

## SUPER WIDEBAND, HIGH GAIN Monolithic Amplifier

## PMA3-453+

Mini-Circuits

50Ω 10 to 45 GHz

#### THE BIG DEAL

- Wideband, 10 to 45 GHz
- Usable down to 9 GHz
- High Gain, 25.5 dB typ. at 20 GHz
- Low NF, 1.6 dB typ. at 20 GHz
- P1dB, 10 dBm typ. at 20 GHz
- OIP3, 22 dBm typ. at 20 GHz
- Built-in Bias Tee and DC Blocks
- Patent Pending



Generic photo used for illustration purposes only

CASE STYLE: DQ1225

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our website for methodologies and qualifications

#### **APPLICATIONS**

- 5G
- Lab Instrument
- Satellite

#### **PRODUCT OVERVIEW**

The PMA3-453+ is a PHEMT based wideband, low noise MMIC amplifier with a unique combination of high gain and low noise figure over a very board bandwidth making it ideal for using as the first stage driver amplifier of receiver applications. This design operates on a single 4V supply, is matched to 50 Ohm and comes in a tiny plastic package (3 x 3 x 0.89mm), accommodating dense circuit board layouts.

#### **KEY FEATURES**

| Feature                          | Advantages                                                                                                                                    |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Low NF (<3.0dB typ.) up to 30GHz | Enables lower system noise figure performance.                                                                                                |
| High Gain 20dB typ. up to 30GHz  | Enables signal amplification without the need for multiple gain stage, minimizing the effect of subsequent stages on noise figure.            |
| Built-in Bias Tee & DC Blocks    | Minimizes the external component count & PC board space, making it less expensive and user friendly for system designers.                     |
| 3 x 3mm 12-lead MCLP package     | Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB. |

REV. C ECO-011519 PMA3-453+ GY/RS/CP/AM 240401



# Monolithic Amplifier



Mini-Circuits

50Ω 10 to 45 GHz

#### ELECTRICAL SPECIFICATIONS<sup>1</sup> AT 25°C, Vs= +4V AND R1=18Ω, UNLESS NOTED OTHERWISE

| Denemeter                                             |                 |       |         | Vs= +4 V | Units |
|-------------------------------------------------------|-----------------|-------|---------|----------|-------|
| Parameter                                             | Condition (GHz) | Min.  | Тур.    | Max.     | Units |
| Frequency Range                                       | _               | 10    |         | 45       | GHz   |
|                                                       | 10              |       | 1.9     |          |       |
|                                                       | 20              |       | 1.6     |          |       |
| Noise Figure                                          | 30              |       | 2.4     |          | dB    |
|                                                       | 40              |       | 3.8     |          |       |
|                                                       | 45              |       | 5.2     |          |       |
|                                                       | 10              | 22.5  | 25.3    | 29.2     |       |
|                                                       | 20              | 22.2  | 25.5    | 31.1     |       |
| Gain                                                  | 30              | 14.5  | 18.2    | 23.9     | dB    |
|                                                       | 40              | 10.4  | 14.1    | 18.1     |       |
|                                                       | 45              | _     | 9.1     | _        |       |
|                                                       | 10              |       | 13      |          |       |
|                                                       | 20              |       | 21      |          |       |
| Input Return Loss                                     | 30              |       | 8       |          | dB    |
|                                                       | 40              |       | 5       |          |       |
|                                                       | 45              |       | 5       |          |       |
|                                                       | 10              |       |         |          | dB    |
| Outrast Datum Lana                                    | 20              |       | 10<br>9 |          |       |
| Output Return Loss                                    | 30<br>40        |       | 15      |          | ав    |
|                                                       | 40              |       | 7       |          |       |
|                                                       | 10              |       | +8.5    |          |       |
|                                                       | 20              |       | +10.0   |          |       |
| Output Power @ 1 dB compression                       | 30              |       | +11.0   |          | dBm   |
| output i ower @ 1 ub compression                      | 40              |       | +11.7   |          | dbiii |
|                                                       | 45              |       | +10.1   |          |       |
|                                                       | 10              |       | +18.6   |          |       |
|                                                       | 20              |       | +22.0   |          |       |
| Output IP3                                            | 30              |       | +23.4   |          | dBm   |
| ·                                                     | 40              |       | +21.9   |          |       |
|                                                       | 45              |       | +21.4   |          |       |
| Supply Voltage (Vs)                                   |                 | +3.75 | +4.0    | +4.25    | V     |
| Device Operating Current (I <sub>DD</sub> )           |                 |       | 68      | 112      | mA    |
| Device Current Variation vs. Temperature <sup>2</sup> |                 |       | -50     |          | µA/°C |
| Device Current Variation vs. Voltage                  |                 |       | 0.02    |          | mA/mV |
| Thermal Resistance, junction-to-ground lead           |                 |       | 106     |          | °C/W  |

