Solid State Relays DC Switching Types RGC1D Solid State Contactor RGS1D Solid State Relay

- IGBT power semiconductor
- 17.5 mm product width, with or without integrated heatsink
- · Rated Operational voltage: 1000 VDC
- Rated Operational current: Up to 25 ADC
- Control voltage: 4.5-32 VDC
- · Input polarity protection
- Removable IP20 cover
- Integrated free-wheeling diode for output protection
- Max. transient peak voltage: 1200 V

Product Description

This product series is mainly intended to switch a string of photovoltaic panels with a maximum string voltage of 1000 VDC and up to 25 ADC in only 17.5 mm width. It may be used in other DC application as well.

The control port is protected against reverse polarity while

the IGBT at the output is protected against back voltage with an integrated freewheeling diode.

RGS1D is the panel mount version while the RGC1D has an integrated heatsink.

Specifications are stated at 25°C unless otherwise noted.

Ordering Key RGC 1 D 1000 D 15 K K E

<u> </u>	-
Solid State Relay	
Number of poles	
Switching mode	
Rated operational voltage	
Control voltage	
Rated operational current	
Connection type for control	
Connection type for power	
Connection configuration	
Options	

Ordering Key

1-Phase DC switching	Rated Voltage	Control Voltage	Rated Current	Connection Control	Connection Power	Connection Configuration	
RGC1D: Contactor	1000: 1000 VDC:	D: 4.5 - 32 VDC	15: 15 ADC	K: Screw	K: Screw	E: Contactor	

Selection Guide (Integrated heatsink)

Rated Output voltage	Max. transient peak voltage	Control Voltage	Rated Operational Current @40°C 15 ADC
1000 VDC	1200 Vp	4.5 - 32 VDC	RGC1D1000D15KKE

Selection Guide (Panel-mount Solid State Relay)

Rated Output	Max. transient	Control Voltage	Rated Operational Current	
voltage	peak voltage	_	15 ADC	25 ADC
1000 VDC	1200 Vp	4.5 - 32 VDC	RGS1D1000D15KKE	RGS1D1000D25KKE
				DCS1D1000D35KKEUT1

^{1:} Option with attached thermal pad.

Output Voltage Specifications

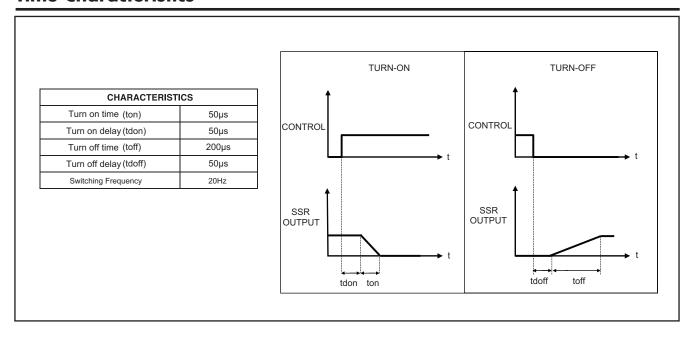
Operational Voltage Range IEC ²	24 - 1000 VDC
UL508 ²	24 - 600 VDC
Maximum transient peak voltage	1200 VDC
Maximum Onstate Voltage Drop	1.6 VDC
215% on lower voltage limit	

General Specifications

Protection	IP20
Control input status	continuously ON Green LED, when control input is applied
Pollution degree	2 (non-conductive pollution with possibilities of condensation)
Over-voltage category	III (fixed installations)
Isolation Input to Output Input & Output to Case	4 kVrms 4 kVrms

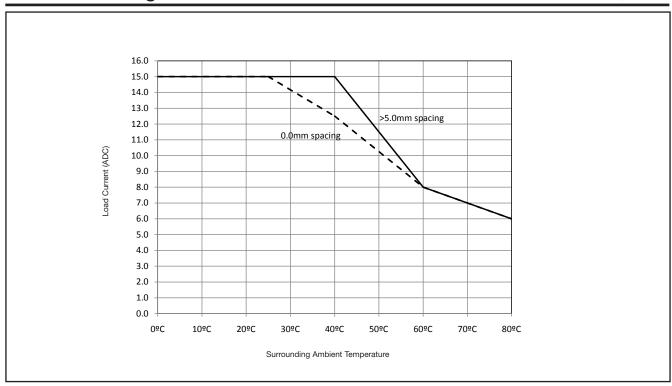
^{*} Applicable only for RGC1D1000D15KKE

