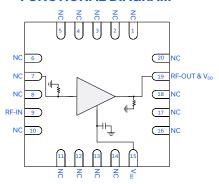


Wideband Amplifier AVA-183MP+

0.05 to 18 GHz High Dynamic Range Low Noise

THE BIG DEAL

- · Ultra wideband, 0.05-18 GHz
- High Dynamic Range
 - P1dB, Typ. +24 dBm
 - · Gain, Typ. 16 dB
 - Low Noise Figure, Typ. 1.8 dB
- · High OIP3, Typ. +31 dBm
- 4x4mm 20-Lead QFN-Style Package


APPLICATIONS

- 5G MIMO and Back Haul Radio Systems
- Satellite Communications
- Test and Measurement Equipment
- Radar, EW, and ECM Defense Systems

PRODUCT OVERVIEW

AVA-183MP+ is a GaAs pHEMT MMIC wideband distributed amplifier operating from 0.05 to 18 GHz. The amplifier provides 16.5 dB of Gain, +24 dBm P1dB, and +31 dBm OIP3, and 1.8 dB Noise Figure typical performance while operating from an +8V supply with 160mA current consumption. The AVA-183MP+ offers a leading combination of wide bandwidth, low noise figure, high linearity, and output power resulting in a 50Ω matched high dynamic range amplifier. The AVA-183MP+ performance characteristics are ideal for use in wideband Defense Systems and Test and Measurement Equipment. The amplifier is housed in an industry standard 4x4mm QFN-style package.

KEY FEATURES

Features	Advantages
Wideband: 0.05 to 18 GHz Gain, Typ. 16 dB	Ideal for use in wideband Electronic Warfare and Test and Measurement transmit signal chains.
High Dynamic Range P1dB, Typ. +24 dBm OIP3, Typ. +31 dBm NF, Typ. 1.8 dB	Suitable as a driver amplifier for wideband power amplifier signal chains.
Good Input and Output Return Loss	Internally matched to 50Ω , this eliminates the need for external matching components making the device easy to integrate.
4x4mm 20-Lead QFN-style package	Small footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.

REV. A ECO-023248 AVA-183MP+ MCL NY 241010

Wideband Amplifier AVA-183MP+

0.05 to 18 GHz High Dynamic Range Low Noise

ELECTRICAL SPECIFICATIONS¹ AT +25°C, V_{DD}= +8V, I_{DD} = 160mA, UNLESS NOTED OTHERWISE

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		0.05		18	GHz
	0.05	19.8	20.6		
	5	15.5	16.2		
Gain	10	15.5	16.3		dB
	15	15.1	15.8		
	18	14.8	15.6		
	0.05		11.4		
	5		20.0		
Input Return Loss	10		13.6		dB
	15		11.2		
	18		15.9		
	0.05		14.3		
	5		20.0		
Output Return Loss	10		20.0		dB
	15		20.0		
	18		19.3		
Isolation	0.05-18		43.0		dB
isolation	0.05		+25.8		
	5		+24.2		
Output Power at 1 dB Compression (P1dB)	10		+23.8		dBm
output tower at Lab compression (Liab)	15		+24.4		uB
	18		+24.4		
	0.05		+32.7		
	5		+32.2		
Output Third-Order Intercept Point	10		+31.1		dBm
(P _{OUT} = 0dBm/Tone)	15		+29.3		аып
	18		+27.4		
	0.05				
	5		7.0		
Nicha Phana			1.5		JD.
Noise Figure	10		1.8		dB
	15 18		2.8 3.6		
Device Operating Voltage (V _{DD})	10	±7.75	+8	10.35	V
Device Operating Voltage (V_{DD}) Device Operating Current (I_{DD}) ²		+7.75	160	+8.25	mA
Gate Voltage (V _{GG}) ³			-1.3		V
Gate Current (I _{GG})			-0.5		μΑ
Device Current Variation Vs. Temperature ⁴			5.4		μA/°C
Device Current Variation Vs. Voltage ⁵			0.208		mA/mV

