

Mini-Circuits

50Ω 0.4 to 8.0 GHz

### THE BIG DEAL

- Flat gain over wideband, 0.4 to 8 GHz
- Low noise figure, 1.2 dB at 2 GHz
- High IP3, up to +37 dBm at 2 GHz
- High Pout, P1dB 21.7 dBm typ. at 2 GHz and 6V
- Excellent gain flatness, ±0.6 dB over 0.4 to 7 GHz and 6V



Generic photo used for illustration purposes only

CASE STYLE: DQ1225

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

#### **APPLICATIONS**

- WiFi
- WLAN
- UMTS
- LTE
- WiMAX
- S-band Radar
- C-band Satcom

#### **PRODUCT OVERVIEW**

The PMA3-83LNW+ is a PHEMT based wideband, low noise MMIC amplifier with a unique combination of low noise, high IP3, and flat gain over wideband making it ideal for sensitive, high-dynamic-range receiver applications. This design operates on a single 5V or 6V supply, is well matched for  $50\Omega$  and comes in a tiny, low profile package (3 x 3 x 0.89mm), accommodating dense circuit board layouts.

#### **KEY FEATURES**

| Feature                                                                                     | Advantages                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Low noise, 1.2 dB at 2 GHz                                                                  | Enables lower system noise figure performance.                                                                                                                                                                                    |  |  |  |
| High IP3<br>• +37 dBm at 2 GHz<br>• +29 dBm at 8 GHz                                        | Combination of low noise and high IP3 makes this MMIC amplifier ideal for use in low noise receiver front end (RFE) as it gives the user advantages of sensitivity and two-tone IM performance at both ends of the dynamic range. |  |  |  |
| Low operating voltage, 5V/6V.                                                               | Achieves high IP3 using low voltage.                                                                                                                                                                                              |  |  |  |
| 3 x 3mm 12-lead MCLP package                                                                | Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.                                                                                     |  |  |  |
| Wide bandwidth with flat gain<br>• ±0.6 dB over 0.4 to 7 GHz<br>• ±1.5 dB over 0.4 to 8 GHz | Enables a single amplifier to be used in many wideband applications including defense, instrumentation and more                                                                                                                   |  |  |  |

REV. A ECO-010881 PMA3-83LNW+ MCL NY 211201



Mini-Circuits

### ELECTRICAL SPECIFICATIONS<sup>1</sup> AT 25°C, UNLESS NOTED

| Parameter                                             | Condition |      | V <sub>DD</sub> =6.0 |      | V <sub>DD</sub> =5.0 |       | Units |       |
|-------------------------------------------------------|-----------|------|----------------------|------|----------------------|-------|-------|-------|
| Falalleter                                            | (GHz)     | Min. | Тур.                 | Max. | Min.                 | Тур.  | Max.  | Units |
| Frequency Range                                       |           | 0.4  |                      | 8.0  | 0.4                  |       | 8.0   | GHz   |
|                                                       | 0.4       |      | 2.0                  |      |                      | 2.0   |       |       |
|                                                       | 2.0       |      | 1.2                  |      |                      | 1.2   |       |       |
| Noise Figure                                          | 4.0       |      | 1.3                  |      |                      | 1.4   |       | dB    |
|                                                       | 5.0       |      | 1.5                  |      |                      | 1.6   |       |       |
|                                                       | 8.0       |      | 2.2                  |      |                      | 2.2   |       |       |
|                                                       | 0.4       | 19.8 | 22.0                 | 23.9 | 18.9                 | 21.1  | 22.9  |       |
|                                                       | 2.0       |      | 22.6                 |      |                      | 21.7  |       |       |
| Gain                                                  | 4.0       | 19.5 | 21.8                 | 23.6 | 18.8                 | 21.0  | 22.8  | dB    |
|                                                       | 5.0       |      | 21.3                 |      |                      | 20.6  |       |       |
|                                                       | 8.0       | 16.9 | 19.0                 | 20.5 | 16.5                 | 18.6  | 20    |       |
|                                                       | 0.4       |      | 10                   |      |                      | 10    |       |       |
|                                                       | 2.0       |      | 17                   |      |                      | 18    |       |       |
| Input Return Loss                                     | 4.0       |      | 12                   |      |                      | 11    |       | dB    |
|                                                       | 5.0       |      | 11                   |      |                      | 10    |       |       |
|                                                       | 8.0       |      | 7                    |      |                      | 7     |       |       |
|                                                       | 0.4       |      | 22                   |      |                      | 22    |       |       |
|                                                       | 2.0       |      | 14                   |      |                      | 16    |       |       |
| Output Return Loss                                    | 4.0       |      | 24                   |      |                      | 24    |       | dB    |
|                                                       | 5.0       |      | 19                   |      |                      | 18    |       |       |
|                                                       | 8.0       |      | 10                   |      |                      | 9     |       |       |
|                                                       | 0.4       |      | 18.8                 |      |                      | 16.2  |       |       |
|                                                       | 2.0       |      | 21.7                 |      |                      | 20.5  |       |       |
| Output Power at 1dB Compression                       | 4.0       |      | 20.4                 |      |                      | 18.9  |       | dBm   |
|                                                       | 5.0       |      | 20.2                 |      |                      | 18.8  |       |       |
|                                                       | 8.0       |      | 18.1                 |      |                      | 17.3  |       |       |
|                                                       | 0.4       |      | 32.2                 |      |                      | 28.7  |       |       |
|                                                       | 2.0       |      | 37.0                 |      |                      | 31.1  |       |       |
| Output IP3                                            | 4.0       |      | 34.5                 |      |                      | 30.1  |       | dBm   |
| -                                                     | 5.0       |      | 32.0                 |      |                      | 28.6  |       |       |
|                                                       | 8.0       |      | 29.0                 |      |                      | 26.8  |       |       |
| Device Operating Voltage (V <sub>DD</sub> )           |           | 5.75 | 6                    | 6.75 | 4.75                 | 5     | 5.25  | V     |
| Device Operating Current (I <sub>DD</sub> )           |           |      | 75                   | 94   |                      | 58    |       | mA    |
| Device Current Variation vs. Temperature <sup>2</sup> |           |      | -190                 |      |                      | -143  |       | µA/°C |
| Device Current Variation vs. Voltage                  |           |      | 0.017                |      |                      | 0.017 |       | mA/mV |
| Thermal Resistance, junction-to-ground lead           |           |      | 47                   |      |                      | 47    |       | °C/W  |

