
UART_CONT

UART Serial Interface Controller
Rev. 2.0

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC and SoC

● Supplied as human-readable VHDL source code. (Verilog
translation may be provided on request).

● UART compatible serial interface controller

● Receive and transmit input/output FIFOs with configurable
depth

● Supports all standard data rates from 9600 to 921600 baud

● Fully custom data rates also supported - limited only by system
clock frequency

● 5, 6, 7 or 8-bit data payload width with 1 or 2 stop bits

● Even, odd, mark, space or no parity

● Receive and transmit interrupt flags

● Rx and Tx FIFO count values and full flags

Applications

● UART communications using a range of electrical standards
such as RS232, RS422 and RS485 etc.

● Control in industrial, commercial and lab environments

● Basic PC-to-board interfacing and debug – including simple
comms using a range of popular USB-to-UART bridge ICs

● Ideal for micro-controller communications between FPGA and
MCU

Generic Parameters

Generic name Description Type Valid range

sclkfreq System clock
frequency in Hz

integer ≥ 106

rxfifo_depth Receive data FIFO
depth

integer ≥ 2

rxfifo_depth_log2 Receive data FIFO
depth log2

(Used to help with
synthesis only)

integer log2
(rxfifo_depth)

txfifo_depth Transmit data FIFO
depth

integer ≥ 2

txfifo_depth_log2 Transmit data FIFO
depth log2

(Used to help with
synthesis only)

integer log2
(txfifo_depth)

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

baudrate [3:0] in Baud rate setting

(All common baud rates
are supported up 921600
baud. Other baud rates
supported on request. Not
all baud rates are shown
here)

0000: 2400
0001: 4800
0010: 7200
0011: 9600
…
1110: 460800
1111: 921600

databits [1:0] in Number of data bits 00: 5 data bits
01: 6 data bits
10: 7 data bits
11: 8 data bits

stopbits in Number of stop bits 0: 1 stop bit
1: 2 stop bits

parity [2:0] in Parity setting 000: None
001: Even
010: Odd
011: Mark
100: Space

Copyright © 2020 www.zipcores.com Download this IP Core Page 1 of 5

TX_OUT

F
IF

O
 s

ta
g

e
 #

0

tx_val

tx_rdy

clk

reset

tx_data

Tx FIFO

F
IF

O
 s

ta
g

e
 #

1

F
IF

O
 s

ta
g

e
 #

n

UART_TX

F
IF

O
 s

ta
g

e
 #

0

F
IF

O
 s

ta
g

e
 #

1

F
IF

O
 s

ta
g

e
 #

n

Rx FIFO

PAD

rx_val

rx_rdy

rx_data

RX_IN

PADUART_RX

tx_flag

rx_flag

rx_err

rx
_

fu
ll

tx
_

fu
ll

tx
_

co
u

n
t

rx
_

co
u

n
t

Figure 1: Simplified UART serial interface controller architecture

http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 2.0

Pin-out Description cont ...

Pin name I/O Description Active state

rx_flag out Data received flag high

rx_full out Receive FIFO full flag high

rx_count out Receive FIFO counter
value (fullness)

data

tx_flag out Data transmitted flag high

tx_full out Transmit FIFO full flag high

tx_count out Transmit FIFO counter
value (fullness)

data

rx_in in Serial bits in serial data

tx_out out Serial bits out serial data

rx_data [7:0] out Received data data

rx_err out Parity error flag
(qualified by rx_val)

high

rx_val out Received data valid high

rx_rdy in Received data ready
handshake

high

tx_data [7:0] in Transmit data data

tx_val in Transmit data valid high

tx_rdy out Transmit data ready
handshake

high

General Description

The UART_CONT IP Core is a robust UART-compliant serial interface
controller capable of receiving and transmitting bits serially. It has a
configurable data payload from 5 to 8-bits (with or without parity) and
supports either 1 or 2 stop bits.

Both the receiver and transmitter circuits have a configurable FIFO which
may be used to buffer the parallel input and output data as required. In
addition, the controller features a number of flags and counters to indicate
the state of the FIFOs and also whether a data word has been received or
sent.

In the standard configuration, the controller will support baud rates from
2400 to 921600 baud, although higher and lower rates may be supported
depending on the choice of system clock frequency. Fully custom baud
rates may also be implemented on request.

