prerequisite	-					
Input parameters /	X - Divisor (denominator) = 2 ^N value	(integer)				
register values	Y - Dividend (numerator)	(any format)				
Output/Return value	Y - Result of division	(same format as input Y)				
Temporary RAM	-					
Permanent RAM	-					
Routines used	-					
Unchanged registers	Z, R					

ROM routine name	ROM_SQRT
Description	This routine is used to evaluate the square root using the Newton method accurately for values in the range (196 <= X <= 5476). sqrt(x) is calculated by iterating the following steps 1. Choose GUESS = 32; Iteration counter = 3 2. Find x/GUESS (1st division by shift and normal division for next 2 iterations) 3. Average of GUESS and x/GUESS 4. GUESS < Average ; Decrement iteration counter 5. Repeat steps 2-4 till counter = 0 6. SquareRoot = Last GUESS value When used in flow temperature calculation, values of X between 196 = (14^2) and 5476 = (74^2) result in temperature errors < 1°C. This X range is equivalent to a temperature range of 60°C to 0°C.
Prerequisite	-
Input parameters / register values	X : Radicand (fd 16, 196 <= X <= 5476)
Output/Return value	: Square root of input X (fd 16)
Temporary RAM	RAM_R_V2F_SQRT_X, RAM_R_V2E_SQRT_Y
Permanent RAM	-
Routines used	-
Unchanged registers	(all registers X, Y, Z and R are in use)

ROM routine name	ROM LINEAR CORRECTION / ROM LINEAR1 CORRECTION
Description	Linear interpolation of a coefficient over any parameter (here: tempera- ture), knowing the coefficient value at two points and given the current value of the parameter (stored in <i>RAM_R_VA3_CURRENT_THETA</i>) Applied formula: Result = slope * (<i>RAM_R_VA3_CURRENT_THETA</i> - Parameter@Point1) + offset
	<pre>= X * (RAM_R_VA3_CURRENT_THETA - Y) + Z When the coefficient value is known at two parameter points, slope and offset can be calculated as</pre>
Prerequisite	-
Input parameters / register values	X : Slope between the two points (fd 16) Y: Parameter@Point1 (fd 16) Z: Offset (fd 16) RAM_R_VA3_CURRENT_THETA current parameter (temperature) (fd 16) 16) 16)
	With alternative call ROM_LINEAR1_CORRECTION :
Output/Return value	R: Pointer to RAM cell with current parameter valueX: Coefficient corrected linearly over temperature
Temporary RAM	 -
Permanent RAM	RAM_R_VA3_CURRENT_THETA (none when ROM_LINEAR1_CORRECTION is used)
Routines used	ROM_FORMAT1_64_TO_32BIT
Unchanged registers	(all registers X,Y,Z and R are in use)
ROM routine name	ROM_FIND_SLOPE
Description	This routine is used to find the slone between two points, given the

ROM routine name	ROM_FIND_SLOPE						
Description	This routine is used to find the slope between two points, given the coefficient and corresponding parameter values at the two points (for						
	example two correction factors over two temperatures).						
	The routine is used as preparation for any linear interpolation.						
	Basically, all input- and output-values have the same format. Due to						
	internal calculations, the format must be chosen such that the four						
	leading bits of the parameters are zero, and at least 12 leading bits of						
	the resulting slope are zero, too. Otherwise the result will be wrong.						
Prerequisite	Parameter interval (<i>RAM_R_VA5_FLOWVAR_</i> 1 – Z) must be						
	numerically larger than (Y - X)/23, to avoid overflow in an internal						
	division.						
Input parameters /	X : Coefficient at point 1 (any format, typically 16 fd)						
register values	Y: Coefficient at point 2 (same format as X)						
	Z : Parameter at point 1 (same format as X , 4 leading bits must be 0)						
	RAM_R_VA5_FLOWVAR_1 : Parameter at point 2 (same format as Z)						
Output/Return value	X : Slope (same format as input X; 12 leading bits are always 0)						
Temporary RAM	-						
Permanent RAM	RAM R VA5 FLOWVAR 1						
Routines used	-						
Unchanged registers	(all registers X, Y, Z and R are in use)						

