Proximity Sensors Capacitive Thermoplastic Polyester Housing Types CA, M12, DC, Teach-in

- Featuring TRIPLESHIELD™ Sensor Protection
- Sensing distance: 0.5 8 mm
- · Teach-in of sensing distance via push-button or wire
- Automatic detection of NPN or PNP load
- Selectable make or break switching by means of the Teach-in function
- Protection: short-circuit, transients and reverse polarity
- Humidity compensation
- Alarm output

Product Description

Capacitive proximity switches with a sensing distance of either 4 mm flush mounted in metal or 8 mm nonflush mounted.

The switching points can be altered by means of the

teach-in function. 3-wire DC output with selectable make (NO) or break (NC) switching and NPN Alarm. Grey polyester housing with 2 m PVC cable or M12 plug.

Capacitive proximity switch Housing diameter (mm) Housing material Housing length

Detection principle
Rated operating dist. (mm)
Output type

Output configuration
Connection type —

Remote teach

Type Selection

Housing diameter	Rated operating distance (S _n)	Ordering no. Cable	Ordering no. Plug
M12	8 mm	CA12CLC08BPRT	CA12CLC08BPM1RT

Specifications

Sensing range (S _d)		
Non-flush mounted	0.5 - 8 mm,	
	ref. target 24x24 mm ST37,	
	1 mm thick, grounded	
Flush mounted	0.5 - 4 mm,	
	ref. target 12x12 mm ST37,	
	1 mm thick, grounded	
Sensitivity	Adjustable (Teach-in)	
Effective operating dist. (S _r)	$0.9~x~S_n \leq S_r \leq 1.1~x~S_n$	
Usable operating dist. (S _u)	$0.8~x~S_r \leq S_u \leq 1.2~x~S_r$	
Repeat accuracy (R)	≤ 5%	
Hysteresis (H)	3 - 20%	
Rated operational volt. (U _B)	10 to 40 VDC (ripple incl.)	
Ripple	≤ 10%	
Output function	NPN/PNP (auto detect)	
Output switching function	N.O. or N.C. (teachable)	
Rated operational current (I _e)	≤ 200 mA (continuous)	
No-load supply current (I _o)	≤ 12 mA	
Voltage drop (U _d)	≤ 2.5 VDC @ max. load	
Minimum operational		
current (I _m)	≥ 1 mA	
OFF state current (I _r)	≤ 0.3 mA	

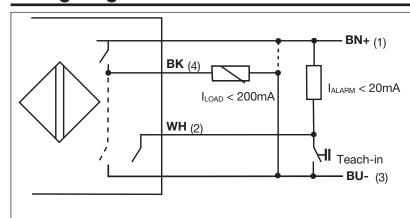
Short-circuit, reverse polarity, transients	
30 kV 3 kV > 15 V/m > 10 V _{ms} (non-flush mounted) > 3 V _m (flush mounted)	
≤ 35 ms ≤ 31 ms	
≤ 200 ms	
15 Hz	
LED, yellow LED, green	
III (IEC 60664, 60664A; 60947-1) 3 (IEC 60664, 60664A; 60947-1) IP 68 (24 hours) (IEC 60529; 60943-1)	

Specifications (cont.)

NEMA type Operating temperature	1, 2, 12 -20 to +85°C (-4 to +185°F)	Cable gland Nuts	Polyester, softened Black, PA12
Max. temperature on sensing face Storage temperature	120°C (248°F) -40 to +85°C (-40 to +185°F)	Connection Cable	PVC, 2 m, 4 x 0.14 mm ²
Vibration	10 to 150 Hz, 1 mm/15 g (IEC 60068-2)	Plug (M1)	Oil proof, grey M12 x 1 - 4 pin
Shock	30 g/77 ms, 3 pos, 3 neg per axis (IEC 60068-2-32)	Cable for plug (M1) Weight	CONB14NFseries
Rated insulation voltage	500 VAC (rms)	Cable version Plug version	110 g 30 g
Housing material Body	Grey thermoplastic polyester	Approvals CE-marking	cULus (UL508) Yes

Adjustment Guide

The environments in which capacitive sensors are installed can often be unstable as regards to temperature, humidity, object distance and industrial (noise) interference. Because of this, Carlo Gavazzi offers


as standard features in all TRIPLESHIELDTM capacitive sensors a user-friendly sensitivity adjustment instead of a fixed sensing range. Likewise, these sensors provide an extended sensing range to accommodate

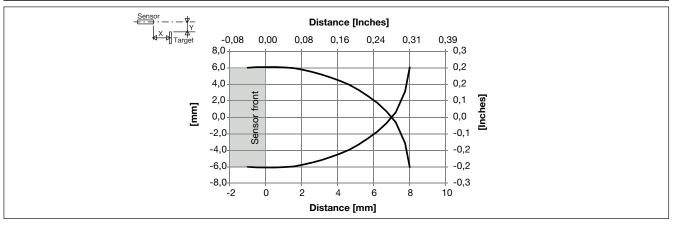
mechanically demanding areas and temperature stability to ensure high immunity to electromagnetic interference (EMI) and a minimum need for adjusting sensitivity if the temperature varies.