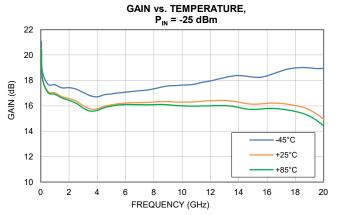
 $[\]textbf{1.} \textbf{ Tested in Mini-Circuits Characterization Test/Evaluation Board TB-AVA-183MPC+}. \textbf{ See Figure 2.} \textbf{ De-embedded to the device reference plane.}$

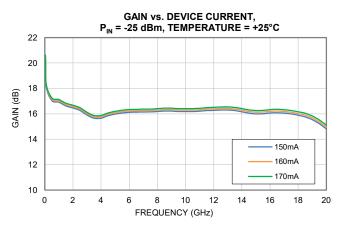
^{2.} Current at P_{IN} = -25 dBm. Increases to 190 mA at P1dB.

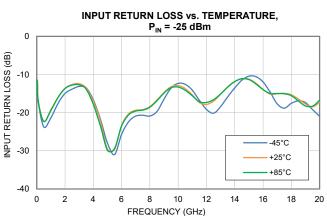
^{3.} Typical Gate Voltage for when I_{DD} = 160 mA. V_{GG} must be adjusted so that I_{DD} = 160 mA.

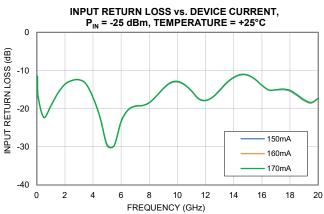
^{4. ((}Current at Tmax°C - Current at -Tmin°C))/(Tmax °C -Tmin °C)

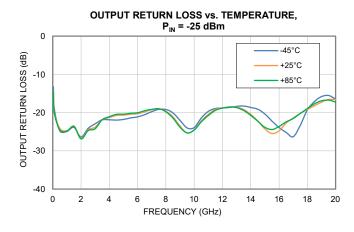
^{5. (}Current at Nominal V + Δ V in mA)- (Current at Nominal V - Δ V mA)/(2 Δ V mV)

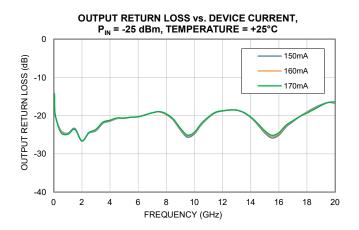


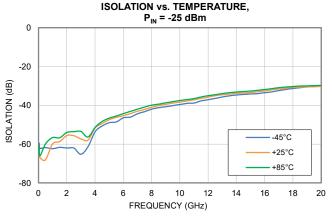

Wideband Amplifier AVA-183MP+

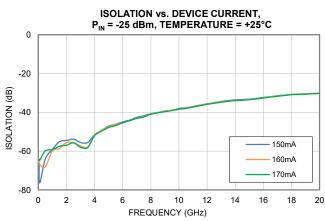

0.05 to 18 GHz High Dynamic Range Low Noise


TYPICAL PERFORMANCE GRAPHS

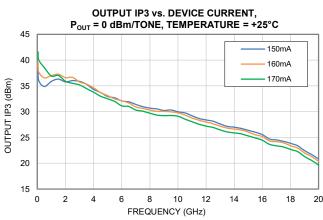

Note: All data taken was at nominal conditions V_{DD} = +8V, I_{DD} = 160 mA, and V_{GG} = -1.3V unless noted otherwise. For over temperature data, I_{DD} is adjusted to 160 mA at each temperature specified. For over temperature data, I_{DD} is adjusted to 160 mA at each voltage specified.