The UART controller is comprised of four main blocks as described by
Figure 1. These blocks are the receiver (de-serializer), the transmitter
(serializer) and the receive and transmit FIFOs.

Both the receive and transmit FIFOs use a simple data streaming protocol
with a valid/ready handshake. Data is written or read from the FIFOs on
the rising-edge of clk when val and rdy are both high1.

The transmit FIFO may be used to 'queue up' a sequence of bytes to be
sent via the UART interface. Likewise, the receive FIFO may be used to
buffer incoming bytes. When the receive FIFO is full the flag rx_full is
asserted and will remain high until the FIFO is emptied. If the receive
FIFO is full, then any further bytes received will be lost until the FIFO has
sufficient capacity.

1 Please see Zipcores application note: app_note_zc001.pdf for more
examples of how to use the valid-ready pipeline protocol.

Both the transmit and receive FIFOs have an external counter signal
called tx_count and rx_count. These counter values are updated on
every clock cycle and indicate the number of occupied entries in the
respective FIFOs. The counter values may be used to determine how full
or empty the FIFOs are at any time.

Programmable UART parameters

The baud rate setting, number of data bits, number of stop bits and parity
bits may be programmed in real-time. After changing any of the UART
parameters, it is recommended that a system reset is performed. This is
done by asserting the reset signal low for at least 2 system clock cycles.

A full list of baudrate settings is shown below2:

0000: baudrate = 2400
0001: baudrate = 4800
0010: baudrate = 7200
0011: baudrate = 9600
0100: baudrate = 14400
0101: baudrate = 19200
0110: baudrate = 28800
0111: baudrate = 33600
1000: baudrate = 38400
1001: baudrate = 57600
1010: baudrate = 115200
1011: baudrate = 128000
1100: baudrate = 230400
1101: baudrate = 256000
1110: baudrate = 460800
1111: baudrate = 921600

Functional Timing

Figure 2 shows the format of the bit stream at the UART receiver. The
example demonstrates the timing waveform at 9600 baud in which the
duration of a bit is approximately 104 us.

A frame begins with a START bit (logic '0') then the bits are read starting
with the LSB and ending with the MSB. The frame terminates with a
STOP bit (Logic '1'). The design may be configured to use 5, 6, 7 or 8
data bits, an optional parity bit and 1 or 2 stop bits.

2 Other baud rates (custom or otherwise) may be supported on request.
Please contact Zipcores for more information.

Copyright © 2020 www.zipcores.com Download this IP Core Page 2 of 5

RX_IN

Start
Bit

Stop
Bit 1

104 us

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit 2

5 data bits

6 data bits

7 data bits

8 data bits

(optional) (1 or 2 stop bits)

Figure 2: UART serial bitstream format

http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 2.0

Figure 3 demonstrates the corresponding receiver output for the input bit-
stream in Figure 2. Note that the interface is initially stalled with rx_rdy
asserted low. Once the ‘ready’ handshake is asserted high, the data is
transferred.

The UART transmitter timing is exactly the same, with the exception that
the data direction is reversed.

The additional signals rx_flag, tx_flag and rx_err are not shown in the
timing diagrams. The rx and tx flags function as simple strobes that are
asserted for one system clock cycle when data is read from and written to
the Rx and Tx FIFOs. The rx_err signal is a flag that is asserted high
when the receiver detects a parity error in the received data. This signal
is qualified by the rx_val signal and when rx_val is low it should be
ignored.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

uart_fifo.vhd Transmit and Receive FIFOs

uart_tx.vhd UART Transmitter

uart_rx.vhd UART Receiver

uart_cont.vhd Top-level block

uart_cont_bench.vhd Top-level test bench

uart_file_reader.vhd File reader for transmit data

uart_tx_in.txt Transmit data text file

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. uart_fifo.vhd
2. uart_rx.vhd
3. uart_tx.vhd
4. uart_cont.vhd
5. uart_file_reader.vhd
6. uart_cont_bench.vhd

The VHDL test bench instantiates the UART_CONT component in a loop-
back configuration with the serial data transmit stream feeding into the
serial receive stream. The baud rate, parity, number of stop bits and
system clock frequency may be adjusted by the user as required.

The input stimulus for the test is provided by the file uart_tx_in.txt. This
stimulus file should be put in the current top-level VHDL simulation
directory. The input text file is a sequence of 8-bit bytes (in hex) on
consecutive lines that represent the data to be transmitted.

