Ultra Low Noise, Medium Current **D-PHEMT Transistor**

50Ω 10 to 4000 MHz

The Big Deal

- Low Noise Figure, 0.6 dB typ. at 300 MHz
- High Gain, 24.1 dB typ. at 300 MHz
- High OIP3, +31.8 dBm typ. at 300 MHz
- High P1dB, 20.1 dBm typ. at 300 MHz

TAV1-331+

CASE STYLE: TE2769

Product Overview

Mini-Circuits' TAV1-331+ is a MMIC D-PHEMT* transistor with an operating frequency range from 10 to 4000 MHz. This model combines high gain with extremely low noise figure, resulting in lower overall system noise. Low NF and IP3 performance make it an ideal choice for sensitive receivers in communications systems. Manufactured using highly repeatable D-PHEMT technology, the unit comes housed in a tiny 1.4x1.2mm MCLP package. This model requires external biasing and matching.

Key Features

Feature	Advantages
Wideband, 10 to 4000 MHz	A single device covers many wireless communications bands including cellular, ISM, GSM, WCDMA, WiMax, WLAN, and more.
High IP3 vs. DC power consumption • +31.8 dBm at 300 MHz • +37.3 dBm at 4000 MHz	The TAV1-331+ matches industry leading IP3 performance relative to device size and power consumption. Enhanced linearity over a broad frequency range makes the device ideal for use in: • Driver amplifiers for complex waveform up converter paths • Drivers in linearized transmit systems
Combines high gain (24.1 dB) with very low Noise Figure (0.6 dB)	The unique combination of high gain and low Noise Figure results in lower overall system noise.

* Depletion mode Pseudomorphic High Electron Mobility Transistor.

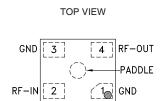
Ultra Low Noise, Medium Current **D-PHEMT Transistor**

Product Features

- Low Noise Figure, 0.6 dB typ. at 300 MHz
- Gain, 24.1 dB typ. at 300 MHz
- High Output IP3, +31.8 dBm typ. at 300 MHz
- Output Power at 1dB comp., +20.1 dBm typ. at 300 MHz
- Low Current, 60mA
- External biasing and matching required
- May be used as a replacement ^{a,b} for Broadcom ATF-331M4

Typical Applications

- Cellular
- ISM
- GSM
- WCDMA
- WiMax
- WLAN
- UNII and HIPERLAN


General Description

Mini-Circuits' TAV1-331+ is a MMIC D-PHEMT transistor with an operating frequency range from 10 to 4000 MHz. This model combines high gain with extremely low noise figure, resulting in lower overall system noise. Low NF and IP3 performance make it an ideal choice for sensitive receivers in communications systems. Manufactured using highly repeatable D-PHEMT technology, the unit comes housed in a tiny 1.4x1.2mm MCLP package. This model requires external biasing and matching.

simplified schematic and pin description

SOURCE

Function	Pin Number	Description
RF-IN	2	Gate used for RF input
RF-OUT	4	Drain used for RF output
GND	1,3 and Paddle	Source terminal and Paddle, normally connected to ground.

a. Note: Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, and application, compatibility with other components and environmental conditions and stresses b. The Broadcom ATF-331M4 part number is used for identification and comparison purposes only.

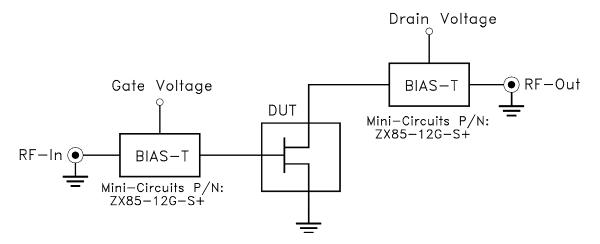
10-4000 MHz

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

REV. A ECO-009090 TAV1-331+ RS/CP/AM 210810 Page 2 of 5

Electrical Specifications at T _{AMB} =25°C	, Frequency 10 to 4000 MHz
---	----------------------------

