

ZED-F9P-04B

u-blox F9 high precision GNSS module

Data sheet

Abstract

This data sheet describes the ZED-F9P high precision module with multiband GNSS receiver. The module provides multi-band RTK with fast convergence times, reliable performance and easy integration of RTK for fast time-to-market. It has a high update rate for highly dynamic applications and centimeter-level accuracy in a small and energy-efficient module.

www.u-blox.com

UBX-21044850 - R01 C1-Public

Document information

Title	ZED-F9P-04B	
Subtitle	u-blox F9 high precision GNSS module	
Document type	Data sheet	
Document number	UBX-21044850	
Revision and date	R01	21-Dec-2021
Disclosure restriction	C1-Public	

Product status	Corresponding content state	us
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	FW version	IN/PCN reference	Product status
ZED-F9P	ZED-F9P-04B-00	HPG 1.30	-	Engineering sample

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, modification or disclosure to third parties of this document or any part thereof is only permitted with the express written permission of u-blox.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © 2021, u-blox AG.

Contents

1 Functional description	
1.1 Overview	
1.2 Performance	
1.3 Supported GNSS constellations	
1.4 Supported GNSS augmentation systems	
1.4.1 Quasi-Zenith Satellite System (QZSS)	
1.4.2 Satellite based augmentation system (SBAS)	
1.4.3 Differential GNSS (DGNSS)	
1.4.4 Centimeter level augmentation service (CLAS)	
1.5 Broadcast navigation data and satellite signal measurements	
1.5.1 Carrier-phase measurements	
1.6 Supported protocols	9
2 System description	
2.1 Block diagram	
3 Pin definition	11
3.1 Pin assignment	
5	
4 Electrical specification	
4.1 Absolute maximum ratings	
4.2 Operating conditions	
4.3 Indicative power requirements	15
5 Communications interfaces	16
5.1 UART	16
5.2 SPI	
5.3 I2C	
5.4 USB	
5.5 Default interface settings	
6 Mechanical specification	20
7 Reliability tests and approvals	21
7.1 Approvals	21
8 Labeling and ordering information	
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	
Related documents	
Revision history	24

1 Functional description

1.1 Overview

The ZED-F9P-04B positioning module features the u-blox F9 receiver platform, which provides multi-band GNSS to high-volume industrial applications. The ZED-F9P-04B has integrated u-blox multi-band RTK and PPP-RTK¹ technologies for centimeter-level accuracy. The module enables precise navigation and automation of moving machinery in industrial and consumer-grade products in a compact surface-mounted form factor of only 17.0 x 22.0 x 2.4 mm.

The ZED-F9P-04B includes moving base support, allowing both base and rover to move while computing the position between them. The moving base is ideal for UAV applications where the UAV is programmed to follow its owner or to land on a moving platform. It is also well suited to attitude sensing applications where both base and rover modules are mounted on the same moving platform and the relative position is used to derive attitude information for the vehicle or tool.

In this document, RTK refers to an OSR-based solution (using RTCM corrections), while PPP-RTK refers to an SSR-based solution (using SPARTN or CLAS corrections).

Parameter Specification			on					
Receiver type			Multi-band GNSS high precision receiver					
Accuracy of tir	me pulse signal		RMS		3	0 ns		
			99%		6	0 ns		
Frequency of t	ime pulse signa	l			0	.25 Hz to 10	MHz	
					(0	configurable)		
Operational lin	nits ²		Dynamics		5	4 g		
		Altitude		8	80,000 m			
			Velocity 500 m/s					
Velocity accuracy ³ 0.05 m/s								
Dynamic head	ing accuracy ³				0	.3 deg		
GNSS ⁴		GPS+GL	O+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Acquisition ⁵	Cold start	25 s		25 s	30 s	25 s	30 s	30 s
•	Hot start	2 s		2 s	2 s	2 s	2 s	2 s
	Aided start ⁶	2 s		2 s	2 s	2 s	2 s	2 s
Nav. update	RTK	7 Hz		10 Hz	15 Hz	14 Hz	13 Hz	20 Hz

1.2 Performance

PPP-RTK position accuracy depends on the quality of the SSR service used, high-quality SSR services can perform similarly to RTK

10 Hz

18 Hz

20 Hz

25 Hz

20 Hz

25 Hz

16 Hz

25 Hz

² Assuming Airborne 4 g platform

³ 50% at 30 m/s for dynamic operation

PVT

RAW

- 4 GPS used in combination with QZSS and SBAS
- ⁵ Commanded starts. All satellites at -130 dBm. Measured at room temperature.
- ⁶ Dependent on the speed and latency of the aiding data connection, commanded starts
- 7 Measured with primary output only, secondary output disabled (default)

9 Hz

15 Hz

rate⁷

25 Hz

25 Hz

GNSS ⁴		GPS+GLO+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Convergence time ⁸	RTK	< 10 s	< 10 s	< 10 s	< 10 s	< 10 s	< 30 s

