RMS Power Sensor

Mini-Circuits

50Ω 0.05 to 18 GHz -60 to +20 dBm

dBm True RMS

N-Type Male

THE BIG DEAL

- RMS (average) power measurements with 80 dB dynamic range
- Measure wideband modulated & multi-tone signals
- Measure pulsed signals with moderate duty cycles (≥2%)
- Integrated LCD display for quick power readings
- Ethernet & USB control

APPLICATIONS

- 5G FR1, WiFi 6E, Bluetooth device testing
- Ku band satcom, radio and radar testing
- Average power measurement of ASK, FSK, OFDM, QAM, LTE modulations

PWR-18RMS-RC

Generic photo used for illustration purposes only.

PRODUCT OVERVIEW

Mini-Circuits' PWR-18RMS-RC is a high-performance and cost-effective RMS power sensor for measurement of average power levels in a diverse range of test applications. The sensor operates from 50 MHz to 18 GHz, detecting input signals as high as +20 dBm and all the way down to -60 dBm. The compact package includes a rubberized outer case for protection and portability, N-type RF input connector, integrated LCD screen, SMB trigger input / output options and Ethernet / USB control.

The included measurement software for Windows walks the user through the power sensor settings, displays the current measurements and provides powerful data recording and export capabilities. A full API for Windows is also provided, with programming instructions and examples for Windows and Linux systems to set up automated power measurements in a range of common programming environments. Full control is available via Ethernet and USB, with the integrated LCD screen providing a convenient local read-out to the operator of power measurements and key settings.

Mini-Circuits has a wide range of high-performance power sensors available on our <u>website</u>. Consider the <u>PWR-18PWHS-RC</u> peak power sensor if measurements of fast pulses, high crest factor signals or pulse rise / fall times are needed.

KEY FEATURES

Feature	Advantages
True RMS sensor	Cost effective measurements of average power levels over time for a wide range of applications. Measure CW, modulated, pulsed and multi-tone signals with a single sensor.
Wide measurement bandwidth	Accurately measure multi-tone signals and wideband digital modulations (including WiFi devices). The sensor is calibrated for highly accurate average power measurements of signals with bandwidths up to ~100 MHz. Repeatable measurements will be returned over even wider bandwidths (subject to a roll-off in absolute accuracy), permitting use of the sensor for comparison of relative signal levels.
Automatic measurement compensation	Start measuring straight away. The sensor automatically compensates power measurements based on the internal ambient temperature sensor and the user entered measurement frequency.
Flexible control options	Connect with a PC via either Ethernet or USB and measure using the included measurement software or API for au- tomation. Once configured and powered, the sensor can be used as a standalone tool with measurements displayed on the integrated LCD screen.
Trigger in / out	Synchronize measurements between test instrumentation using the external trigger input / output ports.

Trademarks:

Windows is a registered trademark of Microsoft Corporation in the United States and other countries; Linux is a registered trademark of Linus Torvalds; Pentium is a registered trademark of Intel Corporation. Neither Mini-Circuits nor the Mini-Circuits products are affiliated with or endorsed by the owners of the referenced trademarks. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

Rev. OR ECO-019318 EDR-11910/2 PWR-18RMS-RC MCIL 230926 PAGE 1 OF 11

RMS Power Sensor

Mini-Circuits

0.05 to 18 GHz 50Ω

-60 to +20 dBm

True RMS

N-Type Male

PWR-18RMS-RC

ELECTRICAL SPECIFICATIONS, 25°C^{1,2}

Parameter	Conditions	Frequency (GHz)	Min.	Тур.	Max.	Unit
Frequency Range	-	-	0.05	-	18	GHz
Input Power Range	_	0.05 - 18	-60	-	+20	dBm
Uncertainty of Power	-60 to -50 dBm	0.05 - 18	-	±0.2	±0.6	
Measurement, +25°C ³	-50 to +20 dBm	0.05 - 18	-	±0.2	±0.4	— dB
Uncertainty of Power Measurement, 0°C to +50°C ³	-60 to +20 dBm	0.05 - 18	-	±0.4	-	dB
Return Loss	-	0.05 - 18	18	25	-	dB
Linearity, +25°C	-	0.05 - 18	-	2	-	%
Measurement Resolution	-	0.05 - 18	0.01	-	-	dB
Averaging Range	-	0.05 - 18	1	-	999	-
Measurement Time	Sample Period= 0.1 ms ⁴	0.05 - 18	-	0.5	-	ms
(including typical USB delays)	Sample Period= 1000 ms	0.05 - 18	-	2500	-	
Sample Period	-	0.05 - 18	0.1	-	1000	ms
Video Bandwidth	-	0.05 - 18	-	-	100	MHz
DOO 111	Ethernet disabled	0.05 - 18 425 475	-	425	500	
DC Current (I _{DC})	Ethernet enabled ⁵		475	550	— mA	
Triananla	Logic Low	-	0	-	0.6	
Trigger In	Logic High	-	2.7	-	5.5	
Trigger Out ⁶	Logic Low	-	0	-	0.3	v
(into high impedance load)	Logic High	-	3	-	5.2	
Pulse Modulation	Pulse Width/Interval ⁷	0.05.40	500	-	-	μs
	Duty Cycle	- 0.05 - 18	2	-	98	%
Effect of Multi-Tone Signals (within span of 100 MHz)	_	0.05 - 18	-	±0.1	_	dB