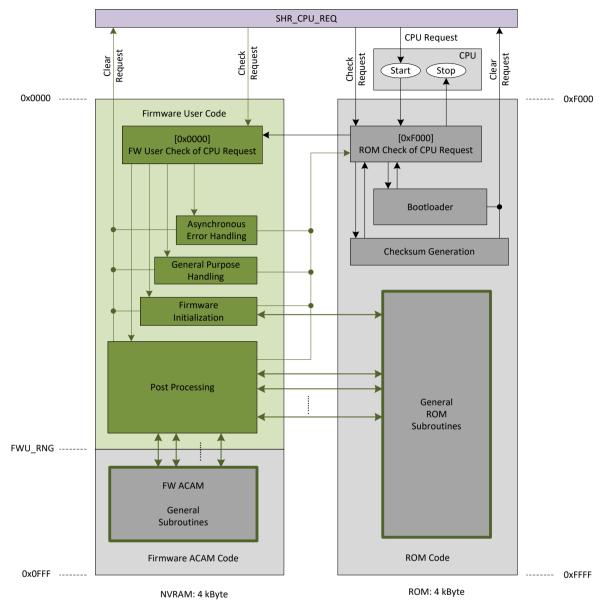
www.acam.de www.ams.com

CPU Handling 6

6.1 CPU Handling

As soon as one of the bits in the system handling register SHR CPU REQ is set, the CPU starts with the request handling. All bits are typically triggered by the task sequencer, the error handling, a general purpose pin or the remote control. For test or debugging purposes it is also possible to write directly to these registers.

Post processing is activated having set bits CPU REQ EN PP in register CR IEH and PP EN in **CR MRG TS**. There, following requests are possible to start execution of program code in CPU:


Bootloader

- CPU REQ_BLD_EXC:
- CPU REQ CHKSUM: **Checksum Generation**
- CPU_REQ PP:
 - CPU REQ GPH:
- Post Processing triggered by task sequencer
- General Purpose Handling triggered by general purpose timer Firmware Initialization
- CPU REQ FW INIT:

Program Code in green colour has to be defined and programmed by customer, whereby public subroutines in Firmware ACAM Code or ROM Code can also be used by customer.

The request bits have to be cleared by the system program code or the user program code.

Figure 6-1 CPU request handling

6.1.1 Check of CPU Request

In case that any of the request bits is set in **SHR_CPU_REQ** the CPU starts at first with code in the ROM that checks the type of request.

In case of a post processing request, a general purpose request or a firmware initialization request the CPU jumps into firmware code. This means that the user has to implement in his firmware also a CPU request check.

- Post Processing (FW code): This will be the most common request, namely for data post processing like flow or temperature calculation.
- General purpose handling (FW code):

- Bootloader (ROM code): The bootloader is always requested after a system reset has been occurred. The bootloader loads the configuration data into the register area, gets the firmware revision, sets the high speed clock, activates the task sequencer, optionally activates the CRC mode for UART and finally sets the checksum generation request. However, bootloader actions are only performed if the bootloader release code is set (register **BLD_RLS**: 0xABCD_7654). In a final initialization, the bootloader also sets a CPU request for "FW Init" and, if configured, a request for "Checksum Generation". Finally, the bootloader clears its request in **SHR_CPU_REQ** and jumps back to ROM Check of CPU Request.
- Checksum generation (ROM code): Checksum generation can be requested by remote command RC_FW_CHKSUM, by the bootloader or the checksum timer. The checksums of all four FW areas will be generated and compared to the checksums stored at as FWD1, FWD2, FWU and FWA in the RAA. At last the checksum generation clears its request in SHR CPU REQ and jumps back to ROM Check of CPU Request.
- Firmware initialization (FW code): Besides the configuration done by the boatloader some additional configurations can be performed, which typically are some initializations of the SHR register.