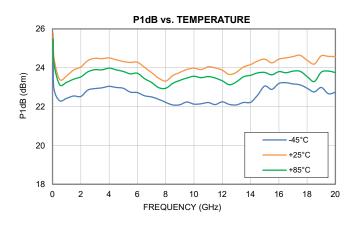


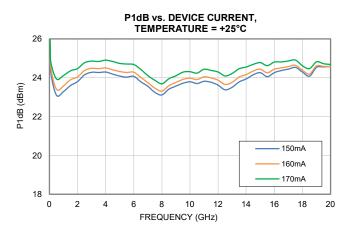


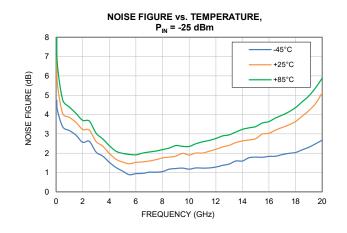

Wideband Amplifier AVA-183MP+

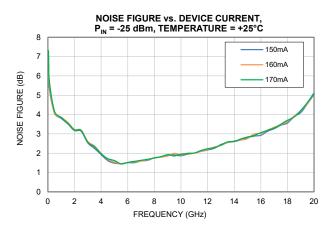
0.05 to 18 GHz High Dynamic Range Low Noise

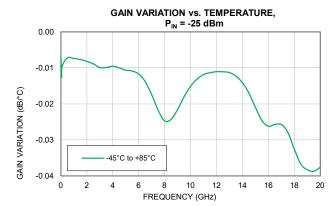

TYPICAL PERFORMANCE GRAPHS


Note: All data taken was at nominal conditions V_{DD} = +8V, I_{DD} = 160 mA, and V_{GG} = -1.3V unless noted otherwise. For over temperature data, I_{DD} is adjusted to 160 mA at each temperature specified. For over temperature data, IDD is adjusted to 160 mA at each voltage specified.






Wideband Amplifier AVA-183MP+


0.05 to 18 GHz High Dynamic Range Low Noise

TYPICAL PERFORMANCE GRAPHS

Note: All data taken was at nominal conditions V_{DD} = +8V, I_{DD} = 160 mA, and V_{GG} = -1.3V unless noted otherwise. For over temperature data, I_{DD} is adjusted to 160 mA at each temperature specified. For over temperature data, I_{DD} is adjusted to 160 mA at each voltage specified.

Wideband Amplifier AVA-183MP+

0.05 to 18 GHz High Dynamic Range Low Noise

ABSOLUTE MAXIMUM RATINGS⁶

Parameter	Ratings
Operating Temperature	-45°C to +85°C
Storage Temperature	-65°C to +150°C
Total Power Dissipation	2.8W
Junction Temperature ⁷	+175°C
Input Power (CW), V _{DD} = +8V, I _{DD} = 160mA	+21 dBm (Continuous)
DC Voltage on RF-OUT & V _{DD}	+10V
DC Voltage on RF-IN	+10V
DC Voltage on V _{GG}	-0.5V to -2V
Current I _{DD}	350mA
Current I _{GG}	-1.5mA to 0mA

^{6.} Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.

POWER ON / POWER OFF SEQUENCE

Power On / Power Off	Sequence		
Power ON	1) Set V _{GG} = -2V. Apply V _{GG} . 2) Set V _{DD} = +8V. Apply V _{DD} . 3) Increase V _{GG} to obtain desired I _{DD} as shown in specification table. 4) Apply RF Signal.		
Power OFF	1) Turn off RF Signal. 2) Adjust V_{GG} down to -2V. 3) Turn off V_{DD} . 4) Turn off V_{GG} .		

Permanent damage to the device will occur if the Power ON and Power OFF Sequences are not followed.

THERMAL RESISTANCE

Parameter	Ratings
Thermal Resistance $(\Theta_{jc})^8$	17.3 °C/W

^{8.} O_{ic}= (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING

	Class	Voltage Range	Reference Standard
Human Body Model (HBM)	1B	500V to <1000V	ANSI/ESDA/JEDEC JS-001-2017
Charged Device Model (CDM)	C3	1000V	JESD22-C101F

ESD HANDLING PRECAUTION: This device is designed to be Class 1B for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

MSL RATING

Moisture Sensitivity: MSL3 in accordance with IPC/JEDEC J-STD-020E/JEDEC J-STD-033C

^{7.} Peak temperature on top of Die.