Table 1: ZED-F9P-04B performance in different GNSS modes

GNSS		GPS+GLO+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Horizontal	PVT ⁹	1.5 m CEP	1.5 m CEP	1.5 m CEP	1.5 m CEP	1.5 m CEP	1.5 m CEP
pos. accuracy	SBAS ⁹	1.0 m CEP	1.0 m CEP	1.0 m CEP	1.0 m CEP	1.0 m CEP	1.0 m CEP
	BTK ¹⁰	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m
		+ 1 ppm CEP	+ 1 ppm CEP	+ 1 ppm CEF	P + 1 ppm CEI	P + 1 ppm CEI	P + 1 ppm CEP
Vertical pos.	RTK ¹⁰	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m
accuracy		+ 1 ppm R50	+ 1 ppm R50	+ 1 ppm R50	0 + 1 ppm R50	0 + 1 ppm R5(0 + 1 ppm R50

Table 2: ZED-F9P-04B position accuracy in different GNSS modes

GNSS ⁴		GPS+GLO+GAL+BDS	GPS+GLO+GAL
Horizontal pos. accuracy	SPARTN	< 0.10 m CEP	< 0.10 m CEP
	CLAS	0.04 m CEP	0.04 m CEP
Vertical pos. accuracy	SPARTN	< 0.20 m CEP	< 0.20 m CEP
	CLAS	0.08 m CEP	0.08 m CEP
Convergence time ⁸	SPARTN	< 45 s	< 45 s
-	CLAS	< 70 s	< 70 s

Table 3: ZED-F9P-04B performance for PPP-RTK in different GNSS modes

PPP-RTK performance with SPARTN 2.0.1 protocol varies amongst service providers and service definitions. Performance has been validated with SPARTN correction stream available at the time of firmware release in November 2021.

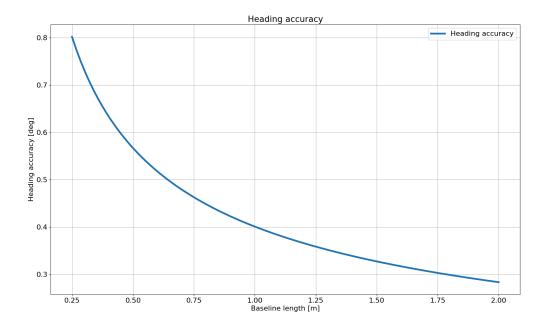
GNSS ⁴		GPS+GLO+GAL+BDS
Sensitivity ¹¹	Tracking and nav.	-167 dBm
-	Reacquisition	-160 dBm
	Cold start	-148 dBm
	Hot start	-157 dBm

Table 4: ZED-F9P-04B sensitivity

GNSS	GPS+GLO+GAL+BE	OS GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Nav. update rate	5 Hz	5 Hz	5 Hz	5 Hz	5 Hz	8 Hz
Heading accuracy	0.4 deg	0.4 deg	0.4 deg	0.4 deg	0.4 deg	0.4 deg

Table 5: ZED-F9P-04B moving base RTK performance in different GNSS modes

⁴ GPS used in combination with QZSS and SBAS


⁸ Depends on atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility and

geometry 9 24 hours static

¹⁰ Measured using 1 km baseline and patch antennas with good ground planes. Does not account for possible antenna phase center offset errors. ppm limited to baselines up to 20 km.

¹¹ Demonstrated with a good external LNA. Measured at room temperature.

Figure 1: ZED-F9P-04B moving base RTK heading accuracy versus baseline length

In a moving base application, and especially when the antennas are mounted on the same platform, it is recommended to use identical antennas. Furthermore it is recommended these antennas are mounted with identical orientation, as this will minimize effects of phase center variation.

1.3 Supported GNSS constellations

The ZED-F9P-04B GNSS modules are concurrent GNSS receivers that can receive and track multiple GNSS constellations. Owing to the multi-band RF front-end architecture, all four major GNSS constellations (GPS, GLONASS, Galileo and BeiDou) plus SBAS and QZSS satellites can be received concurrently. All satellites in view can be processed to provide an RTK navigation solution when used with correction data. If power consumption is a key factor, the receiver can be configured for a subset of GNSS constellations.

The QZSS system shares the same frequency bands as GPS and can only be processed in conjunction with GPS.

To benefit from multi-band signal reception, dedicated hardware preparation must be made during the design-in phase. See the Integration manual [1] for u-blox design recommendations.

The ZED-F9P-04B supports the GNSS and their signals as shown in Table 6.