7 Assembler Software

The TDC-GP30 assembler is integrated into the GP30 evaluation software. It is opened in the Firmware menu of the main program:

ac	an I	mai	in.vi	i						
	File	2	Тоо	ls	Firmware	Calibration	Н	elp	_	
	м	Measureme Assembler		Ctrl+A		trol	Temp			
					Debugg	Debugging		rl+D		
				_	Firmwa	re Download			ic Mea	Table
					CPU Va	lues	Ctr	l+V	esuits	Table
		#	ŧ		INdiffie		_	Result	s / ns	Avera
		1	. 1	TOF	SUM AVG	JP		64558	3,4	64558
		2	2 1	FOF	SUM AVG I	DOWN		64558	3,4	64558

The following window comes up:

acan ac	am Assemble	r		
File	Edit Find	Assembler Help)	
GP3	30Y_FW_v2.1.2 ; ; Opera	Download Assembler Info	F5 F6	/E_INT (32-bit Integer) and RAM_FLOW_VOLUME_FRACTION (32-bit Fraction)
192	; Call	Settings	Ctrl+F5	
193	;			
194 195	:SM SA	/E FLOW VOLUM	Æ:	
196				
197 198	mul	t y,	x	; Flow (fd 16) * Volume multiplication factor (fd 44) ; Result with 4 int + 60 fd
199				
200	; 1	Accu : 4 In	nt + 28 1	d and X Accu : 32 fd
201	; (Converting to	format	-> X Accu : 32 Fd
202	shi	ftR x,	14	
203	shi	ftR x,	14	; Shifting out 28 fds from X moving 31:28 in the lowest 4
204	and	ł x,	0x000000	OOF ; Retaining only 4 fd from the result in X
205	mov	re z,	У	; Moving Y content to Z for manipulation
206	shi	ftL z,		; Removing the 4 integer bits
207	or	x,	Z	; X Accu : 32 bit Fractional bits
208				
209	; Cumul	lative Flow v	rolume ir	n cubic meter per measurement cycle in RAM_FLOW_VOLUME_INT & RAM_FLOW_VOLU
210	_	~		
211	clı	-		
212			LETOM_AC	DLUME_FRACTION
213	abs			; Taking absolute value of fractional part
214	get	flag y		; Checking if original 64 bit was a negative number
215				; If yes, then subtract abs(fractional part) and on carry : If no, then add fractional part and on carry increment
216	1			: IT NO. THEN ADD TRACTIONAL DARK AND ON CARRY INCREMENT.

This is a comfortable editor with syntax highlighting, search and replace, copy and paste functions.

Under menu item "Assembler" the user finds the compile and download options.

Whether the call of these functions was successful or not is indicated by the messages at the bottom of the assembler window.

Pressing "Download" here or in the main program's "Firmware" menu item has the same effect. The "Download Firmware and Data" Window is opened:

Figure 7-1 Firmware download window

Download Firmware Firmware User Code						Firmware D	ata	Program	n acam code (restrict	
Code and Data	Tile: GP30Y_A1.71.11.01.Her			File: GP20V_A1.F1.11.01.det	File: GP20V_A1.F1.11.01.dat		FW Data 1		PW Data 2	
			BF FF FF FC CC CB AC + 61 15 64 08 F2 DC 75	OpenFile		# Value	= Value	# Value	# Velue	
[#2 55 7C CD	AS 62 33 CA 00				0 000A0000	32 00000000	64 00000000	95 0000000	
Enable FW Transaction	DC F1 08 C9	F0 00 00 72 80		Relate File		1 00000000	33 00000000	65 00000000	97 0000000	
	Reload File 74 E2 26 70	76 98 78 CB 74 1	F2 A6 7D CA FA BE F2 SA CA OD CE 54 CA FF		19	2 0000000	34 0000000	66 00000000	98 0000000	
Disable FW Transaction	20 83 00 77	CB 54 CA FF 58 1	02 7C CA FS 37 CF 00	Save File		3 00000000	35 00000000	67 00000000	99 0000000	
Disable PW Hansaction	00 00 00 00		on ee oo ne eo oo ne			4 00000000	36 00000000	68 00000000	100 00000000	
	Download PW Code: 00 00 00 00	00 00 00 00 00 00	00 00 00 00 00 00 00	Transfer Configuration Se		5 0000000	37 00000000	69 00000000	101 0000000	
	CO 30 CC 00	88 CC 03 8C CO 1		Transfer Configuration Se	tungs	6 00000000	38 00000000	70 00000000	102 0000000	
	00 00 00 00		00 00 00 00 00 00 00	From GUI to PWD2		7 00000000	39 00000000	71 00000000	103 00000000	
ownload FW Code & Data	60 00 60 00	00 00 00 00 00			5	8 00000000	40 00000000	72 00000000	104 0000000	
	Receil PW Code co op oc op	00 00 00 00 00 00			10.00	9 00000000	41 00000000	73 00000000	105 00000000	
Download without Storing to NV RAM		00 00 00 00 00	00 00 00 00 00 00 00 00	Set Bootlinader Release 0	ade	10 00000000	42 00000000	74 00000000	105 0000000	
	00 90 00 09	00 00 00 00 00 1	00 00 00 00 00 00 00		_	11 00000000	43 00000000	75 00000000	107 00000000	
Lock FW after Download	CO 30 CC 00	and the second s		12 0000000	44 00000000	76 00000000	108 AF0A743			
		00 CC 00 0C CO :		Download FW Data		13 0000000	45 00000000	77 00000000	109 0034310A	
		Facall FW Data		14 00000000	46 00000000	78 00000000	110 00000044			
	Checksums			15 0000000	47 00000000	79 00000000	111 00001000			
	checksuns	Read FW Data	16 0000000 17 00000000	48 00000000	80 00000000	112 011F03FF				
Verify FW	Calculated by Softwar	e Mason		Read Pre Data	Press - Fr State		49 00000000	81 00000000	113 00200AE8	
			-	Checksums FWD1		18 0000000	50 00000000	82 00000000	114 00016080	
Erase FW	Calculated by GP30 45AA 📃 😜 PASS			Checksums PWD1		19 0000000	51 00000000	83 00000000	115 00199400	
Erase PVV	Read from FWE	2 0	SAIL	Calculated by Software	_	20 0000000	52 00000000	84 00000000	116 00002824	
		Second Menter	A CARACTER STRATEGICS		_	21 00000000	53 00000000	85 00000000	117 O3E48CB3	
	0 User FW F	evision FCN	User FW Range	Calculated by GP30 🛃	PASS 📀	22 0000000	54 00000000	86 00000000	118 00000C10	
		Anoneen kurtenan		Read from PWD2 8A	PASS	23 0000000	55 0000000	87 00000000	119 00008481	
	Firm	ware Acam Cod	e			24 00000000	56 00000000	88 00000000	120 80A08458	
Check Status Flags	Checksums			Checksums FWD		25 00000000	57 00000000	89 00000000	121 40072585	
circuit states rings	Checksums			Cilecksums Pivo .		25 0000000	58 00000000	50 00000000	122 00270808	
Watchdog Disabled	Calculated by GPS	0 817		Calculated by Software 110F2		27 0000000	59 00000000	91 0000000A	123 ABCD765	
				Calculated by GP30 10F2	PASS	28 0000000	50 00000000	92 00000668	124 000000A	
FW Unlocked	Read from FWD	2 ©45AA	🔴 FAL			29 00000000	51 00000000	93 0000055	123 C00010F2	
PW Transaction Enabled		Read from FWD2 10F2	PASS 🔵	30 00000000	52 00000000	94 00000000	126 0000000			
		AIFIII acam FW R	STATE:			31 0000000	53 00000000	95 00000000	127 C00045AA	

In this window the user can load firmware code (programs) and firmware data (e.g. calibration data). By pressing the "Verify" button the checksums of the two files is compared to the checksum calculated in the GP30.