1. All specifications after 30 minutes warmup time and zeroing.

Maximum continuous safe operational power limit: +23 dBm.
 Tested with CW signal and default sample period. For Sample period<(10 x Signal period), maintain Sample period=(N x Signal period).
 With "Buffer Mode" setting enabled and "Screen Display - On" setting disabled.

5. When Ethernet control is enabled, it is recommended to use an external power supply (USB-AC/DC-5 or equivalent), a powered hub, or USB 3.0/3.1 port, in order to supply the current.

6. Trigger Out is set momentarily to logic high after each sample period.
 7. For sample periods 20 ms or less. Minimum pulse & interval increase for sample periods greater than 20 ms.

RMS Power Sensor

Mini-Circuits

50Ω 0.05 to 18 GHz -60 to +20 dBm

PWR-18RMS-RC True RMS N-Type Male

UNCERTAINTY OF POWER MEASUREMENT WITH DIGITAL MODULATION, 25°C⁸

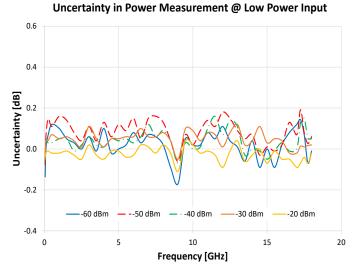
Modulation	Conditions (dBm)	Frequency (GHz)	Min.	Тур.	Max.	Unit
QPSK, QAM16 & QAM64 in LTE uplink setup	-50		-	±0.2	-	
	-30		-	±0.2	-	
(1.4 MHz channels, 3.7 MHz offsets)	-10	0.05 - 18	-	±0.2	-	dB
3.7 WITZ OTSets)	+10		-	±0.2	-	
	-50		-	±0.2	-	
QPSK in WiMax setup	-30	0.05 10	-	±0.2	-	
(10 MHz channel, 22.4 MHz sample clock)	-10	0.05 - 18	-	±0.2	-	dB
	+10		-	±0.2	-	
	-50		-	±0.2	-	
64QAM in WLAN setup	-30	0.05 10	-	±0.2	-	dB
(10 MHz channel, 22.4 MHz sample clock)	-10	0.05 - 18	-	±0.2	-	aB
	+10		-	±0.2	-	
	-50	0.05 - 18	-	±0.2	-	
MSK in GSM setup	-30		-	±0.2	-	
(Gausian filter @270,833 sps)	-10		-	±0.2	-	dB
	+10		-	±0.2	-	
	-50	0.05 - 18	-	±0.2	-	
DQPSK in NADC setup	-30		-	±0.2	-	
(RNYQ filter @ 24.3 ksps)	-10		-	±0.2	-	dB
	+10		-	±0.2	-	
	-50		-	±0.2	-	
DQPSK in PWT setup	-30		-	±0.2	_	
(RNYQ filter @ 576 ksps)	-10	0.05 - 18	-	±0.2	-	dB
	+10		-	±0.2	-	
	-50		-	±0.2	_	
256QAM in DECT setup	-30		-	±0.2	_	
(Gausian filter @ 1.152Msps)	-10	0.05 - 18	-	±0.2	_	dB
	+10		-	±0.2	-	
4QAM in PHS setup	-50		-	±0.2	-	
	-30		-	±0.2	-	
(RNYQ filter @ 192ksps)	-10	0.05 - 18	-	±0.2	-	dB
	+10		_	±0.2	_	

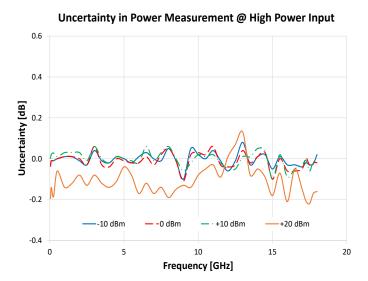
8. Digital modulation transmission rates are measured in "symbols per second" (sps) and use a bandpass filter on the output to limit spectral spreading.