GPS/QZSS	GLONASS	Galileo	BeiDou	NavIC
L1C/A (1575.420 MHz)	L1OF (1602 MHz + k*562.5 kHz, k = –7,,6)	E1-B/C (1575.420 MHz)) B1I (1561.098 MHz)	-
L2C (1227.600 MHz)	L2OF (1246 MHz + k*437.5 kHz, k = -7,,6)	. ,	B2I (1207.140 MHz)	-

Table 6: Supported GNSS and signals on ZED-F9P-04B

The following GNSS assistance services can be activated on ZED-F9P-04B:

AssistNow™ Online	AssistNow [™] Offline	AssistNow™ Autonomous
Supported	-	-

Table 7: Supported Assisted GNSS (A-GNSS) services

1.4 Supported GNSS augmentation systems

1.4.1 Quasi-Zenith Satellite System (QZSS)

The Quasi-Zenith Satellite System (QZSS) is a regional navigation satellite system that provides positioning services for the Pacific region covering Japan and Australia. The ZED-F9P-04B is able to receive and track QZSS L1 C/A and L2C signals concurrently with GPS signals, resulting in better availability especially under challenging signal conditions, e.g. in urban canyons.

The ZED-F9P-04B is also able to receive the QZSS L1S signal in order to use the SLAS (Sub-meter Level Augmentation Service) which is an augmentation technology that provides correction data for pseudoranges. Ground monitoring stations positioned in Japan calculate separate corrections for each visible satellite and broadcast this data to the user via QZSS satellites. The correction stream is transmitted on the L1 frequency (1575.42 MHz).

T QZSS can be enabled only if GPS operation is also configured.

1.4.2 Satellite based augmentation system (SBAS)

The ZED-F9P-04B supports SBAS (including WAAS in the US, EGNOS in Europe, MSAS in Japan and GAGAN in India) to deliver improved location accuracy within the regions covered. However, the additional inter-standard time calibration step used during SBAS reception results in degraded time accuracy overall.

1.4.3 Differential GNSS (DGNSS)

When operating in RTK mode, RTCM version 3 messages are required and the module supports DGNSS according to RTCM 10403.3.

Description
L1-only GPS RTK observables
Extended L1-only GPS RTK observables
L1/L2 GPS RTK observables
Extended L1/L2 GPS RTK observables
Stationary RTK reference station ARP
Stationary RTK reference station ARP with antenna height
Antenna descriptor
L1-only GLONASS RTK observables
Extended L1-only GLONASS RTK observables
L1/L2 GLONASS RTK observables
Extended L1/L2 GLONASS RTK observables
Receiver and antenna description
GPS MSM4
GPS MSM5
GPS MSM7

A ZED-F9P-04B operating as a rover can decode the following RTCM 3.3 messages:

Message type	Description	
RTCM 1084	GLONASS MSM4	
RTCM 1085	GLONASS MSM5	
RTCM 1087	GLONASS MSM7	
RTCM 1094	Galileo MSM4	
RTCM 1095	Galileo MSM5	
RTCM 1097	Galileo MSM7	
RTCM 1124	BeiDou MSM4	
RTCM 1125	BeiDou MSM5	
RTCM 1127	BeiDou MSM7	
RTCM 1230	GLONASS code-phase biases	
RTCM 4072.0	Reference station PVT (u-blox proprietary RTCM Message)	

Table 8: Supported input RTCM 3.3 messages

A ZED-F9P-04B operating as a base station can generate the following RTCM 3.3 output messages:

Message type	Description
RTCM 1005	Stationary RTK reference station ARP
RTCM 1074	GPS MSM4
RTCM 1077	GPS MSM7
RTCM 1084	GLONASS MSM4
RTCM 1087	GLONASS MSM7
RTCM 1094	Galileo MSM4
RTCM 1097	Galileo MSM7
RTCM 1124	BeiDou MSM4
RTCM 1127	BeiDou MSM7
RTCM 1230	GLONASS code-phase biases
RTCM 4072.0	Reference station PVT (u-blox proprietary RTCM Message)
RTCM 4072.1	Additional reference station information (u-blox proprietary RTCM Message)

Table 9: Supported output RTCM 3.3 messages

A ZED-F9P-04B operating as a rover can decode the following SPARTN 2.0.1 messages:

Message type-subtype	Description	
SM 0-0	GPS orbit, clock, bias (OCB)	
SM 0-1	GLONASS orbit, clock, bias (OCB)	
SM 0-2	Galileo orbit, clock, bias (OCB)	
SM 1-0	GPS high-precision atmosphere correction (HPAC)	
SM 1-1	GLONASS high-precision atmosphere correction (HPAC)	
SM 1-2	Galileo high-precision atmosphere correction (HPAC)	
SM 2-0	Geographic area definition (GAD)	

Table 10: Supported input SPARTN version 2.0.1 messages

1.4.4 Centimeter level augmentation service (CLAS)

A ZED-F9P-04B operating as a rover can receive UBX-RXM-QZSSL6 message from a NEO-D9C on any communication interface. The message contains QZSS CLAS (centimeter-level augmentation service) corrections. The CLAS protocol provides corrections for in-view GPS, Galileo, and QZSS satellites in Japan.