Note:

Sensors are factory set (default) to nominal sensing range S_n .

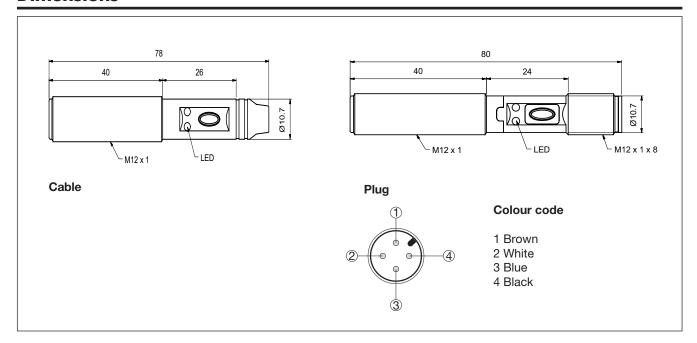
Wiring Diagram

The PNP- or NPN-load will be automatically detected.


The functions described in the Teach-in guide can be set up by means of the teach-in

It is possible to teach-in several sensors at the same time by connecting the WH-wires in parallel to the common "BU -" supply.

(#): Plug connections


Important: If the alarm output (WH-wire) is unused, it has to be connected to +supply

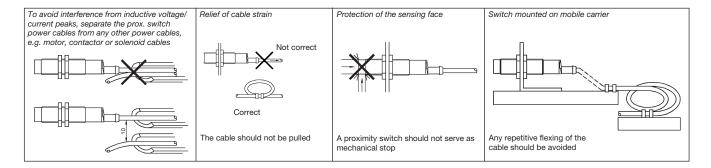
Detection Diagram

Dimensions

Installation Hints

Capacitive sensors have a unique ability to detect almost any material in liquid or solid form. Capacitive sensors are able to detect metallic as well as non-metallic objects. However, their traditional use is for non-metallic materials such as:

Plastics Industry
 Resins, regrinds or mould


- ed products.
- Chemical Industry
 Cleansers, fertilizers, liquid soaps, corrosives and petrochemicals.
- Wood Industry
 Saw dust, paper products, door and window frames.
- Ceramics & Glass Industry

Raw materials, clay or

finished products, bottles.

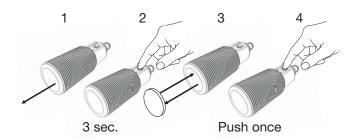
Packaging Industry
 Package inspection for level or contents, dry goods, fruits and vegetables, dairy products.

Materials are detected due to their dielectric constant. The bigger the size of an object, the higher the density of material, the better or easier it is to detect the object. The nominal sensing distance for a capacitive sensor is referred to a grounded metal plate (ST37). For additional information regarding dielectric ratings of materials please refer to Technical Information.

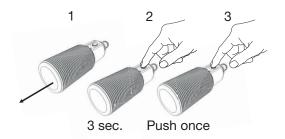
Accessories

• Connector type CONB14NF.. -series.

Delivery Contents

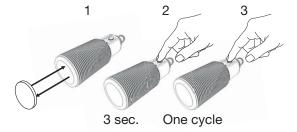

- Capacitive switch: CA12CLC08BP..
- Installation & Adjustment Guide
- 2 x M12 nuts
- Packaging: Cardboard box

Teach functions


Normal operation, optimized switching point

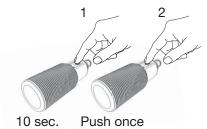
- Mount the sensor in the application without the target present. Yellow LED is not important and green LED is ON.
- Press the button for 3 seconds until both LEDs are flashing simultaneously. (The background is stored)
- 3. Place the target in the detection zone.
- 4. Press the button once and the sensor is ready to operate (green LED ON, yellow LED ON) (The second switch point is stored). If the target is too close to the background, the sensor will perceive both background and object as background and the LEDs will alternate 3 times.

For maximum sensing distance (default setting)


- Mount the sensor in the application without the target present. Yellow LED is not important and green LED is ON.
- Press the button for 3 seconds until both LEDs are flashing simultaneously. (The background information is stored)
- Press the button a second time and the sensor is ready to operate (green LED ON, yellow LED ON) (The sensor is set up with the maximum sensing distance that is not influenced by the background).

For dynamic set-up (running process)

- Line up the sensor at the target. Green LED is ON, status on the yellow LED is not important.
- 2. Press the button for 3 seconds until both LEDs are flashing simultaneously.
- 3. Press and hold the button a second time for at least one second (both LEDs are flashing simultaneously and fast) and keep the button pressed for at least one process cycle. Release the button and the sensor is ready to operate (the switch point is stored into the sensor and is optimized respecting both background and target information).


A more precise setting is possible if several process cycles are analysed.

For make or break set-up (N.O. or N.C.)

- Press the button for 10 seconds, until the green LED flashes.
- While the green LED flashes, the output is inverted each time the button is pressed. Yellow LED indicates N.O. function selected.

If the button is not pressed within the next 16 seconds, the current output is stored.

Factory settings

Press the button for 16 sec.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Carlo Gavazzi:

CA12CLC08BPRT CA12CLC08BPM1RT