Ultra Low Noise, Low Current E-PHEMT Transistor

TAV1-551+

50Ω 0.045 to 6 GHz

The Big Deal

- Low Noise Figure, 0.5 dB typ at 0.9 GHz
- Gain, 20.9 dB typ. at 0.9 GHz
- High OIP3, +22 dBm typ. at 0.9 GHz

CASE STYLE: TE2769

Product Overview

TAV1-551+ is a low noise, high gain device manufactured using E-PHEMPT* technology enabling it to work with a single positive supply voltage. It has outstanding Noise figure, particularly below 2.5 GHz, and when combining this noise figure with gain in a single device it makes it an ideal amplifier for multiple applications.

Key Features

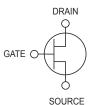
Feature	Advantages
Wideband, 0.045 to 6 GHz	Use in multiple applications: UHF, VHF, communication infrastructure
High Gain, Low noise figure	High Gain limits the effect of noise figure due to previous stages
Small size, 1.18 x 1.42 x 0.85 mm, MCLP package	Small foot print saves space in dense layouts while providing low inductance, repeat- able transitions, and excellent thermal contact to the PCB.

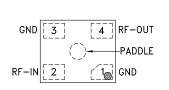
* Enhancement mode Pseudomorphic High Electron Mobility Transistor.

Ultra Low Noise, Low Current E-PHEMT Transistor

Product Features

- Low Noise Figure, 0.5 dB typ. at 0.9 GHz
- Gain, 20.9 dB typ. at 0.9 GHz
- High Output IP3, +24 dBm at 2 GHz, 4V
- Output Power at 1dB compression, +20dBm, 4V
- Wide bandwidth
- External biasing and matching required


Typical Applications


- Cellular
- ISM
- GSM
- WCDMA
- WiMax
- WLAN
- UNII and HIPERLAN

General Description

TAV1-551+ is a low noise, high gain device manufactured using E-PHEMPT* technology enabling it to work with a single positive supply voltage. It has outstanding Noise figure, particularly below 2.5 GHz, and when combining this noise figure with gain in a single device it makes it an ideal amplifier for multiple applications.

simplified schematic and pin description

TOP VIEW

Function	Pad Number	Description
RF-IN	2	Gate used for RF input
RF-OUT	4	Drain used for RF output
GND	1,3 and Paddle	Source terminal and Paddle, normally connected to ground.

* Enhancement mode Pseudomorphic High Electron Mobility Transistor.

0.045-6 GHz

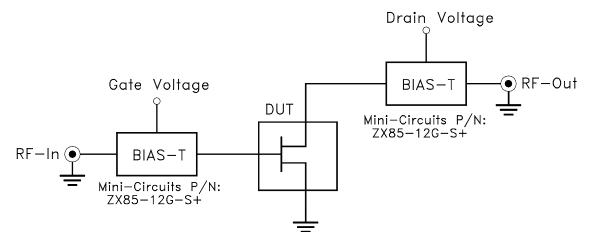
+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		DC Specifications	6				
V _{gs}	Operational Gate Voltage	V _{DS} =3V, I _{DS} =15 mA		0.22	0.34	0.46	V
V _{TH}	Threshold Voltage	V_{DS} =3V, I_{DS} = 4 mA		0.18	0.26	0.38	V
I _{DSS}	Saturated Drain Current	V _{DS} =3V, V _{GS} =0 V		_	1.0	5.0	uA
G _м	Transconductance	$\begin{array}{c} V_{_{DS}} = \!$		215	251	285	mS
I _{gss}	Gate leakage Current	V _{GD} =V _{GS} =-3V		_	_	95	μΑ
		RF Specifications ¹ , Z0=50 Oh	ms (Figure 1)				
NF ¹	Noise Figure	V_{DS} =3V, I_{DS} =15 mA	f=0.9 GHz		0.5		dB
			f=2.0 GHz	_	0.6	0.9	
			f=3.9 GHz		0.8		
			f=5.8 GHz		1.4		
		V_{DS} =4V, I_{DS} =15 mA	f=2.0 GHz		0.6		
Gain	Gain	V _{DS} =3V, I _{DS} =15 mA	f=0.9 GHz		21.6		dB
			f=2.0 GHz	14.4	16.7	18.4	
			f=3.9 GHz		11.9		
			f=5.8 GHz		8.6		
		$V_{\rm DS}$ =4V, $I_{\rm DS}$ =15 mA	f=2.0 GHz		16.7		
OIP3 Output I	Output IP3	$V_{\rm DS}$ =3V, $I_{\rm DS}$ =15 mA	f=0.9 GHz		23.9		dBm
			f=2.0 GHz	20	24.5	_	
			f=3.9 GHz		24.4		
			f=5.8 GHz		26.0		
		$V_{\rm DS}$ =4V, $I_{\rm DS}$ =15 mA	f=2.0 GHz		24.5		
P1dB ²	Power output at 1 dB	$V_{_{DS}}$ =3V, $I_{_{DS}}$ =15 mA	f=0.9 GHz		16.0		dBm
	Compression		f=2.0 GHz	16	17.4	-	
			f=3.9 GHz		18.4		
			f=5.8 GHz		18.8		
		V_{DS} =4V, I_{DS} =15 mA	f=2.0 GHz		19.8		