1.5 Broadcast navigation data and satellite signal measurements

The ZED-F9P-04B can output all the GNSS broadcast data upon reception from tracked satellites. This includes all the supported GNSS signals plus the augmentation services QZSS and SBAS. The UBX-RXM-SFRBX message is used for this information. The receiver also makes available the tracked satellite signal information, i.e. raw code phase and Doppler measurements, in a form aligned to the Radio Resource LCS Protocol (RRLP) [3]. For the UBX-RXM-SFRBX message specification, see the interface description [2].

1.5.1 Carrier-phase measurements

The ZED-F9P-04B modules provide raw carrier-phase data for all supported signals, along with pseudorange, Doppler and measurement quality information. The data contained in the UBX-RXM-RAWX message follows the conventions of a multi-GNSS RINEX 3 observation file. For the UBX-RXM-RAWX message specification, see interface description [2].

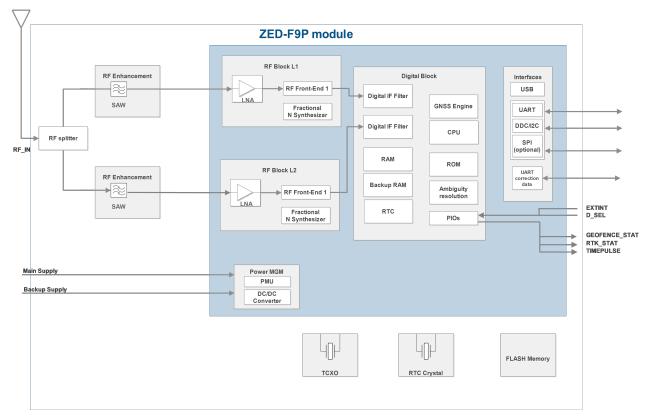
Ĩ

Raw measurement data are available once the receiver has established data bit synchronization and time-of-week.

1.6 Supported protocols

The ZED-F9P-04B supports the following protocols:

Protocol	Туре	
UBX	Input/output, binary, u-blox proprietary	
NMEA 4.11 (default), 4.10, 4.0, 2.3, and 2.1	Input/output, ASCII	
RTCM 3.3	Input/output, binary	
SPARTN 2.0.1	Input, binary	


Table 11: Supported protocols

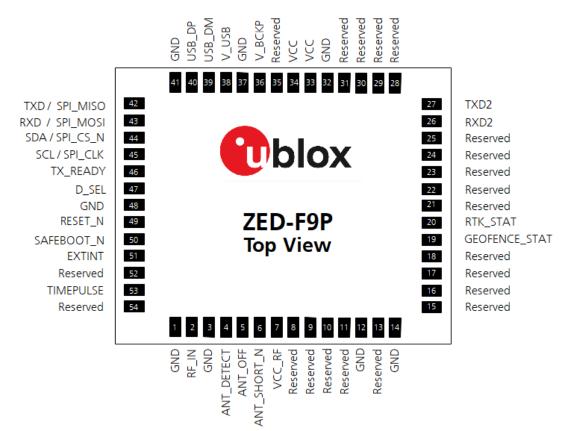
For specification of the protocols, see the interface description [2].

2 System description

2.1 Block diagram

Figure 2: ZED-F9P-04B block diagram

An active antenna is mandatory with the ZED-F9P-04B. See the integration manual [1].


3 Pin definition

3.1 Pin assignment

The pin assignment of the ZED-F9P-04B module is shown in Figure 3. The defined configuration of the PIOs is listed in Table 12.

For detailed information on pin functions and characteristics, see the u-blox Integration manual [1].

The ZED-F9P-04B is an LGA package with the I/O on the outside edge and central ground pads.

Figure 3: ZED-F9P-04B pin assignment

Pin no.	Name	1/0	Description	
1	GND	-	Ground	
2	RF_IN	I	RF input	
3	GND	-	Ground	
4	ANT_DETECT	I	Active antenna detect - default active high	
5	ANT_OFF	0	External LNA disable - default active high	
6	ANT_SHORT_N	I	Active antenna short detect - default active low	
7	VCC_RF	0	Voltage for external LNA	
8	Reserved	-	Reserved	
9	Reserved	-	Reserved	