In the default set up, the simulation must be run for around 100 ms during
which time the file-reader module will read the 8-bit data to be
transmitted. The controller is set up in a loop-back configuration with
parity set to 'none'.

The simulation generates an output text file called: uart_rx_out.txt. This
file contains the 8-bit data captured at the receiver outputs during the
course of the simulation. At the end of the test, the input and output files
may be compared to verify correct operation. Both these files should be
identical as the UART is configured in loop-back.

Development Board Testing

The UART Serial Controller was implemented on a Xilinx® Artix-7 AC701
development board running at a system clock frequency of 100 MHz. The
board implements a simple USB-to-UART bridge interface using a Silicon
Labs® CP2103 device.

A simple serial communications program was written for a PC to allow a
series of characters to be sent and received using the standard (COM1)
serial port. The port was configured to use 8 data bits, 1 stop bit and no
parity. Various baud rates were tested to ensure correct operation at
different frequencies.

The first series of tests were carried out at 115200 baud. Figure 4
demonstrates the result of sending the character 'U' (0x55 in hex) to the
UART controller. The FPGA-based controller was set up in a loop-back
configuration so that the received bits were were re-transmitted. The
upper trace shows the serial bits on the Rx pin. The bottom trace shows
the resulting data on the Tx pin.

Copyright © 2020 www.zipcores.com Download this IP Core Page 3 of 5

clk

rx_data 0x4D

Data Transfer

rx_val

rx_rdy

Figure 3: UART Receiver valid-ready handshake

Figure 4: Receive/Transmit 0x55 at 115200 baud

http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 2.0

Figure 5 shows detail of the mark-space ratio of the same transmitted
output bits. For a baud rate of 115200, then the width of each bit should
be around 8.7 us.

Figure 6 shows the UART controller in the same loop-back configuration,
but this time working at 921600 baud. At this data rate, the CP2103
device was working at the limit of it's specified performance of 1 Mbps.
The resulting mark space ratio was quite poor. However, the FPGA-
based UART Controller was still capable of decoding the bit-stream
correctly.

Figure 7 shows a detailed view of the transmitted bits. For a baud rate of
921600 then the duration of a bit should be around 1.085 us.

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● uart_cont.vhd
○ uart_fifo.vhd
○ uart_rx.vhd
○ uart_tx.vhd

The IP Core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® 7-series
FPGAs. Synthesis results for other FPGAs and technologies can be
provided on request.

Note that in order to achieve the fastest and most area efficient designs
the size of the FIFOs should be kept to a minimum.

Trial synthesis results are shown with the generic parameters set to:
sclkfreq = 100000000, rxfifo_depth = 256, rxfifo_depth_log2 = 8,
txfifo_depth = 256, txfifo_depth_log2 = 8.

Resource usage and timing is specified after Place and Route.

Copyright © 2020 www.zipcores.com Download this IP Core Page 4 of 5

Figure 7: Timing detail at 921600 baudFigure 5: Timing detail at 115200 baud

Figure 6: Receive/Transmit 0x55 at 921600 baud

http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 2.0

XILINX® 7-SERIES FPGAS

Resource type Artix-7 Kintex-7 Virtex-7

Slice Register 116 116 116

Slice LUTs 224 223 220

Block RAM 0 0 0

DSP48 0 0 0

Occupied Slices 82 79 77

Clock freq. (approx) 250 MHz 300 MHz 350 MHz

Revision History

Revision Change description Date

1.0 Initial revision 03/11/2008

1.1 Added parity bit support 18/10/2011

1.2 Updated synthesis results for the full range
of Xilinx® 6-series FPGAs

23/10/2012

1.3 Updated synthesis results in line with minor
source-code changes. Added the tx_full flag

04/05/2014

1.4 Added generic to allow configurable number
of data bits the payload

07/07/2014

1.5 Minor source code fixes. Updated synthesis
results for Xilinx® 7-series FPGAs

11/04/2017

2.0 Major revision. Made all UART parameters
real-time programmable

03/01/2020

Copyright © 2020 www.zipcores.com Download this IP Core Page 5 of 5

http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html
http://www.zipcores.com/uart-serial-interface-controller.html

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Zipcores:

 SKU28

https://www.mouser.com/
https://www.mouser.com/access/?pn=SKU28