Electrical Specifications at T_{AMB}=25°C, Frequency 0.045 to 6 GHz

Absolute Maximum Ratings³

Symbol	Parameter	Max.	Units
V _{DS} ⁽⁴⁾	Drain-Source Voltage	5	V
V _{GS} ⁽⁴⁾	Gate-Source Voltage	-5 to 0.7	V
V _{GD} ⁽⁴⁾	Gate-Drain Voltage	-5 to 0.7	V
DS (4)	Drain Current	100	mA
lcs	Gate Current	2	mA
P _{DISS}	Total Dissipated Power	360	mW
P _{IN} ⁽⁵⁾	RF Input Power	17	dBm
Т _{сн}	Channel Temperature	150	°C
T _{OP}	Operating Temperature	-40 to 85	°C
T _{STD}	Storage Temperature	-65 to 150	°C
OLO	Thermal Resistance	160	°C/W


Notes: 1. Includes test board loss (tested on Mini-Circuits TB-TAV1-551+ test board.

2. Drain current bias is allowed to increase during compression measurement.

3. Operation of this device above any one of these parameters may cause permanent damage 4. Assumes DC quiescent conditions

5. I_{GS} is limited to 2 mA during test.

Characterization Test Circuit

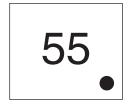


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Test Board TB-TAV1-551+) Gain, Output power at 1dB compression (P1 dB), Noise Figure and output IP3 (OIP3) are measured using Keysight/Agilent Network Analyzer PNA-X.

Conditions:

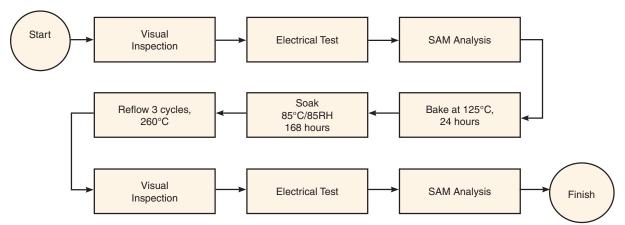
- 1. Drain voltage (with reference to source, V_{DS})= 3 or 4V as shown.
- 2. Gate Voltage (with reference to source, V_{GS}) is set to obtain desired Drain-Source current (IDS) as shown in specification table.
- 3. Gain: Pin= -25dBm
- 4. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 5. No external matching components used.

Product Marking

Additional Detailed Technical Information

additional information is available on our dash board. To access this information click here

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	TE2769 Plastic package, exposed paddle, lead finish: Matte-Tin plated
Tape & Reel	F90
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500,1K,2K or 3K devices
Suggested Layout for PCB Design	98-PL-665
Evaluation Board	TB-TAV1-551+
Environmental Ratings	ENV08T2


ESD Rating

Human Body Model (HBM): Class 1A (250V to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits: TAV1-551+