Pin no.	Name	1/0	Description
10	Reserved	-	Reserved
11	Reserved	-	Reserved
12	GND	-	Ground
13	Reserved	-	Reserved
14	GND	-	Ground
15	Reserved	-	Reserved
16	Reserved	-	Reserved
17	Reserved	-	Reserved
18	Reserved	-	Reserved
19	GEOFENCE_STAT	0	Geofence status, user defined
20	RTK_STAT	0	RTK status:
			0 = RTK/PPP-RTK fixed
			blinking = receiving and using corrections
			1 = no corrections
21	Reserved	-	Reserved
22	Reserved	-	Reserved
23	Reserved	-	Reserved
24	Reserved	-	Reserved
25	Reserved	-	Reserved
26	RXD2	I	Correction UART input
27	TXD2	0	Correction UART output
28	Reserved	-	Reserved
29	Reserved	-	Reserved
30	Reserved	-	Reserved
31	Reserved	-	Reserved
32	GND	-	Ground
33	VCC	I	Voltage supply
34	VCC	I	Voltage supply
35	Reserved	_	Reserved
36	V_BCKP	I	Backup supply voltage
37	GND	_	Ground
38	V_USB		USB supply
39	USB_DM	I/O	USB data
40	USB_DP	, I/O	USB data
41	GND	-	Ground
42	TXD/SPI_MISO	0	Host UART output if D_SEL = 1(or open). SPI_MISO if D_SEL = 0
43	RXD/SPI_MOSI	-	Host UART input if D_SEL = 1 (or open). SPI_MOSI if D_SEL = 0
44	SDA / SPI_CS_N	I/O	I2C Data if D_SEL = 1 (or open). SPI Chip Select if D_SEL = 0
45	SCL/SPI_CLK	I/O	I2C Clock if D_SEL = 1(or open). SPI Clock if D_SEL = 0
46	TX_READY	0	TX_Buffer full and ready for TX of data
40	D_SEL		Interface select for pins 42-45
48	GND	-	Ground
48 49	RESET_N	-	RESET_N
49 50			SAFEBOOT_N (for future service, updates and reconfiguration, leave OPEN)
50	SAFEBOOT_N	1	SALEBOOT_N (IOF TURINE Service, updates and reconfiguration, leave OPEN)

Pin no.	Name	I/O	Description	
51	EXTINT	I	External Interrupt Pin	
52	Reserved	-	Reserved	
53	TIMEPULSE	0	Time pulse	
54	Reserved	-	Reserved	

Table 12: ZED-F9P-04B pin assignment

4 Electrical specification

The limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only. Operation of the device at these or at any other conditions above those given below is not implied. Exposure to limiting values for extended periods may affect device reliability.

/!\

िन

7

Where application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum ratings

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	3.6	V
Voltage ramp on VCC ¹²			20	8000	µs/V
Backup battery voltage	V_BCKP		-0.5	3.6	V
Voltage ramp on V_BCKP ¹²			20		µs/V
Input pin voltage	Vin	VCC ≤ 3.1 V	-0.5	VCC + 0.5	V
		VCC > 3.1 V	-0.5	3.6	V
VCC_RF output current	ICC_RF			100	mA
Supply voltage USB	V_USB		-0.5	3.6	V
USB signals	USB_DM, USB_DP		-0.5	V_USB + 0.9	5 V
Input power at RF_IN	Prfin	source impedance = 50 Ω, continuous wave		10	dBm
Storage temperature	Tstg		-40	+85	°C

Table 13: Absolute maximum ratings

The product is not protected against overvoltage or reversed voltages. Voltage spikes exceeding the power supply voltage specification, given in the table above, must be limited to values within the specified boundaries by using appropriate protection diodes.

4.2 Operating conditions

All specifications are at an ambient temperature of 25 °C. Extreme operating temperatures can significantly impact the specification values. Applications operating near the temperature limits should be tested to ensure the specification.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Power supply voltage	VCC	2.7	3.0	3.6	V	
Backup battery voltage	V_BCKP	1.65		3.6	V	
Backup battery current	I_BCKP		36		μΑ	V_BCKP = 3 V, VCC = 0 V
SW backup current	I_SWBCKP		1.4		mA	
Input pin voltage range	Vin	0		VCC	V	
Digital IO pin low level input voltage	Vil			0.4	V	
Digital IO pin high level input voltage	Vih	0.8 * VCC			V	
Digital IO pin low level output voltage	Vol			0.4	V	lol = 2 mA

¹² Exceeding the ramp speed may permanently damage the device

Parameter	Symbol	Min	Typical	Max	Units	Condition
Digital IO pin high level output voltag	ge Voh	VCC-0.4			V	loh = 2 mA
DC current through any digital I/O pi (except supplies)	n Ipin			5	mA	
VCC_RF voltage	VCC_RF		VCC - 0.1		V	
VCC_RF output current	ICC_RF			50	mA	
Receiver chain noise figure ¹³	NFtot		9.5		dB	
External gain (at RF_IN)	Ext_gain	17		50	dB	
Operating temperature	Topr	-40	+25	85	°C	

Table 14: Operating conditions

T

Operation beyond the specified operating conditions can affect device reliability.

4.3 Indicative power requirements

Table 15 lists examples of the total system supply current including RF and baseband section for a possible application.

Values in Table 15 are provided for customer information only, as an example of typical current requirements. The values are characterized on samples by using a cold start command. Actual power requirements can vary depending on FW version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, and conditions of test.

Symbol	Parameter	Conditions	GPS+GLO +GAL+BDS	GPS	Unit
I _{PEAK}	Peak current	Acquisition	130	120	mA
I _{VCC} ¹⁴	VCC current	Acquisition	90	75	mA
I _{VCC} ¹⁴	VCC current	Tracking	85	68	mA

Table 15: Currents to calculate the indicative power requirements

All values in Table 15 are measured at 25 °C ambient temperature.

