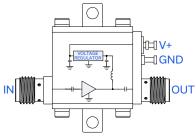


Positive Gain Slope Amplifier **ZX60-R5183P+**

50Ω 0.5 to 18 GHz SMA Female

KEY FEATURES

- Ultra Wideband, 0.5 to 18 GHz
- · Low Noise Figure, 4.5 dB typ, 5 to 18 GHz
- Positive Gain Slope, 3 dB, typ., 0.5 to 18 GHz
- Protected by US patent 6,790,049


Samueloun.

Generic photo used for illustration purposes only

APPLICATIONS

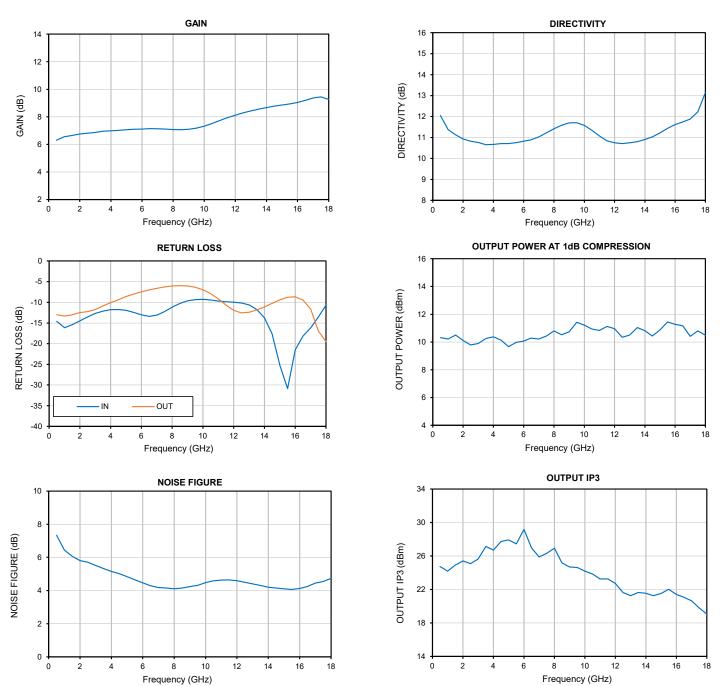
- Microwave point to point radios
- Satellite Communication
- · Military EW and Radar
- C-band Satcom

FUNCTIONAL DIAGRAM

PRODUCT OVERVIEW

Mini-Circuits' ZX60-R5183P+ is a wideband, positive gain slope, connectorized amplifier, providing a unique combination of low noise figure and positive gain slope, over a very wide frequency range. It supports a wide range of sensitive, high-dynamic range receiver applications and many systems where high performance over wideband is needed. This design operates on a single +5 V supply and comes in a rugged, compact unibody case (0.74 x 0.75 x 0.46") with SMA connectors, making it an excellent candidate for tough operating conditions and crowded system layouts.

FLECTRICAL SPECIFICATIONS AT +25°C AND +5V. UNLESS NOTED OTHERWISE


Parameter	Frequency (GHz)	Min.	Тур.	Max.	Units
Frequency Range		0.5		18.0	GHz
	0.5 - 5	-	6.5		
	5 - 10	5.0	7.1		
Gain	10 - 13	5.2	8.2		-10
	13 - 15	6.0	8.8		dB
	15 - 18	-	9.5		
	0.5 - 5		12.0		
	5 - 10		10.8		
Input Return Loss	10 - 13		9.8		dB
	13 - 15		12.5		
	15 - 18		12.2		
	0.5 - 5		10.2		
	5 - 10		6.2		
Output Return Loss	10 - 13		9.5		dB
	13 - 15		10.6		
	15 - 18		11.2		
	0.5 - 5		+10.2		
	5 - 10		+10.6		
Output Power at 1 dB Compression (P1dB)	10 - 13		+11.0		dBm
	13 - 15		+10.8		
	15 - 18		+11.5		
	0.5 - 5		+23.5		
	5 - 10		+20.5		
Output Third Order Intercept Point (OIP3)	10 - 13		+19.2		dBm
	13 - 15		+18.6		
	15 - 18		+17.5		
	0.5 - 5		6.1		
	5 - 10		4.2		
Noise Figure	10 - 13		4.5		dB
-	13 - 15		4.2		
	15 - 18		4.5		
Device Operating Voltage (V _{DD})		+4.8	+5.0	+5.2	V
Device Operating Current (I _{DD})			48	68	mA