RMS Power Sensor

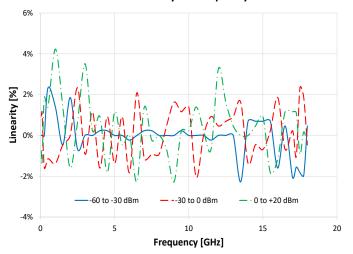
Mini-Circuits

W

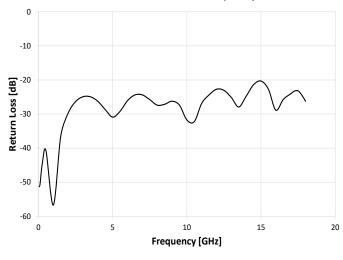

50Ω 0.05 to 18 GHz -60


-60 to +20 dBm

True RMS N-Type Male


PWR-18RMS-RC

TYPICAL PERFORMANCE GRAPHS



Linearity vs. Frequency

Return Loss vs. Frequency

Mini-Circuits

☐ Mini-Circuits

RMS Power Sensor 0.05 to 18 GHz 50Ω

-60 to +20 dBm **True RMS** N-Type Male

PWR-18RMS-RC

CONTROL INTERFACES

Ethernet Control	Supported Protocols	TCP / IP, HTTP, Telnet, DHCP, UDP (limited)
Ethemet Control	Max Data Rate	100 Mbps (100 Base-T Full Duplex)
USB Control	Supported Protocols	HID (Human Interface Device) - High-speed
	Min Communication Time ⁹	400 μs typ (full transmit/receive cycle)

9. USB Min Communication Time is based on the polling interval of the USB HID protocol (125 µs polling interval, 64 bytes per packet), medium CPU load and no other high-speed USB devices using the USB bus

SOFTWARE & DOCUMENTATION

Mini-Circuits' full software and support package including user guide, Windows GUI, API, programming manual and examples can be downloaded free of charge (refer to the last page for the download path).

A comprehensive set of software control options is provided:

- GUI for Windows Simple software interface for control via Ethernet and USB.
- Programming / automation via Ethernet:
 - Complete set of control commands which can be sent via any supported protocol.
 - Simple to implement in the majority of modern programming environments.
- Programming / automation via USB:
 - DLL files provide a full API for Windows with a set of intuitive functions which can be implemented in any programming environment supporting .Net Framework or ActiveX.
 - Direct USB programming is possible in any other environment (not supporting .Net or ActiveX).

Please contact testsolutions@minicircuits.com for support.

GUI	Windows 7 or later
USB API DLL	Windows 7 or later and programming environment with ActiveX or .NET support
USB Direct Programming	Linux, Windows 7 or later
HTTP or Telnet	Any computer with a network port and Ethernet-TCP/IP (HTTP or Telnet protocols) support
Hardware	Intel i3 (or equivalent) or later
Control Cable	Power sensor to be used with the supplied USB cable only

MINIMUM SYSTEM REQUIREMENTS

GRAPHICAL USER INTERFACE (GUI) FOR WINDOWS - KEY FEATURES

- Connect via USB or Ethernet (HTTP, Telnet) to control the module.
- Control multiple power sensors at once.

Mini-Circuits Smart RF Power Meter	(Ver F3X1) − □ ×
Run Program - USB Control:	Run Program - Ethernet Control:
USB	Device Ethernet Parameters:
	Password: © Use HTTP © Use Telnet (port 23)

- Set compensation frequency and monitor power measurement.
- Configure measurement (offsets, relative power readings, averaging, set trigger mode, etc.).
- Zero the power sensor (recommended at the start of a new measurement session).
- Schedule data recording.