After the firmware was downloaded, it is necessary to activate the CPU post-processing. This is done in the main program under tabulator "Clock control & Power & Task Sequencer".

an main.vi		
File Tools Firmware Help		
Measurements Ultrasonic Measuremen	t Control	Temperature Measurement
Task Sequencing		
Set Cycle Time of Task Sequencer	Select Base	Frequency for Pause Times
Cycle Time Task Sequencer		se Frequency Select SEL = 50 Hz 💌 0
High Speed Clock Control		
Settling Time		
135 µs 💌 2		
Vcc Measurement Rate Disabled		
CPU Handling	📝 32-bit C	PU Enable
Post Processing Mode		
Post Processing after every Measurem	ent Cycle	▼ 0
Timer		
Update Mode for Time Stamp Va	lue	
Updated by Firmware	• 0	

Download the new configuration before starting the next measurement.

For debugging purposes use the RAM Memory window where you can read the RAM content:

RAM Memory			
	Read & Write Val	ues in RAM Memory	
	Address		
	Write Value	Read Data	

The main program has a menu item "Firmware/CPU values". This one is firmware specific and actually for acam internal purpose only.

i Bearbeiten	Aus	führen Werkzeu	ge Fenster	Hilfe					
					t Measur	ement ed values			
						CPU Results	Table		
		Temperature	Results Table	CPU	#	Name	Results	Unit	
	#	Name	Results	Unit	1	Flow	0,647	Liter / Hour	
	1	Temperature	0,00	°C	2	Flow averaged	32350,173	Liter / Hour	
	2	Sound Velocity	-7241206,95	m/s	3	Volume Flow	-707839527,65866	m^3	
	10	ih.	·		4	Volume Flow	-707839,528	Liter	

7.1 Assembly Programs

The TDC-GP30 assembler is a multi-pass assembler that translates assembly language files into HEX files as they will be downloaded into the device. For convenience, the assembler can include header files. The user can write his own header files but also integrate the library files as they are provided by acam. The assembly program is made of many statements which contain instructions and directives. The instructions have been explained in the former section 3 of this datasheet. In the following sections we describe the directives and some sample code.

Each line of the assembly program can contain only one directive or instruction statement. Statements must be contained in exactly one line.

Symbols

A symbol is a name that represents a value. Symbols are composed of up to 31 characters from the following list:

A - Z, a - z, 0 - 9, _

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to be taken for this.

Numbers

Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier. Hexadecimals are specified by leading "0x".

Expressions and Operators

An expression is a combination of symbols, numbers and operators. Expressions are evaluated at assembly time and can be used to calculate values that otherwise would be difficult to be determined.

The following operators are available with the given precedence:

Level	Operator	Description
1	()	Brackets, specify order of execution
2	* /	Multiplication, Division
3	+	Addition, Subtraction

Example:

const value 1

equal ((value + 2)/3)

Directives

The assembler directives define the way the assembly language instructions are processed. They also provide the possibility to define constants, to reserve memory space and to control the placement of the code. Directives do not produce executable code.