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		DC Specification	IS	1		1	
V _{gs}	Operational Gate Voltage	V_{ps} =4V, I_{ps} =60 mA		-0.96	-0.69	-0.51	V
V	Pinch-off Voltage	V _{ps} =1.5V, I _{ps} = 10% of Idss			-0.81		V
I _{DSS}	Saturated Drain Current	V _{DS} =4V, V _{GS} =0 V			228		mA
G _M	Transconductance	V_{DS} =4V, Gm= $\Delta I_{DS}/\Delta V_{GS}$			282		mS
I _{gdo}	Gate to Drain Leakage Current	V _{GD} =-5V				1000	uA
I _{GSS}	Gate leakage Current	V _{GD} =V _{GS} =-4V				600	μΑ
		Specifications, Z0=50 Ohm	s (Figure 1)*				
NF	Noise Figure		f=50 MHz		0.9		
			f=300 MHz		0.6		
		V _{DS} =4V, I _{DS} =60 mA	f=900 MHz		0.5		dB
			f=2000 MHz		0.6	0.8	
		f=400	f=4000 MHz		1.0		
Gain Gain		F=10 MHz f=300 MHz f=900 MHz f=2000 MHz f=4000 MHz	f=10 MHz		24.6		
				24.1			
	Gain		f=900 MHz		21.6		dB
			f=2000 MHz	13.9	17.0	18.3	
			f=4000 MHz		12.0		
		V _{DS} =4V, I _{DS} =60 mA f=300 f=900	f=10 MHz		31.7		
			f=300 MHz		31.8		
OIP3 Output IP3	Output IP3		f=900 MHz		32.9		dBm
			f=2000 MHz		34.6		
			f=4000 MHz		37.3		
PIGE		V _{DS} =4V, I _{DS} =60 mA	f=10 MHz		19.6		
	Power output at 1 dB Compression		f=300 MHz		20.1		
			f=900 MHz	18.0	20.4		dBm
			f=2000 MHz		21.3		
			f=4000 MHz		21.3		
Θ _{JC}	Thermal Resistance				106		°C/W


*Tested on Mini-Circuits test board TB-TAVI-331+

Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage ²	5	V
V _{GS}	Gate-Source Voltage ²	-5	V
V _{GD}	Gate-Drain Voltage ²	-5	V
I _{DS}	Drain Current ²	149	mA
P _{DISS}	Total Dissipated Power	400	mW
P _{IN}	RF Input Power	20	dBm
Т _{сн}	Channel Temperature	150	°C
T _{OP}	Operating Temperature	-40 to 85	°C
T _{STD}	Storage Temperature	-65 to 150	°C

Notes: (1) Operation of this device above any one of these parameters may cause permanent damage. (2) Assumes DC quiescent conditions, Vgs = -0.51 V, Vds = 4 V.

Characterization Test Circuit

Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Test Board TB-TAV1-331+) Gain, Output power at 1dB compression (P1 dB), Noise Figure and output IP3 (OIP3) are measured using Keysight PNA-X.

Conditions:

1. Drain voltage (with reference to source, V_{DS})= 4V as shown.

2. Gate Voltage (with reference to source, V_{GS}) is set to obtain desired Drain-Source current (IDS) as shown in graphs or specification table.

- 3. Gain: Pin= -25dBm
- 4. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 5. No external matching components used.

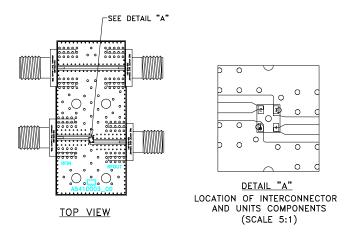


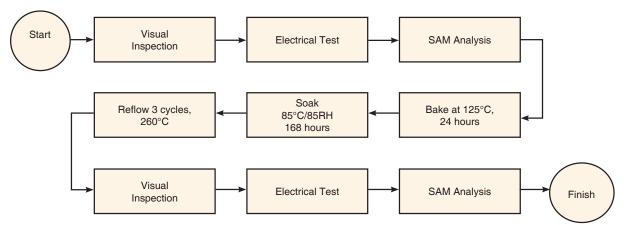
Fig 2. Test Board used for characterization, Mini-Circuits P/N TB-TAV1-331+ (Material: Rogers R04350B, Thickness: 0.01")

Product Marking

Additional Detailed Technical Information

additional information is available on our dash board. To access this information click here

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	TE2769 Plastic package, exposed paddle, lead finish: Matte-Tin plated
Tape & Reel	F90
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500,1K,2K or 3K devices
Suggested Layout for PCB Design	PL-627
Evaluation Board	TB-TAV1-331+
Environmental Ratings	ENV08T2


ESD Rating

Human Body Model (HBM): Class 0 (<250V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits: TAV1-331+