Mini-Circuits Sn	×	
Zeroing Format	USB Control Device Temp: Freq (50 - 18000 MHz):	Add Sensor
 dBm Watt	+31.50°C 15000.0 □ Freq. in GHz Reading	Reset Connection
Averaging Avg. Count:	-71.13 dBm	Record
Offset Val.	(Dynamic Range: -60dBm to +20dBm) Power reading out of range 0.00 dBm	Measurement Applications
Offset File Ignore Ignore Display Graph	Power Sensor Model: Serial Number: (fw) PWR-18RMS-RC 12308080004	Always on top Ethernet-Config Config

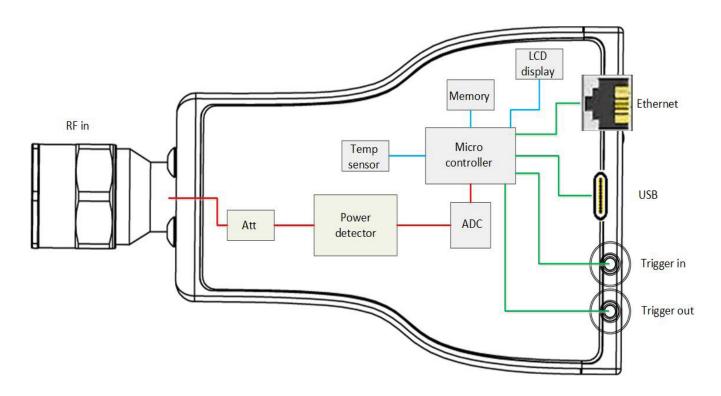
GUI - CONFIGURATION SCREEN

Mini-Circuits	Smart RF Power Meter (Ver F3X3)	×
Zeroing Format —	USB Control	Add Sensor
● dBm ● Watt	Power Sensor - Configuration Sample Period	Reset Connection
Averaging Avg. Count		Record
Offset Val.	Image: Constraint of the second se	Measurement Applications
Display Graph		Ethernet-Config

- Set the sample period (the time over which the sensor will average the power) between 100 µs and 1s.
- Select from 3 trigger options:
 - 1. Free No trigger / free running measurements.
 - 2. External On Rise Measurements are triggered on the rising edge of an external trigger signal.
 - 3. External On Fall Measurements are triggered on the falling edge of an external trigger signal.
- Set the buffer size to send over the latest X number of measurements once a SCPI command is received (refer to programming manual for details).

Mini-Circuits

W


RMS Power Sensor 50Ω 0.05 to 18 GHz -60 to +20 dBm

True RMS

N-Type Male

PWR-18RMS-RC

BLOCK DIAGRAM

ABSOLUTE	MAXIMUM	RATINGS ^{10, 11}
----------	---------	----------------------------------

Operating Temperature	0°C to +50°C
Storage Temperature	-30°C to +70°C
DC Voltage at RF Ports	5 V
Trigger In	-0.3 to 5.5 V
CW Power	+26 dBm

10. Permanent damage may occur if any of these limits are exceeded.

Operating in the range between operating power limits and absolute maximum ratings for extended periods of time may result in reduced life and reliability.

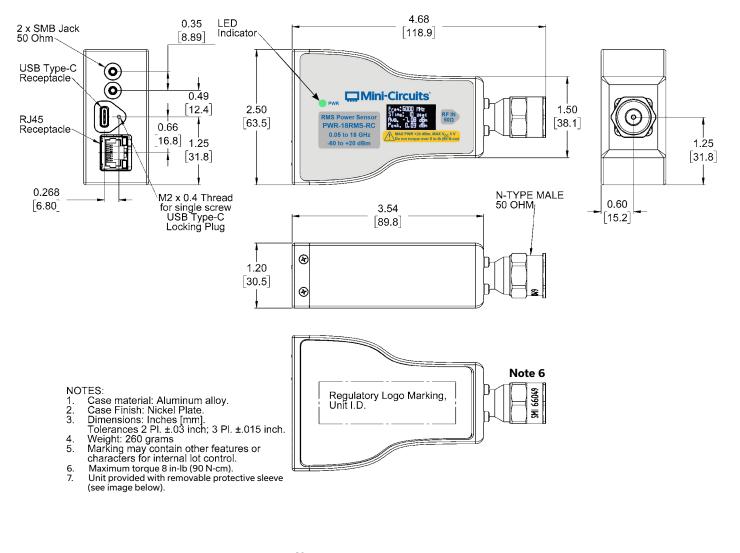
CONNECTIONS

Port Name	Connector Type
RF Input	N-type Male
Trigger In	SMB Male
Trigger Out	SMB Male
USB	USB type-C (with screw lock)
Ethernet	RJ45 Socket