Input Specifications (@ 60°C)


Control voltage range	4.5 - 32 VDC	Maximum response time pick-up	
Pick-up voltage ³	4 VDC		characteristics
Drop-out voltage	1 VDC	Maximum response time drop-out	
Maximum Reverse voltage	32 VDC		characteristics
Waximum Neverse voltage	02 VB0	Input current	See diagram below

Note: Ideally control should be switched with a contactless switch (eg: open collector)

3. Pickup voltage should be minimum 6VDC for EMC conformance.



Time Characteristics

Current Derating for RGC1D

Output Specifications (@ 40°C unless otherwise specified)

		RGC1D15	RGS1D15	RGS1D25
Current Rating	DC-1 @ 60°C DC-1 @ 40°C	8 ADC 15 ADC	15 ADC	25 ADC
Maximum offstate leakage at rated voltage		1.5 mA	1.5 mA	1.5 mA
Min. operational current		20 mADC	20 mADC	20 mADC
Maximum Transient Surge Current (t=10 μs)		200 ADC	200 ADC	200 ADC

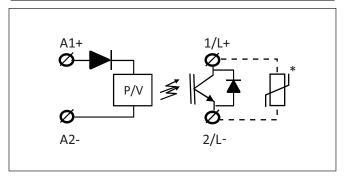
Agency Approvals and Conformances

RGC1D

UL508 Listed (E172877) cUL Listed (E172877)

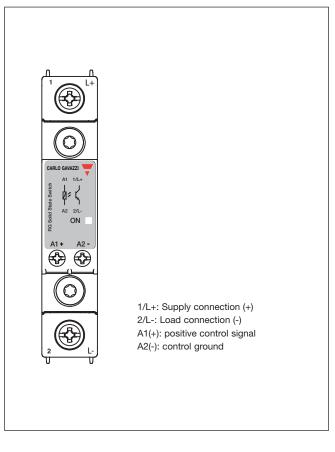
RGS1D

UL508 Recognised (E172877) CSA (204075)

