Monolithic Amplifier PMA3-83LN+

Mini-Circuits

50Ω 0.5 to 8.0 GHz

THE BIG DEAL

- Flat gain over wideband
- Low noise figure, 1.3 dB at 2 GHz
- High IP3, +35 dBm at 2 GHz
- High P_{out}, P1dB +20.7 dBm at 2 GHz and +6V
- Suitable for low phase noise applications

Generic photo used for illustration purposes only CASE STYLE: DO1225

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our website for methodologies and qualifications

APPLICATIONS

- WiFi
- WLAN
- UMTS
- LTE
- WiMAX
- S-band Radar
- C-band Satcom

PRODUCT OVERVIEW

The PMA3-83LN+ is a PHEMT based wideband, low noise MMIC amplifier with a unique combination of low noise, high IP3, and flat gain over wideband making it ideal for sensitive, high-dynamic-range receiver applications. This design operates on a single +5V or +6V supply, is well matched for 50Ω and comes in a tiny 3x3 mm 12-Lead QFN-Style package, accommodating dense circuit board layouts.

KEY FEATURES

Feature	Advantages
Low noise, 1.3 dB at 2 GHz	Enables lower system noise figure performance.
High IP3 • +35 dBm at 2 GHz • +28.5 dBm at 8 GHz	Combination of low noise and high IP3 makes this MMIC amplifier ideal for use in low noise receiver front end (RFE) as it gives the user advantages of sensitivity and two-tone IM performance at both ends of the dynamic range.
Low operating voltage, +5V/+6V.	Achieves high IP3 using low voltage.
3x3mm 12-lead QFN-Style package	Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.
Wide bandwidth with flat gain • ±0.9 dB over 0.5 to 7 GHz • ±1.5 dB over 0.5 to 8 GHz	Enables a single amplifier to be used in many wideband applications including defense, instrumentation and more.
Low additive phase noise, typically -155 dBc/Hz @10 KHz offset	Ideal for low phase noise synthesizer applications

REV. E ECO-021503 PMA3-83LN+ MCL NY 240417

Monolithic Amplifier PMA3-83LN+

Mini-Circuits

50Ω 0.5 to 8.0 GHz

ELECTRICAL SPECIFICATIONS¹ AT +25°C AND +5V, UNLESS NOTED OTHERWISE

Parameter	Condition		V _{DD} = +6.0		V _{DD} = +5.0			
	(GHz)	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		0.5		8.0	0.5		8.0	GHz
	0.5		1.8			1.9		
	2.0		1.3	1.7		1.3		
Noise Figure	4.0		1.5			1.5		dB
-	5.0		1.5			1.6	1.9	
	8.0		2.2			2.2		
Additive Phase Noise 2.0 GHz, 1	0KHz offset		-155			-155		dBc/Hz
	0.5		21.8			21.0		
	2.0	19.9	22.1	24.3		21.3		
Gain	4.0		21.5			20.8		dB
	5.0		21.2		18.7	20.5		
	8.0		19.2			18.7		
	0.5		14.2			13.1		
	2.0		16.0			16.0		
Input Return Loss	4.0		13.0			12.2		dB
•	5.0		12.5			12.4		
	8.0		6.3			6.3		
	0.5		12.9			13.7		
	2.0		13.0			14.3		
Output Return Loss	4.0		28.8			27.5		dB
	5.0		20.3			18.4		
	8.0		12.9			12.6		
	0.5		+18.6			+16.3		
	2.0		+20.7			+19.1		
Output Power at 1dB Compression ²	4.0		+19.6			+17.6		dBm
	5.0		+20.3		+17.2	+18.9		
	8.0		+18.0			+17.3		
	0.5		+34.2			+29.7		
	2.0		+35.2			+30.0		
Output IP3	4.0		+34.0			+29.6		dBm
	5.0		+34.0		+24.0	+29.7		
	8.0		+28.5			+26.2		
Device Operating Voltage (V _{DD})			+6.0			+5.0		V
Device Operating Current (I _{DD})			77	94		60		mA
Device Current Variation vs. Temperature ³			-152			-109		µA/°C
Device Current Variation vs. Voltage			0.016			0.016		mA/mV
Thermal Resistance, junction-to-ground lead			47			47		°C/W