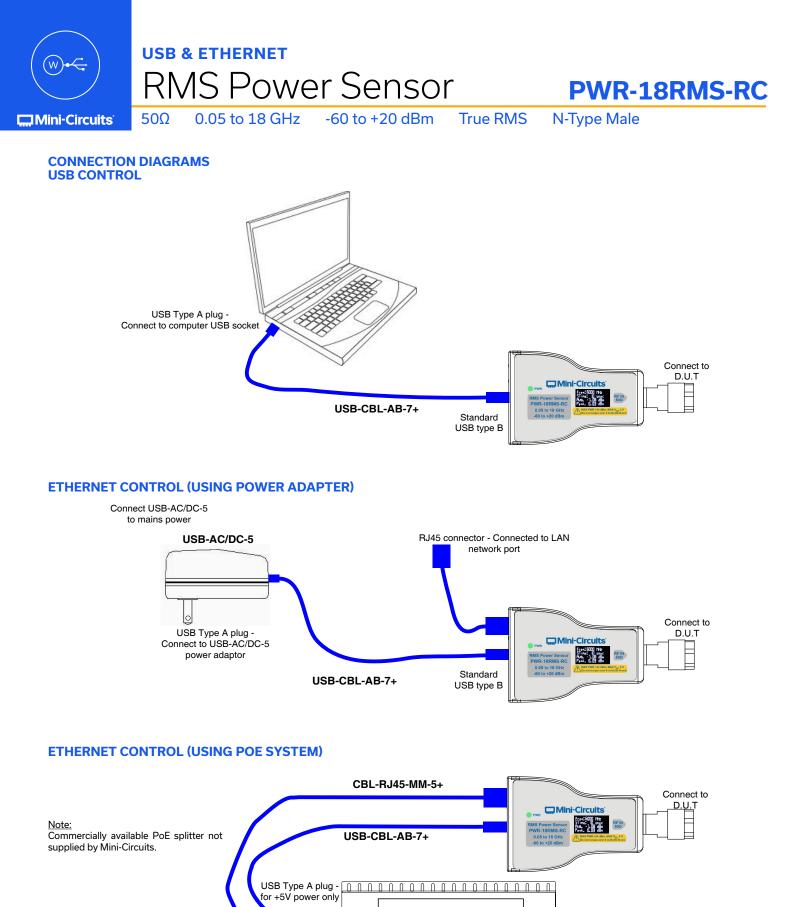
RMS Power Sensor

Mini-Circuits

0.05 to 18 GHz


-60 to +20 dBm True RMS

N-Type Male


PWR-18RMS-RC

CASE STYLE DRAWING (JL3470)

50Ω

Mini-Circuits

RJ45 connector

for I AN data

PoE Splitter

RJ45 connector -Connected to PoE/LAN port

Mini-Circuits

0.05 to 18 GHz -60 to +20 dBm

dBm True RMS

IS N-Type Male

PWR-18RMS-RC

DETAILED MODEL INFORMATION IS AVAILABLE ON OUR WEBSITE

RMS Power Sensor

Performance Data & Graphs	Data Graphs		
Case Style	JL3470		
Environmental Rating	ENV50		
Software, User Guide & Programming Manual	https://www.minicircuits.com/softwaredownload/pm.html		
Regulatory Compliance	Refer to user guide for compliance information C C ĽK	://www.minicircuits.com/app/AN48-003.pdf	
Support	testsolutions@minicircuits.com		

INCLUDED ACCESSORIES¹²

50Ω

	Part No.	Qty.	Description
	USB-CBL-AC-7SC+	1	7.0 ft (2.0 m) USB Cable: USB type A (Male) to USB type C (Male)
6))	CBL-5FT-BMSMB+	1	5.0 ft (1.5 m) Trigger cable: BNC (Male) to SMB (Female)

12. Additional quantities are available to purchase as optional accessories.

OPTIONAL ACCESSORIES

	Part No.	Description
40	CBL-RJ45-MM-5+	5.0 ft (1.5 m) Ethernet cable: RJ45 (Male) to RJ45 (Male) Cat 5E cable
Called Barrier	NF-SF50+	N-Type Female to SMA Female Adapter
	NF-SM50+	N-Type Female to SMA Male Adapter
CTUDE?	NF-BM50+	N-Type Female to BNC Male Adapter
	USB-AC/DC-5+	AC/DC +5V power adaptor with USB connector ^{13, 14}

13. Includes power plugs for US, UK, EU, IL, AU & China. Plugs for other countries are also available. If you need a power cord for a country not listed please contact testsolutions@minicircuits.com 14. Power adaptor, powered hub or USB 3.0/3.1 port may be used to provide power when in Ethernet control, not needed in USB control.

CALIBRATION

Part No.	Description		
CALSEN-18RMS-RC	Calibration Service for PWR-18RMS-RC	CLICK HERE	

NOTES:

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
 C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"): Purchasers of this part are entitled to
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at https://www.minicircuits.com/terms/viewtem.html

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com PAGE 11 OF 11

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits:

PWR-18RMS-RC