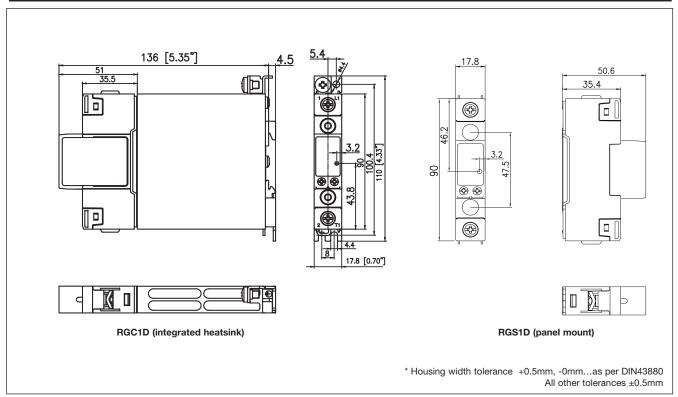

Electromagnetic Compatibility

EMC Immunity	IEC/EN 61000-6-2	Radiated Radio Frequency	
Electrostatic Discharge (ESD)		Immunity	IEC/EN 61000-4-3
Immunity	IEC/EN 61000-4-2	10 V/m, 80 - 1000 MHz 10 V/m, 1.0 - 2.7 GHz	Performance Criteria 1 Performance Criteria 1
Air discharge, 8 kV	Performance Criteria 1	Conducted Radio Frequency	IEC/EN 61000-4-6
Air discharge, 16 kV	Performance Criteria 2	Immunity	IEC/EN 61000-4-6
Contact, 4 kV	Performance Criteria 1	10 V/m, 0.15 - 80 MHz	Performance Criteria 1
Contact, 8 kV	Performance Criteria 2	Voltage Dips, Short Interruptions	
Electrical Fast Transient		and Voltage Variations Immunity	
(Burst) Immunity	IEC/EN 61000-4-4	tests	IEC/EN 61000-4-11
Output: 4 kV, 5 kHz /100 kHz	Performance Criteria 2	0% @ 5000 ms	Performance Criteria 2
Input: 1 kV, 5 kHz / 100 kHz	Performance Criteria 1	40% @ 200 ms	Performance Criteria 2
Electrical Surge Immunity	IEC/EN 61000-4-5	60% @ 10, 30, 100, 300, 1000 ms	Performance Criteria 2
Output, line to line, 1 kV	Performance Criteria 1	Voltage Dips, Short Interruptions	
Output, line to earth, 2 kV	Performance Criteria 1	and Voltage Variations on Input Lines Immunity tests	IEC/EN 61000-4-29
Input, line to line, 1 kV	Performance Criteria 1	0% @ 1, 3, 10, 30, 100, 300, 1000 ms	,
Input, line to earth, 2 kV	Performance Criteria 1		
,		30% @ 10, 30, 100, 300, 1000 ms	
		70% @ 10, 30, 100, 300, 1000 ms	
		-20% @ 10, 30, 100, 300, 1000ms, 3s, 10s	Performance Criteria 2
		+20% @ 10, 30, 100, 300, 1000ms, 3s, 10s	Performance Criteria 2
EMC Emission	IEC/EN 61000-6-3	Radio Interference	
Radio Interference		Voltage Emission (Conducted)	IEC/EN 55011
field emission (Radiated)	IEC/EN 55011	0.15 - 30 MHz	Class B
30 - 1000 MHz	Class B		

Environmental Specifications


Operating Temperature	-40°C to 80°C (-40°F to +176°F)
Storage Temperature	-40°C to 100°C (-40°F to +212°F)
EU RoHS compliant	Yes
China RoHS compliant	Refer to Environmental Information (page 10)
Impact resistance (EN50155, EN61373)	15/11 g/ms
Vibration resistance (2-100Hz, IEC 60068-2-6, EN50155, EN61373)	2 g per axis (5 g for RGS)
Relative humidity	95% non-condensing @ 40°C
UL flammability rating (housing)	UL 94 V0

Connection Diagram

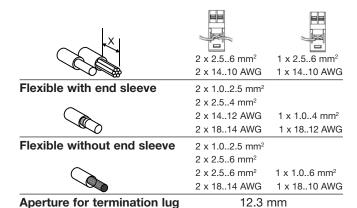

^{*} varistor not included

Terminal Layout

Dimensions

All dimensions in mm

Connection Specifications


POWER CONNECTIONS: 1/L+, 2/L-

Use 75°C copper (Cu) conductors Torque specifications

IEC: 1.5 - 2.0 Nm (13.3 - 17.7 lb-in) UL:2.0 Nm (17.7 lb-in) M4, Pozidriv 2 Stripping Length (X) = 12 mm

Rigid (Solid & Stranded) UL/ CSA rated data

CONTROL CONNECTIONS: A1(+), A2(-)

Use 60/75°C copper (Cu) conductors Torque specifications

IEC: 0.5 - 0.6 Nm (4.4 - 5.3 lb-in) UL:0.5Nm (4.4 lb-in) M3, Pozidriv 1 Stripping Length (X) = 8 mm