Directive	Description	Example
CONST	Constant definition, CONST [name] [value] value might be a number, a constant, a sum of both	CONST REV_ADDRESS 3964 CONST FW_VER + 2
LABEL:	Label for target address of jump instructions. Labels end with a colon. All rules that apply to symbol names also apply to labels. Labels must be followed by an instruction. Add one nop if the label would be followed directly by ORG.	<pre>jsub BLD_CFG; BLD_CFG: move y,16;</pre>
;	Comment, lines of text that might be implemented to explain the code. It begins with a semicolon character. The semicolon and all subsequent characters in this line will be ignored by the assembler. A comment can appear on a line itself or follow an instruction.	; Call Address: XXX
org	Sets a new origin in program memory for subsequent statements.	org O
equal	Insert three bytes of user defined data in program memory, starting at the address as defined by org.	equal 0xcfcf01
#include	Include the header or library file named in the quotation marks "". The code will be added at the line of the include command. In quotation marks there might be just the file name in case it is in the same folder as the program, but also the complete path.	<pre>#include "GP30Y_FW_v2.h"</pre>

The following table provides an overview of the assembler directives.

Vol. 2 TDC-GP30

7.2 Basic Structure

The following code shows the basic structure of a GP30 firmware.

7.3 Example 1: Simple TOF Difference via Pulse Interface

```
: GP30Y A1.F1.11.01.asm
;---- File
;----- include files ------
#include "GP30Y_A1.F1.11.01.h" ; header file containing memory address, constants def.
#include "GP30Y_ROM_A1.common.h" ; Definition of ROM routine start addresses
;----- Version number definition -----
CONST FW ROMVERSION REV
                          0xA1
CONST FW VERSION NUM
                          0xF11101
CONST ROM FWI
                         0xf85b ; 63579 Start address for acam's firmware init, used here
                                 ; merely for pulse interface and first hit initialisation
ora
          0
                                 ; File start
; This routine checks the status flags for activity requests and calls the according routines
; Inputs : Status flags in SRR_FEP_STF and SHR_CPU_REQ
; Output : all processing done and status flags cleared
                   all processing done and status flags cleared
; (total)unused: (all used)
; Temporary RAM : -
; Permanent RAM : RAM R FW STATUS, RAM FEP STF
; Routines used : ROM_FWI, MK_PP, ROM_CPU_CHK
                                             _____
MK CPU REQ:
             ;--
     nop
                          ; save front end status flags in RAM FEP STF for remote
                          ; communication and RAM R FW STATUS for processing control
             SRR FEP STF
                          ; Front end Status Flags
     ramadr
                          ; Saving the FEP Status flags for further processing
             x, r
     move
     ramadr
             RAM FEP STF
                          ; save a copy of SRR_FEP_STF as flags for remote com.
     move
             r,x
     ramadr
             RAM R FW STATUS
             r, OxFFFFFCOC ; Clearing only the bits in the RAM R FW STATUS pertaining to
     and
                          ; the SRR FEP STS register
                          ; The status flags from the SRR FEP STS is copied to the
     or
             r, x
                          ; RAM R FW STATUS Check for CPU requests: Here only Firmware init
                          ; and Post processing (others ignored)
     ramadr SHR CPU REQ
                         ; Set RAM Address to SHR CPU REQ
     skipBitC r, BNR FWI, 1 ; Check Firmware Init Flag
                         ; Jump to Firmware Init; return to start over ROM routine
          ROM FWI
     goto
                          ; ROM CPU CHK
     ramadr SHR CPU REQ ; Set RAM Address to SHR CPU REQ
     skipBitC r, BNR PP, 1 ; Check User Memory Post Processing Flag
                          ; Jump to User Post Processing; return to start over ROM
     goto
          MK PP
                          ; routine ROM CPU CHK
; if the process ever gets here... (usually ROM CPU CHK ends execution when all CPU requests are
; cleared)then some request was missed; indicate error by saving the current SHR CPU REQ
     ramadr
           SHR CPU REQ
     move
             x.r
             RAM CPU REQ ERROR ; save a copy of the current CPU request register here
     ramadr
     move
             r,x
     stop
                          ; end execution without looking back, to avoid infinite loops
MK PP:
     ramadr RAM R FW STATUS
                                 ; Firmware Status
     skipBitC r, BNR FLOW CALC REQ, 2 ; Check if a new measurement requests for calculation...
           MK PP DIFTOF_SCALE
                               ; Jump to PP-Subroutine Flow Calculation
      jsub
```


