

EVK-F9P-00

Evaluation kit

User guide

Abstract

This document describes the structure and use of the EVK-F9P-00 evaluation kit and provides information for evaluating and testing u-blox F9 high precision positioning technology.

Document information

Title	EVK-F9P-00	
Subtitle	Evaluation kit	
Document type	User guide	
Document number	UBX-22038408	
Revision and date	R01	7-Dec-2022
Disclosure restriction	C1- Public	

Product status	Corresponding content status		
In development / Prototype	Objective specification	Target values. Revised and supplementary data will be published later.	
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.	
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.	
Mass production / End of life	Production information	Document contains the final product specification.	

This document applies to the following products:

Product name	Ordering code	Firmware version	Application version	PCN reference	Product status
EVK-F9P-00	EVK-F9P-00-00	HPG 1.32		N/A	Initial production

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, modification or disclosure to third parties of this document or any part thereof is only permitted with the express written permission of u-blox.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © u-blox AG.

Contents

Document information	2
Contents	3
1 Product description	4
1.1 Overview	4
1.2 Kit contents	4
1.3 Software and documentation	4
1.4 System requirements	4
2 Specifications	5
2.1 Safety precautions	5
2.1.1 Certifications	5
3 Getting started	6
3.1 Installing u-center software	6
3.2 Installing hardware	6
3.3 Default interface settings	7
4 Device description	8
4.1 Interface connection and measurement	8
4.2 Active antenna	8
4.3 Evaluation unit	8
4.3.1 Antenna connector (RF IN)	8
4.3.2 USB connector	8
4.3.3 DB9 connector (RS232)	9
4.3.4 RST button	9
4.3.5 Safe boot button	
4.3.6 Slide switch	
4.3.7 Pin header	
4.3.8 LED	
5 Measuring current	
6 Block diagram	
7 Board layout	14
8 Component list	15
9 Schematic	17
10 Troubleshooting	19
11 Common evaluation pitfalls	21
Appendix	
A Glossary	
Related documentation	
Revision history	
Contact	

1 Product description

1.1 Overview

The EVK-F9P-00 evaluation kit simplifies the evaluation of the more efficient u-blox F9 high precision positioning products. The built-in USB interface provides both power supply and high-speed data transfer and eliminates the need for an external power supply. The u-blox evaluation kits are compact, and their user-friendly interface and power supply make them ideally suited for use in laboratories, vehicles, and outdoor locations. Furthermore, they can be used with a notebook PC, making them the perfect companion through all stages of design-in process.

Evaluation Kit	Description	Suitable for
EVK-F9P-00	u-blox F9 high accuracy timing module with L1/L2 bands	ZED-F9P-01B, ZED-F9P-02B and ZED-F9P-04B

Table 1: List of products supported by EVK-F9P-00 evaluation kit

1.2 Kit contents

The delivered package contains:

- Compact 105 x 64 x 26 mm EVK-F9P-00 evaluation unit
- 14-pin front connector breakout cable
- ANN-MB multi-band (L1/L2) active GNSS antenna with 3 m cable
- Antenna ground plane
- EVK Welcome card
- HxGN SmartNet promotional one-month service card

1.3 Software and documentation

The product evaluation software includes u-center, an interactive tool for configuration, testing, visualization, and data analysis of GNSS receivers. It provides useful assistance during all phases of system integration. Use the latest software version available for F9 products.

The product evaluation software and documentation are available on the u-blox web site.

1.4 System requirements

- PC with USB interface (compatible with USB 2.0)
- Operating system: Microsoft Windows 7 onwards (x86 and x64 versions)
- Internet connection for the first-time use

2 Specifications

Parameter	Specification
Serial interfaces	1 USB Type-C
	1 RS232, max baud rate 230,400 Baud
	DB9 +/- 12 V level
	14 pin – 3.3 V logic
	1 DDC (I2C compatible) max 400 kHz
	1 SPI – clock signal max 5,5 MHz – SPI DATA max 1 Mbit/s
Timing interfaces	1 timepulse output through 14-pin connector
	1 timepulse LED
	1 timepulse output through RS232
	1 external interrupt input
Dimensions	105 x 64 x 26 mm
Power supply	5 V via USB or powered via external power supply pin 14
	(V5_IN) and pin 13 (GND)
Normal operating temperature	-40 °C to +65 °C

Table 2: EVK-F9P-00 specifications

2.1 Safety precautions

EVK-F9P-00 must be supplied by a PS1 class limited power source. See section 6.2.2.4 of IEC 62368-1:2018 [5] for more information on the PS1 class.

In addition to a limited power source, only ES1 class circuits are to be connected to the EVK-F9P-00, including interfaces and antennas. See section 5.2.1.1 of IEC 62368-1:2018 [5] for more information on the ES1 class.

2.1.1 Certifications

The EVK-F9P-00 is designed to comply with the essential requirements and other relevant provisions of Radio Equipment Directive (RED) 2014/53/EU.

The EVK-F9P-00 complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

Declaration of Conformity (DoC) is available on the u-blox website.

3 Getting started

3.1 Installing u-center software

u-center, the u-blox interactive evaluation software tool is required for configuration, testing, visualization, and data analysis of u-blox GNSS receivers as well as EVKs. The provided user guide together with the evaluation tool provide useful assistance during all phases of a system integration project.

- 1. Download the u-center software from http://www.u-blox.com/product/u-center.
- Once the zipped installer file is downloaded, unzip it and double-click the exe file.
 The u-center software will be installed on your system and placed under the "u-blox" folder in the "Start > Programs" menu. You can alternatively choose the destination folder for the program installation.
- 3. After a successful installation, start the u-center from the **Start** menu (All Programs > u-blox > u-center > u-center).