Rigid (Solid & Stranded) UL/ CSA rated data

2 x 0.5..2.5 mm²

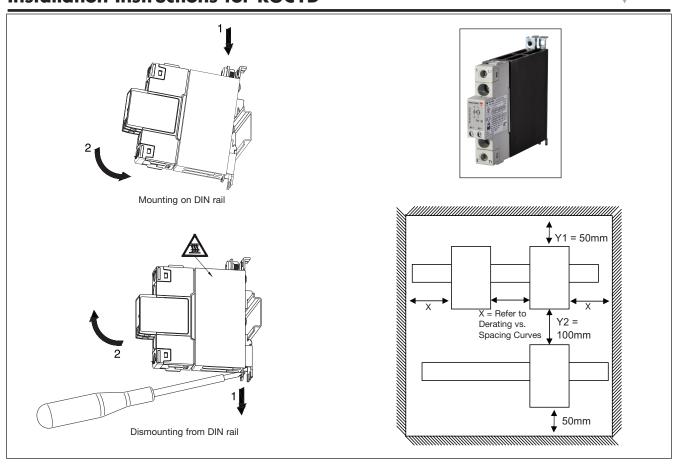
2 x 18..12 AWG

1 x 18..12 AWG

Flexible with end sleeve

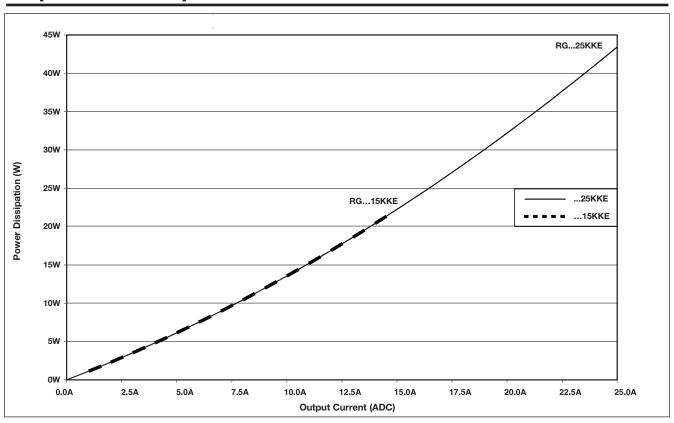
2 x 0.5..2.5 mm² 1 x 0.5..2.5 mm² 2 x 18..12 AWG 1 x 18..12 AWG

Protective Earth Connection (RGC)



M5, 1.5 Nm (13.3 in-lb) (not provided with SSR)

Note: M5 PE screw not provided with SSR. PE connection required when product is intended to be used in Class 1 applications according to EN/IEC 61140.



Installation Instructions for RGC1D

Output Power Dissipation

Mounting Instructions for RGS1D

Thermal stress will reduce the lifetime of the SSR. Therefore it is necessary to select the appropriate heatsinks, taking into account the surrounding temperature, load current and the duty cycle.

A fine layer of thermally conductive silicone paste must be applied to the back of the SSR. RGS should be mounted on the heatsink with two M5 x 30 mm screws. Gradually tighten each screw (alternating between the two) until both are tightened with a torque of 0.75 Nm. Then tighten both screws to their final mounting torque of 1.5 Nm.

In case of a thermal pad attached to the back of the SSR, no thermal paste is required. The RGS is gradually tightened (alternating between the 2 screws) to a maximum torque of 1.5 Nm.

Heatsink Selection for RGS1D

RGS1D..15

Loa curr	d Thermal ent [A] resistance [°C/W]							
		_						_
15	3.60	3.15	2.70	2.25	1.80	1.35	0.90	
13.5	4.10	3.59	3.08	2.56	2.05	1.54	1.03	
12	4.74	4.15	3.56	2.96	2.37	1.78	1.19	
10.5	5.57	4.87	4.18	3.48	2.79	2.09	1.39	
9	6.69	5.85	5.01	4.18	3.34	2.51	1.67	
7.5	8.26	7.23	6.20	5.16	4.13	3.10	2.07	
6	10.64	9.31	7.98	6.65	5.32	3.99	2.66	
4.5	14.63	12.81	10.98	9.15	7.32	5.49	3.66	
3				14.17	11.33	8.50	5.67	
1.5							11.71	
	20	30	40	50	60	70	80	T _A
							Ambi	ent temp [°

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.36 °C/W
Case to heatsink thermal resistance, Rthcs ⁴	< 0.32 °C/W

RGS1D..25

Load current [A]		r	Thermal resistance [°C/W]					
								_
25	1.82	1.59	1.36	1.13	0.90	0.67	0.44	
22.5	2.12	1.86	1.59	1.33	1.06	0.80	0.53	
20	2.48	2.17	1.86	1.55	1.24	0.93	0.62	
17.5	2.96	2.59	2.22	1.85	1.48	1.11	0.74	
15	3.60	3.15	2.70	2.25	1.80	1.35	0.90	
12.5	4.51	3.95	3.38	2.82	2.26	1.69	1.13	
10	5.90	5.17	4.43	3.69	2.95	2.21	1.48	
7.5	8.26	7.23	6.20	5.16	4.13	3.10	2.07	
5	13.03	11.41	9.78	8.15	6.52	4.89	3.26	
2.5					13.75	10.31	6.87	
	20	30	40	50	60	70	80 Amb	T _A ient temp [°C]