Wideband Amplifier AVA-183MP+

High Dynamic Range Low Noise 0.05 to 18 GHz

FUNCTIONAL DIAGRAM

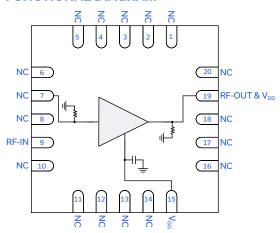


Figure 1. AVA-183MP+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Description
RF-IN	7	RF-IN Pad connects to RF-Input port. DUT includes an integrated shunt resistor for ESD protection.
RF-OUT & V _{DD}	19	RF-OUT & V_{DD} Pad connecs to RF-Output and the voltage input, V_{DD} , port. DUT includes an integrated shunt resistor for ESD protection.
V _{GG}	15	Gate DC Input Pad connects to the voltage input port $V_{\rm GG}$.
GND	Paddle	Connects to ground.
NC	1-6, 8-14, 16-18, & 20	Not used internally. Connected to ground on test board.

EVALUATION BOARD

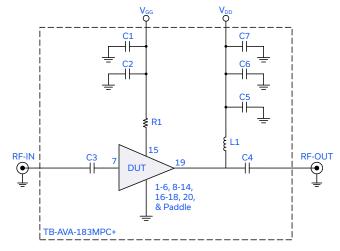
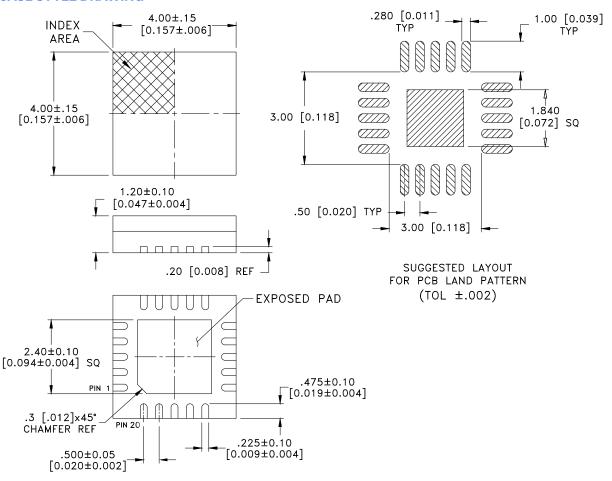


Figure 2. DUT soldered on Mini-Circuits Evaluation Board: TB-AVA-183MPC+

Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using PNA-X N5247B Microwave Network Analyzer:

- 1. Gain and Return Loss: P_{IN}= -25 dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. $V_{DD} = +8V$, $I_{DD} = 160 \text{ mA}$

Caution: Permanent damage to the device will occur if the Power ON and Power OFF Sequences are not followed.


Component	Vendor	Vendor P/N	Value	Size
C1, C7	Samsung	CL31B106KBHNNNE	10μF	1206
C2, C6	AVX	06035C104KAT2A	0.1µF	0603
C5	Murata	GRM1885C1H101GA01D	100pF	0603
C3, C4	AVX	550L104KTT	0.1µF	0402
R1	KOA	RK73H1ETTP1001F	1kΩ	0402
L1	PICONICS	CC36T44K240G5-C	0.6µH	2.5mmx3.8mm

Videband Amplifier AVA-183MP+

0.05 to 18 GHz High Dynamic Range Low Noise 50Ω

CASE STYLE DRAWING

Weight: 0.1 grams Dimensions are in inches [mm].

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Wideband Amplifier AVA-183MP+

0.05 to 18 GHz High Dynamic Range Low Noise

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD

CLICK HERE

	Data		
Performance Data	Graphs		
	S-Parameter (S2P Files) Data Set (.zip file)		
Case Style	DG1847-1. QFN-style package, exposed paddle, Lead Finish: PPF		
RoHs Status	Compliant		
Tape & Reel Standard quantities available on reel	F66 7" reels with 20, 50 , 100, 200, 500, or 1000 devices		
Suggested Layout for PCB Design	PL-750		
Evaluation Board	TB-AVA-183MPC+		
Evaluation Board	Gerber File		
Environmental Ratings	ENV08T10		
Product Handling	The use of no-clean solder is recommended. This package cannot be subjected to aqueous wash.		

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini Circuits' website at www.minicircuits.com/terms/viewterm.html

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mini-Circuits:

AVA-183MP+