ROM PP PI UPD ; Jump to PP-Subroutine Pulse Interface Update isub MK PP END: clrwdt ; Clearing watchdog ; SHR CPU REQ ramadr SHR CPU REO ; Clear UPM Post Processing Flag directly in CPU Request Register hitclr. r, BNR PP ; Jump Back to CPU Request Check in System Memory goto ROM CPU CHK ;======= Flow Calculation - simple scaling of DIFTOF to flow version ====== MK PP DIFTOF SCALE: nop ;----------- Reading and Unifying TOF raw values-----ramadr FDB US TOF ADD ALL U ; TOF Sum Up of all the configured hits move y, r ramadr FDB US TOF ADD ALL D ; TOF Sum Down of all the configured hits move z, r ramadr RAM_R_TOF_HIT_NO move x, r divmod у, х ramadr RAM R VA5 TOF TO FLT U ; TOF sum up scaled to single TOF move r, y move ; Z Accu : Down measurement TOF ADD ALL y, z RAM R TOF HIT NO ramadr move x, r divmod **y**, **x** RAM_R_VA6_TOF_TO_FLT_D ; TOF sum down scaled to single TOF ramadr move r, v ;----- Calculate DIFTOF: ROM CALC TOF DIFF directly uses the RAM addresses from above ---; Calculate the DIFF TOF = TOF UP - TOF DOWN jsub ROM CALC TOF DIFF ; scaling DIFTOF to s with fd32RAM R TDC PERIOD ; 125 or 250s * 10^-9 * 2^32 ramadr move v,r mult v.x jsub ROM FORMAT1 64 TO 32BIT ; Result in x with 16 integer + 16 fractional digits ; x contains now DIFTOF in s fd 32 y, 0x3B9ACA00 ;scale to ns by multiplying 10^9/2^16 fd 16 move mult y,x ROM FORMAT1 64 TO 32BIT ; Result in x with 16 integer + 16 fractional digits isub ; apply scaling factor; DIFTOF in ns fd 16 is still in x FWD SIMPLE SCALE ; read scaling factor from firmware data fd16 ramadr move v,r mult v, x ROM FORMAT1 64 TO 32BIT ; Result in x with 16 integer + 16 fractional digits jsub ramadr RAM R FLOW LPH ; Flow result in Lph with 16 fd move r. x ; Accumulating the measured Flow cumulatively to get Flow Volume in Cubic meter jsub ROM SAVE FLOW VOLUME ; Cumulative volume result is in RAM R FLOW VOLUME INT ; and FRACTION MK PP DIFTOF SCALE END: jsubret REV ADDRESS org equal1 FW ROMVERSION REV FW VERSION ; Defined at the beginning of this file equal org 4094 nop

8 Miscellaneous

8.1 Bug Report

8.2 Last Changes

19.09.2019	Labels must be followed by an instruction . Add nop if followed by org
27.06.2019	ROM Routine ROM_FILTER_FLOW with fixed length
Version 0.1	Instruction help clean up (RAMADR, NAND, skip)

acam-messelectronic gmbh Friedrich-List-Straße 4 76297 Stutensee Germany Phone +49 7244 7419 – 0 Fax +49 7244 7419 – 29 E-Mail support@acam.de www.acam.de www.ams.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ScioSense:

TDC-GP30YD-F01TDC-GP30YDTDC-GP30YD T&RTDC-GP30YA-F01TDC-GP30YATDC-GP30YA-F01 1KTDC-GP30YD-F01 1KTDC-GP30YA 1KTDC-GP30YA 3KTDC-GP30YA-F01 3KTDC-GP30YD 1KTDC-GP30YD3KTDC-GP30YD-F01 3K