1. Measured on Mini-Circuits Characterization test board TB-830A+. See Characterization Test Circuit (Fig. 1)

2. Current increases at P1dB to 109 mA typ. at +6V $\rm V_{DD}$ and 88mA typ. at +5V $\rm V_{DD}$

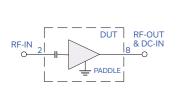
3. (Current at 85°C - Current at -45°C)/130

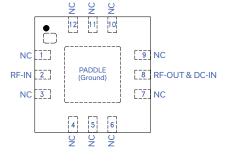
ABSOLUTE MAXIMUM RATINGS⁴

Parameter	Ratings		
Operating Temperature (ground lead)	-40°C to +105°C		
Storage Temperature	-65°C to +150°C		
Junction Temperature	+150°C		
Total Power Dissipation	0.95 W		
Input Power (CW), V _{DD} = +5 V or +6 V ⁵	+19 dBm (5 minutes max.) +16 dBm (continuous)		
DC Voltage on V _{DD}	+7 V		

4. Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

5. Measured on Mini-Circuits test board, TB-830A+


Mini-Circuits


Monolithic Amplifier PMA3-83LN+

Mini-Circuits

50Ω 0.5 to 8.0 GHz

SIMPLIFIED SCHEMATIC & PAD DESCRIPTION

Function	Pad Number	Description (See Figure 1)
RF-IN	2	Connects to RF input and to ground via L1 (optional blocking capacitor of 100pF may be used)
RF-OUT & DC-IN	8	Connects to RF out via C3 and $V_{\mbox{\scriptsize DD}}$ via L2
Ground	Paddle	Connects to ground
NC	1,3 to 7, 9 to 12	Not used internally. Connected to ground on test board (except 11 and 12)

RECOMMENDED APPLICATION AND CHARACTERIZATION TEST CIRCUIT

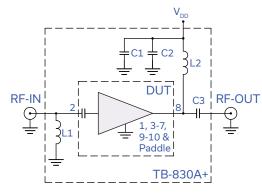
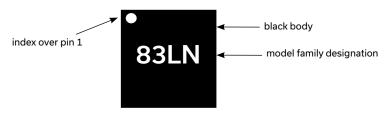



Figure 1. PMA3-83LN+ Characterization and Application Circuit

Component	Vendor	Vendor P/N	Value	Size
C1	Murata	GRM155R71E103KA01D	0.01µF	0402
C2	Murata	GJM1555C1H100JB01D	10pF	0402
С3	Murata	GRM1555C1H101JA01D	100pF	0402
L1	Murata	LQG15HS18NJ02D	18nH	0402
L2	Coilcraft	0402CS-39NXGLW	39nH	0402

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Electrical Parameters and Conditions

Gain, Return Loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and Noise Figure measured using N5242A PNA-X microwave network analyzer.

Conditions:

 Gain and Return Loss: P_{IN}= -25dBm
Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

Monolithic Amplifier PMA3-83LN+

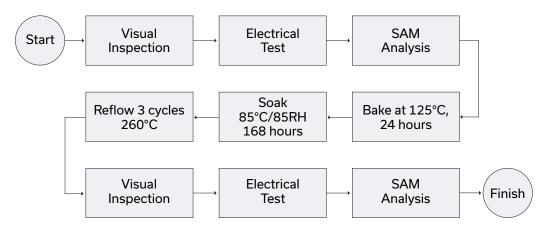
Mini-Circuits

50Ω 0.5 to 8.0 GHz

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	DQ1225 Plastic package, exposed paddle, lead finish: Matte-Tin
Tape & Reel	F66
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500, 1K, 2K or 3K devices
Suggested Layout for PCB Design	PL-456
Evaluation Board	TB-830A+
Environmental Ratings	ENV08T1

ESD RATING


Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (pass 50V) in accordance with ANSI/ESD STM5.2-1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits:

PMA3-83LN+