 $^{^{\}rm 13}$ $\,$ Only valid for the GPS $\,$

¹⁴ Simulated GNSS signal

5 Communications interfaces

There are several communications interfaces including UART, SPI, I2C¹⁵ and USB.

All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to VCC supply voltage.

5.1 UART

The UART interfaces support configurable baud rates. See the Integration manual [1].

Hardware flow control is not supported.

The UART1 is enabled if D_SEL pin of the module is left open or "high".

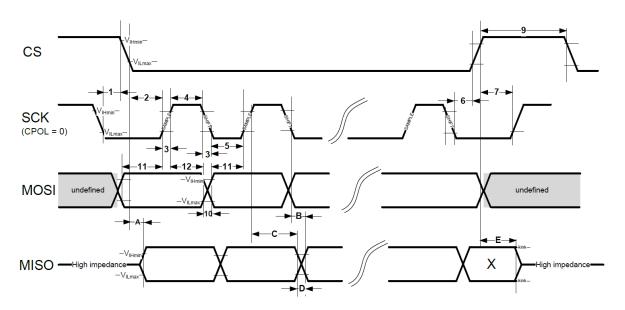
Symbol	Parameter	Min	Max	Unit
R _u	Baud rate	9600	921600	bit/s
Δ_{Tx}	Tx baud rate accuracy	-1%	+1%	-
Δ_{Rx}	Rx baud rate tolerance	-2.5%	+2.5%	-

Table 16: ZED-F9P-04B UART specifications

5.2 SPI

The ZED-F9P-04B has an SPI slave interface that can be selected by setting D_SEL = 0. The SPI slave interface is shared with UART1 and I2C pins. The SPI pins available are:

- SPI_MISO (TXD)
- SPI_MOSI (RXD)
- SPI_CS_N
- SPI_CLK


The SPI interface is designed to allow communication to a host CPU. The interface can be operated in slave mode only. Note that SPI is not available in the default configuration because its pins are shared with the UART and I2C interfaces. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

This section provides SPI timing values for the ZED-F9P-04B slave operation. The following tables present timing values under different capacitive loading conditions. Default SPI configuration is CPOL = 0 and CPHA = 0.

¹⁵ I2C is a registered trademark of Philips/NXP

3

Figure 4: ZED-F9P-04B SPI specification mode 1: CPHA=0 SCK = 5.33 MHz

Timings 1 - 12 are not specified here as they are dependent on the SPI master. Timings A - E are specified for SPI slave.

Timing value at 2 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	14	38	
"B" - MISO data valid time (SCK) weak driver mode	21	38	
"C" - MISO data hold time	114	130	
"D" - MISO rise/fall time, weak driver mode	1	4	
"E" - MISO data disable lag time	20	32	

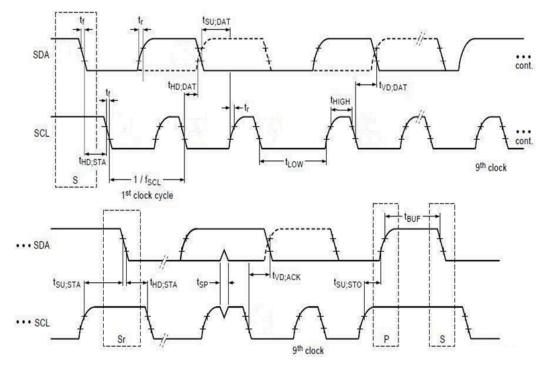
Table 17: ZED-F9P-04B SPI timings at 2 pF load

Timing value at 20 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	19	52	
"B" - MISO data valid time (SCK) weak driver mode	25	51	
"C" - MISO data hold time	117	137	
"D" - MISO rise/fall time, weak driver mode	6	16	
"E" - MISO data disable lag time	20	32	

Table 18: ZED-F9P-04B SPI timings at 20 pF load

Timing value at 60 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	29	79	
"B" - MISO data valid time (SCK) weak driver mode	35	78	
"C" - MISO data hold time	122	152	
"D" - MISO rise/fall time, weak driver mode	15	41	
"E" - MISO data disable lag time	20	32	

Table 19: ZED-F9P-04B SPI timings at 60 pF load


5.3 I2C

An I2C-compliant interface is available for communication with an external host CPU. The interface can be operated in slave mode only. It is compatible with the I2C industry standard fast mode. Since

the maximum SCL clock frequency is 400 kHz, the maximum bit rate is 400 kbit/s. The interface stretches the clock when slowed down while serving interrupts, therefore the real bit rates may be slightly lower. The maximum clock stretching time that the host can expect is 20 ms.

The I2C interface is only available with the UART default mode. If the SPI interface is selected by using D_SEL = 0, the I2C interface is not available.