1. Measured on Mini-Circuits Characterization test board TB-PMA3-83LNW+. See Characterization Test Circuit (Fig. 1)

2. (Current at 105°C - Current at -45°C)/130

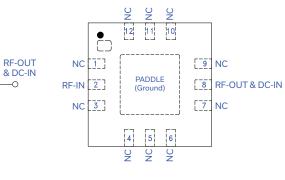


### Mini-Circuits

**RF-IN** 

0

#### **MAXIMUM RATINGS<sup>3</sup>**


| Parameter                              | Ratings                                                                                        |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Operating Temperature (ground lead)    | -40°C to 105°C                                                                                 |  |  |
| Storage Temperature                    | -65°C to 150°C                                                                                 |  |  |
| Junction Temperature                   | 150°C                                                                                          |  |  |
| Total Power Dissipation                | 0.95 W                                                                                         |  |  |
| Input Power (CW), Vd=5,6V <sup>4</sup> | +19 dBm (5 minutes max)<br>+9 dBm (continuous, 0.4-0.5 GHz)<br>+16 dBm (continuous, 0.5-8 GHz) |  |  |
| DC Voltage                             | 7 V                                                                                            |  |  |

3. Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are

not intended for continuous normal operation. 4. Measured on Mini-Circuits test board, TB-PMA3-83LNW+

DUT

#### **SIMPLIFIED SCHEMATIC & PAD DESCRIPTION**



| Function                           | Pad<br>Number                    | Description<br>(Fig. 1)                                                                               |
|------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|
| RF-IN                              | 2                                | Connects to RF input and to<br>ground via L1<br>(optional blocking capacitor of<br>100pF may be used) |
| RF-OUT &<br>DC-IN                  | 8                                | Connects to RF out via C3 and $V_{\rm DD}$ via L2                                                     |
| Ground                             | Ground Paddle Connects to ground |                                                                                                       |
| No 1,3 to 7, 9<br>Connection to 12 |                                  | Not used internally. Connected<br>to ground on test board (except<br>11 and 12)                       |



**RECOMMENDED APPLICATION AND CHARACTERIZATION TEST CIRCUIT** 

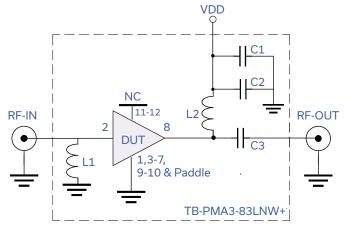



Fig 1. Application and Characterization Circuit

Note: This block diagram is used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-PMA3-83LNW+)

Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.


Conditions:

1. Gain and Return loss: Pin= -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

| Component | Size | Value  | Part Number        | Manufacturer |
|-----------|------|--------|--------------------|--------------|
| L1        | 0402 | 18nH   | LQP15MN18NJ02D     | Murata       |
| L2        | 0402 | 39nH   | 0402CS-39NXGLW     | Coilcraft    |
| C1        | 0402 | 0.01uF | GRM155R71E103KA01D | Murata       |
| C2        | 0402 | 10pF   | GJM1555C1H100JB01D | Murata       |
| C3        | 0402 | 100pF  | GRM1555C1H101JA01D | Murata       |

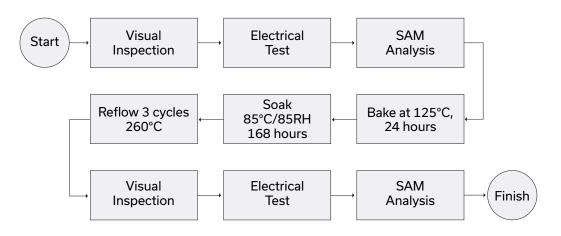
**PRODUCT MARKING** 



Marking may contain other features or characters for internal lot control



#### Mini-Circuits


#### ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

| Performance Data                                     | Data Table<br>graphs, s-parameter data set (.zip file)            |  |  |
|------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Case Style                                           | DQ1225<br>Plastic package, exposed paddle, lead finish: Matte Tin |  |  |
| Tape & Reel<br>Standard quantities available on reel | F66<br>7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices.    |  |  |
| Suggested Layout for PCB Design                      | PL-628                                                            |  |  |
| Evaluation Board                                     | TB-PMA3-83LNW+                                                    |  |  |
| Environmental Ratings                                | ENV08T1                                                           |  |  |

#### **ESD RATING**

Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

#### **MSL TEST FLOW CHART**



#### NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

### Mini-Circuits

### **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits: PMA3-83LNW+