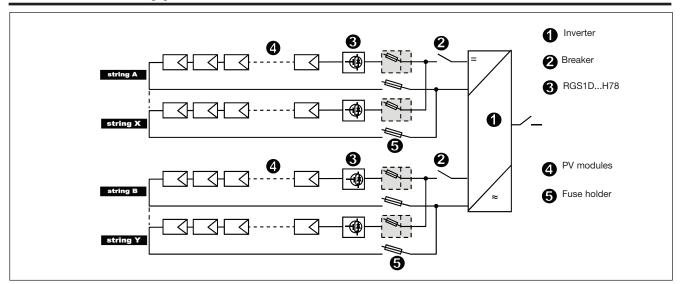
Maximum junction temperature 125°C

Heatsink temperature 100°C

Junction to case thermal resistance, Rthjc <0.36 °C/W

Case to heatsink thermal resistance, Rthcs⁴ < 0.32 °C/W

RGS1D..25..HT (with attached thermal pad)


Loa	d ent [A]		Thermal esistan	ce [°C/W	V]			
25.0	1.16	0.93	0.70	0.47	0.24			
22.5	1.53	1.26	1.00	0.73	0.47	0.20		
20.0	2.00	1.69	1.38	1.07	0.76	0.45	0.14	
17.5	2.62	2.25	1.88	1.51	1.14	0.77	0.40	
15.0	3.46	3.01	2.56	2.11	1.66	1.21	0.76	
12.5	4.51	3.95	3.38	2.82	2.26	1.69	1.13	
10.0	5.90	5.17	4.43	3.69	2.95	2.21	1.48	
7.5	8.26	7.23	6.20	5.16	4.13	3.10	2.07	
5.0	13.03	11.41	9.78	8.15	6.52	4.89	3.26	
2.5					13.75	10.31	6.87	
	20	30	40	50	60	70	80	T _A
							Ambi	ent temp [

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.36 °C/W
Case to heatsink thermal resistance, Rthcs	< 0.90 °C/W

^{4.} Thermal resistance case to heasink values are applicable upon application of a fine layer of silicon based thermal paste HTS02S from electrolube between SSR and heatsink.

Connection in Application

Short Circuit Protection

Protection Co-ordination, Type 1:

Type 1 protection implies that after a short circuit, the device under test will no longer be in a functioning state.

In case, however the short circuit has to be interrupted. The fuse between enclosure and supply shall not open. The door or cover of the enclosure shall not be blown open. There shall be no damage to conductors of terminals and the conductors shall not separate from terminals. There shall be no breakage or cracking of insulating bases to the extent that the integrity of the mounting of live parts is impaired. Discharge of parts or any risk of fire shall not occur.

The product variants listed in the table hereunder are suitable for use on a circuit capable of delivering not more than 5,000ADC, 600Volts maximum when protected by fuses. Tests at 5,000A were performed with RK5 fuses, time delay; please refer to the table below for maximum allowed ampere rating of the fuse. Use fuses only.

Co-ordination type 1 (UL508)

Part no.	Max. fuse size [A]	Class	Current [kA]	Voltage [VDC]
RGC15	25	RK5	5	Max. 600
RGS15	25	RK5	5	Max. 600
RGS25	25	RK5	5	Max. 600

Co-ordination type 1 (IEC/EN 60947-4-1)

Part no.	Max. fuse size [A]	SIBA part no.	Current [kA]	Voltage [VDC]
RGC15	16	9008010.16	5	Max. 600
RGS15	16	9008010.16	5	Max. 600
RGS25	25	9008010.25	5	Max. 600

Environmental Information

The declaration in this section is prepared in compliance with People's Republic of China Electronic Industry Standard SJ/T11364-2014: Marking for the Restricted Use of Hazardous Substances in Electronic and Electrical Products.

Part Name	Toxic or Harardous Substances and Elements						
	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr(VI))	Polybrominated biphenyls (PBB)	Polybrominated diphenyl ethers (PBDE)	
Power Unit Assembly	х	0	0	0	0	0	

O: Indicates that said hazardous substance contained in homogeneous materials fot this part are below the limit requirement of GB/T 26572.

X: Indicates that said hazardous substance contained in one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.

环境特性

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014: 标注在电子电气产品中限定使用的有害物质

零件名称	有毒或有害物质与元素					
	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)
功率单元	Х	0	0	0	0	0

O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。

X: 此零件某种材料中含有的该有害物高于GB/T 26572的限定。

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Carlo Gavazzi:

RGS1D1000D15KKE RGC1D1000D15KKE RGS1D1000D25KKE RGS1DIN