Figure 5: ZED-F9P-04B I2C slave specification

Symbol	Parameter	Min (Standard / Fast mode)	Мах	Unit
f _{SCL}	SCL clock frequency	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition	4.0/1	-	μs
t _{LOW}	Low period of the SCL clock	5/2	-	μs
t _{HIGH}	High period of the SCL clock	4.0/1	-	μs
t _{SU;STA}	Set-up time for a repeated START condition	5/1	-	μs
t _{HD;DAT}	Data hold time	0/0	-	μs
t _{SU;DAT}	Data set-up time	250/100		ns
t _r	Rise time of both SDA and SCL signals	-	1000/300 (for C = 400pF)	ns
t _f	Fall time of both SDA and SCL signals	-	300/300 (for C = 400pF)	ns
t _{SU;STO}	Set-up time for STOP condition	4.0/1	-	μs
t _{BUF}	Bus-free time between a STOP and START condition	5/2	-	μs
t _{VD;DAT}	Data valid time	-	4/1	μs
t _{VD;ACK}	Data valid acknowledge time	-	4/1	μs
V _{nL}	Noise margin at the low level	0.1 VCC	-	V
V _{nH}	Noise margin at the high level	0.2 VCC	-	V

Table 20: ZED-F9P-04B I2C slave timings and specifications

5.4 USB

The USB 2.0 FS (Full speed, 12 Mbit/s) interface can be used for host communication. Due to the hardware implementation, it may not be possible to certify the USB interface. The V_USB pin supplies the USB interface.

Interface	Settings
UART1 output	38400 baud, 8 bits, no parity bit, 1 stop bit.
	NMEA protocol with GGA, GLL, GSA, GSV, RMC, VTG, TXT messages are output by default.
	UBX and RTCM 3.3 protocols are enabled by default but no output messages are enabled by default.
UART1 input	38400 baud, 8 bits, no parity bit, 1 stop bit.
	UBX, NMEA and RTCM 3.3 input protocols are enabled by default.
	SPARTN input protocol is enabled by default.
UART2 output	38400 baud, 8 bits, no parity bit, 1 stop bit.
	UBX protocol is disabled by default.
	RTCM 3.3 protocol is enabled by default but no output messages are enabled by default.
	NMEA protocol is disabled by default.
UART2 input	38400 baud, 8 bits, no parity bit, 1 stop bit.
	UBX protocol is disabled by default.
	RTCM 3.3 protocol is enabled by default.
	SPARTN protocol is enabled by default.
	NMEA protocol is disabled by default.
USB	Default messages activated as in UART1. Input/output protocols available as in UART1.
12C	Fully compatible with the I2C ¹⁶ industry standard, available for communication with an external host CPU or u-blox cellular modules, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. Maximum bit rate 400 kb/s.
SPI	Allow communication to a host CPU, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. SPI is not available unless D_SEL pin is set to low (see section D_SEL interface in Integration manual [1]).

5.5 Default interface settings

Table 21: Default interface settings

Refer to the applicable interface description [2] for information about further settings.

- By default the ZED-F9P-04B outputs NMEA messages that include satellite data for all GNSS bands being received. This results in a high NMEA output load for each navigation period. Make sure the UART baud rate used is sufficient for the selected navigation rate and the number of GNSS signals being received.
- Do not use UART2 as the only one interface to the host. Not all UBX functionality is available on UART2, such as firmware upgrade, safeboot or backup modes functionalities. No start-up boot screen is sent out from UART2.

¹⁶ I2C is a registered trademark of Philips/NXP

6 Mechanical specification

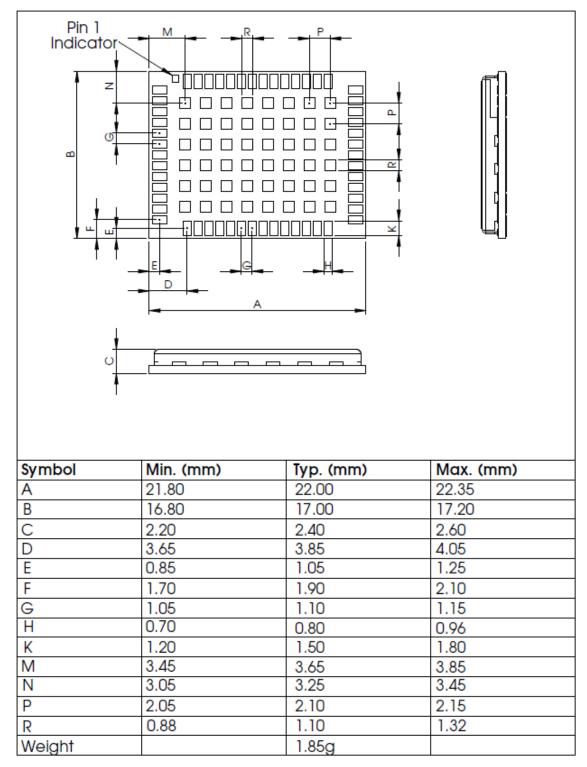


Figure 6: ZED-F9P-04B mechanical drawing

7 Reliability tests and approvals

ZED-F9P-04B modules are based on AEC-Q100 qualified GNSS chips.