1. Measured on Mini-Circuits Characterization test board TB-PMA3-453+ with thru-line loss being deducted. See Characterization Test Circuit (Fig. 1)

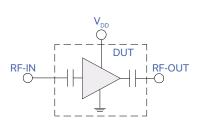
2. Device Current Variation vs. Temperature = (Current at 85°C - Current at -45°C)/130°C

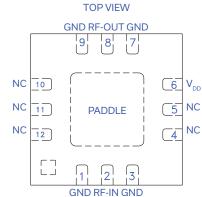
#### **ABSOLUTE MAXIMUM RATINGS<sup>3</sup>**

| Parameter                           | Ratings                                          |  |
|-------------------------------------|--------------------------------------------------|--|
| Operating Temperature (ground lead) | -40°C to +85°C                                   |  |
| Storage Temperature                 | -65°C to +150°C                                  |  |
| Junction Temperature                | +146°C                                           |  |
| Total Power Dissipation             | 0.65W                                            |  |
| Input Power (CW), Vs= +4V           | +23 dBm (5 minutes max.)<br>+13 dBm (continuous) |  |
| DC Voltage at Port 2 & 8            | +2 V                                             |  |
| DC Voltage (Vs)                     | +6 V                                             |  |

3. Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

#### Mini-Circuits





# **SUPER WIDEBAND, HIGH GAIN** onolithic Amplifier

Mini-Circuits

50Ω 10 to 45 GHz

#### SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION





| Function         | Pad<br>Number       | Description<br>(Fig. 1)                                      |
|------------------|---------------------|--------------------------------------------------------------|
| RF-IN            | 2                   | RF Input Pad. Connects to RF input                           |
| RF-OUT           | 8                   | RF Output Pad. Connects to RF output                         |
| V <sub>DD</sub>  | 6                   | DC Power Supply Pad. Connects to<br>Voltage Source Vs via R1 |
| Ground           | 1,3,7,9 &<br>Paddle | Connects to ground                                           |
| No<br>Connection | 4,5,10,11&<br>12    | Not used internally. Connected to ground on test board       |

#### **RECOMMENDED APPLICATION AND CHARACTERIZATION TEST CIRCUIT**

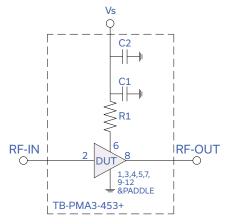



Fig 1. Application and Characterization Circuit

Note: This block diagram is used for characterization. (DUT is soldered on Mini-Circuits Characterization test board TB-PMA3-453+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5245A microwave network analyzer.

#### Conditions:

Gain and Return Loss: P<sub>IN</sub>= -25dBm
Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -5dBm/tone at output.

| Component | Size | Value  | Part Number        | Manufacturer |
|-----------|------|--------|--------------------|--------------|
| R1        | 0603 | 18 Ohm | SG73G1JTTD18R0C    | КОА          |
| C1        | 0402 | 5 pF   | GJM1555C1H5R0CB01D | Murata       |
| C2        | 0402 | 0.1 uF | GRM155R71C104KA88D | Murata       |

#### **PRODUCT MARKING**



Marking may contain other features or characters for internal lot control



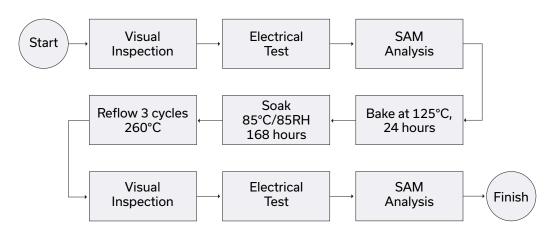
## SUPER WIDEBAND, HIGH GAIN Monolithic Amplifier

Mini-Circuits

#### 50Ω 10 to 45 GHz

#### ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

| Performance Data                                     | Data Table<br>graphs, s-parameter data set (.zip file)               |
|------------------------------------------------------|----------------------------------------------------------------------|
| Case Style                                           | DQ1225<br>Plastic package, exposed paddle, lead finish: Matte Tin    |
| Tape & Reel<br>Standard quantities available on reel | F66<br>7" reels with 20, 50, 100, 200, 500, 1K, 2K or 3K devices     |
| Suggested Layout for PCB Design                      | PL-675                                                               |
| Evaluation Board                                     | TB-PMA3-453+ (Without connectors)<br>TB-PMA3-453C+ (With connectors) |
| Environmental Ratings                                | ENV08T1                                                              |


#### **ESD RATING**

Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

#### **MSL RATING**

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

#### **MSL TEST FLOW CHART**



#### NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

#### 🛄 Mini-Circuits

## **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits:

PMA3-453+