Positive Gain Slope Amplifier **ZX60-R5183P+**

 50Ω 0.5 to 18 GHz SMA Female

TYPICAL PERFORMANCE GRAPHS

Positive Gain Slope Amplifier **ZX60-R5183P+**

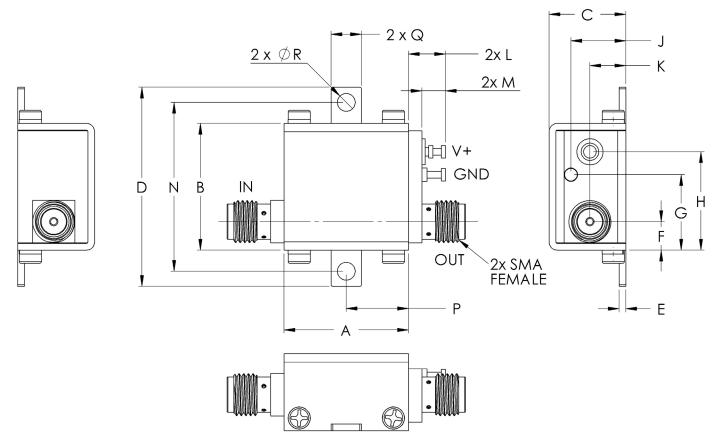
 50Ω 0.5 to 18 GHz SMA Female

ABSOLUTE MAXIMUM RATINGS³

Parameter	Ratings	
Operating Temperature	-40°C to +85 °C	
Storage Temperature	-55 °C to +100 °C	
Total Power Dissipation	0.8 W	
RF Input Power (CW)	+22 dBm (5 minutes, max.) +13 dBm (continuous)	
DC Operating Voltage	+8.5 V	

Continuous operation is not recommended at these extremes. Permanent damage may occur if any of these limits are exceeded.

DETERMINING MAXIMUM THERMAL RESISTANCE OF USERS' EXTERNAL HEAT SINK


	M THERMAL STANCE	= MAXIMUM OPERATING CASE TEMP — MAXIMUM USER AMBIENT TEMP POWER DISSIPATION
Example:	MAXIMUM OPERATING CASE TEMP = +50 °C (CHECK MAXIMUM RATINGS TABLE FOR THIS VALUE) MAXIMUM USER AMBIENT TEMP = +30 °C (USER DEFINED)	
	POWER DISSIPATION = 10 WATTS (CHECK MAXIMUM RATINGS TABLE FOR THIS VALUE)	
	THEN MAXIMUM ALLOWABLE THERMAL RESISTANCE = 2 °C/W	

Positive Gain Slope Amplifier **ZX60-R5183P+**

 50Ω 0.5 to 18 GHz SMA Female

CASE STYLE DRAWING

OUTLINE DIMENSIONS ($^{\text{inch}}_{\text{mm}}$)

С Ε Α В D G Н Κ Q R wt .74 .75 .46 1.18 .04 .17 .45 .59 .33 .21 .22 .14 .37 .18 .106 grams 19.1 11.68 30.0 1.02 4.32 11.4 14.99 8.38 5.33 5.59 3.56 25.40 9.40 4.57 23.0

Positive Gain Slope Amplifier **ZX60-R5183P+**

50Ω 0.5 to 18 GHz SMA Female

ADDITIONAL INFORMATION IS AVAILABLE ON OUR DASHBOARD.

	Data
Performance Data & Graphs	Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
RoHs Status	Compliant
Environmental Ratings	ENV23T10

ORDERING INFORMATION

Model No. Links	ZX60-R5183P+	
Case Style	GC957	
Connector	IN SMA/Female / OUT SMA/Female	

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits:

ZX60-R5183P+