Tests for product family qualifications are according to ISO 16750 "Road vehicles – environmental conditions and testing for electrical and electronic equipment", and appropriate standards.

7.1 Approvals

The ZED-F9P-04B is designed to in compliance with the essential requirements and other relevant provisions of Radio Equipment Directive (RED) 2014/53/EU. The ZED-F9P-04B complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment

Directive (EU) 2015/863 (EU RoHS 3).

Declaration of Conformity (DoC) is available on the u-blox website.

8 Labeling and ordering information

This section provides information about product labeling and ordering. For information about moisture sensitivity level (MSL), product handling and soldering see the integration manual [1].

8.1 Product labeling

The labeling of the ZED-F9P-04B modules provides product information and revision information. For more information contact u-blox sales.

8.2 Explanation of product codes

Three product code formats are used. The **Product name** is used in documentation such as this data sheet and identifies all u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions.

Format	Structure	Product code	
Product name	PPP-TGV	ZED-F9P	
Ordering code	PPP-TGV-NNQ	ZED-F9P-04B	
Type number	PPP-TGV-NNQ-XX	ZED-F9P-04B-00	

Table 22 below details these three formats.

Table 22: Product code formats

The parts of the product code are explained in Table 23.

Code	Meaning	Example	
PPP	Product family	ZED	
TG	Platform	F9 = u-blox F9	
V	Variant	P = High precision	
NNQ	Option / Quality grade	NN: Option [0099]	
		Q: Grade, A = Automotive, B = Professional	
XX	Product detail	Describes hardware and firmware versions	

Table 23: Part identification code

8.3 Ordering codes

Ordering code	Product	Remark
ZED-F9P-04B	ZED-F9P	Shipped with firmware FW 1.00 HPG 1.30.

Table 24: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/ product-resources.

Related documents

- [1] ZED-F9P Integration manual UBX-18010802
- [2] HPG 1.30 Interface description UBX-21046737
- [3] Radio Resource LCS Protocol (RRLP), (3GPP TS 44.031 version 11.0.0 Release 11)
- [4] ZED-F9P Moving Base application note, UBX-19009093
- For regular updates to u-blox documentation and to receive product change notifications please register on our homepage https://www.u-blox.com.

Revision history

Revision	Date	Name	Status / comments
R01	21-Dec-2021	dama	Advance information

Contact

For complete contact information visit us at www.u-blox.com.

u-blox Offices

North, Central and South America

u-blox America, Inc. Phone: +1 703 483 3180

	1100 1000100
E-mail:	info_us@u-blox.com

Regional Office West Coast

Phone: +1 408 573 3640 E-mail: info_us@u-blox.com

Technical Support

Phone:	+1 703 483 3185
E-mail:	support_us@u-blox.com

Headquarters

Europe, Middle East, Africa

u-blox AG	
Phone:	+41 44 722 74 44
E-mail:	info@u-blox.com
Support:	support@u-blox.com

Asia, Australia, Pacific

u-blox Singapore Pte. Ltd.		
Phone:	+65 6734 3811	
E-mail:	info_ap@u-blox.com	
Support:	support_ap@u-blox.com	
Regional Office Australia		

Regional C	mce Australia
Phone:	+61 3 9566 7255
E-mail:	info_anz@u-blox.com
Support:	support_ap@u-blox.com

Regional Office China (Beijing)		
Phone:	+86 10 68 133 545	
E-mail:	info_cn@u-blox.com	
Support:	support_cn@u-blox.com	

Regional Office China (Chongqing)		
Phone:	+86 23 6815 1588	
E-mail:	info_cn@u-blox.com	
Support:	support_cn@u-blox.com	

Regional	Office	China	(Shanghai)
----------	--------	-------	------------

Phone:	+86 21 6090 4832
E-mail:	info_cn@u-blox.com
Support:	support_cn@u-blox.com

Phone:	+86 755 8627 1083
E-mail:	info_cn@u-blox.com
Support:	support_cn@u-blox.com

Regional Office India

Phone: +91 80 4050 9200 E-mail: info_in@u-blox.com Support: support_in@u-blox.com

Regional Office Japan (Osaka)

Phone: +81 6 6941 3660 E-mail: info_jp@u-blox.com Support: support_jp@u-blox.com

Regional Office Japan (Tokyo) Phone: +81 3 5775 3850

Phone: +81 3 5775 3850 E-mail: info_jp@u-blox.com Support: support_jp@u-blox.c

Support:	support_jp@u-blox.com
Regional O	office Korea

Phone:	+82 2 542 0861
E-mail:	info_kr@u-blox.com
Support:	support_kr@u-blox.com

Regional Office Taiwan

Phone:	+886 2 2657 1090
E-mail:	info_tw@u-blox.com
Support:	support_tw@u-blox.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

u-blox:

ZED-F9P-02B ZED-F9P-01B ZED-F9P-03B ZED-F9P-04B