For more information on using u-center, refer to the u-center User guide [4].

The required Microsoft CDC-ACM driver for Windows 10 USB interface is available from the Microsoft Windows Update service. The Windows system driver search mechanism will download and install the USB driver automatically from the Microsoft Windows Update service. To evaluate with the Windows 7 and 8 operating systems, the u-blox GNSS standard driver (x64bit) is needed which can be found in the u-center package.

3.2 Installing hardware

- 4. Before connecting the interface cable to the EVK, select the interface that you are using for the connection by sliding the interface switch to the correct position:
- USB-C: Connect via USB-C connector
- UART: Connect via RS-232. Set the slide switch to I2C.
- SPI/I2C compliant DDC: Connect the corresponding pins (see Table 5 for pin description). Set the slide switch accordingly to SPI or I2C.
- CAUTION Changing the interface switch position while the EVK is powered on may damage the GNSS receiver chip. Power off the EVK before changing the interface switch setting.
 - Power the device on, either via USB on the back or through the V5_IN input on the front of the EVK.
 - 2. Connect the GNSS antenna to the RF IN SMA jack and place the antenna in a location with good sky view.
 - 3. Start the u-center GNSS Evaluation Software and select the corresponding COM port and baud rate.
- Refer to the u-center User Guide [4] for more information.

3.3 Default interface settings

Parameter	Specification
UART Port 1, input	38400 baud, 8 bits, no parity bit, 1 stop bit. UBX, NMEA and RTCM 3.3 input protocols are enabled by default. SPARTN input protocol is enabled by default.
UART Port 1, output	38400 baud, 8 bits, no parity bit, 1 stop bit. NMEA protocol with GGA, GLL, GSA, GSV, RMC, VTG, TXT messages are output by default. UBX and RTCM 3.3 protocols are enabled by default, but no output messages are enabled by default.
UART2, input	38400 baud, 8 bits, no parity bit, 1 stop bit. UBX protocol is enabled by default RTCM 3.3 protocol is enabled by default. SPARTN protocol is enabled by default. NMEA protocol is disabled by default.
UART2, output	38400 baud, 8 bits, no parity bit, 1 stop bit. UBX protocol is disabled by default. RTCM 3.3 protocol is enabled by default but no output messages are enabled by default. NMEA protocol is disabled by default.
USB	Default messages activated as in UART1. Input/output protocols available as in UART1.
I2C	Compatible with the I2C industry standard, available for communication with an external host CPU or u-blox cellular modules, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. Maximum bit rate 400 kb/s.
SPI	Allow communication to a host CPU, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. SPI is not available unless D_SEL pin is set to low.

Table 3: Default configuration

Refer to the ZED-F9P Integration manual [3] for more information.

4 Device description

4.1 Interface connection and measurement

To connect the EVK to a PC, use the included Micro-USB cable. Alternatively, a standard SUB DB-9 cable can also be used. Additional measurement equipment can be connected to the front connector.

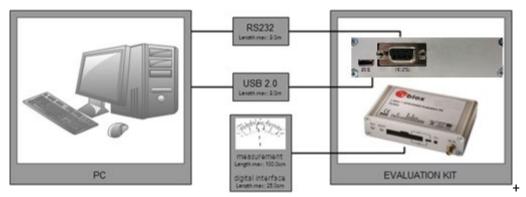


Figure 1: Connecting the unit for power supply and communication

4.2 Active antenna

EVK-F9P-00 evaluation kits include an ANN-MB multi-band (L1/L2) active GNSS antenna with a 3-meter cable and an SMA connector.

The recommended maximum antenna supply current for active antennas is 15 mA.

4.3 Evaluation unit

Figure 2 shows the front and the rear panel of the EVK-F9P-00 evaluation unit.

Figure 2: EVK-F9P-00 evaluation unit - front and rear panels

4.3.1 Antenna connector (RF IN)

An SMA female jack is available on the front side (see Figure 2) of the evaluation unit for connecting an active GNSS antenna. A DC voltage of 3.3 V is provided to power the active antenna, and the RF input is 3.3 V. The internal short circuit protection limits the maximum current to 60 mA. Note that the 15-mA maximum supply current for the active antenna stays the same. This pin is also ESD protected.

CAUTION Risk of equipment damage. Connecting this equipment to cable distribution systems may damage the EVK. Use the connector only with a GNSS antenna or simulator.

4.3.2 USB connector

A USB port is featured for data communication and power supply. It is connected to a USB hub and then to two FTDIs where the user can maintain communication from the USB to UART1 of the module and can transmit correction data through UART2 using the same USB port at the same time. The user

can utilize the USB interface to connect directly to UART1 or UART2, see the Interface description [2] for configuration details.

4.3.3 DB9 connector (RS232)

The evaluation unit includes an RS232 port for serial communication that is compatible with PC serial ports. The DB9 connector can only have the UART1 input if the user prefers not to use UART1 from USB.

Connect using a straight RS232 serial cable with male and female connectors to the port on your PC. The maximum cable length is 3 meters. To configure the RS232 port, use the CFG-UART1 command in the u-center application. The maximum operating baud rate is 230400 Baud. If you are using a USB to RS232 adaptor cable, you can connect it directly to the evaluation kit RS232 port.

The 9-pin D-SUB female connector is assigned as listed in Table 4 and diagram from schematic:

Assignment
Timepulse 1 output (RS232 levels)
TXD, GNSS Transmit Data, serial data to DTE
RXD, GNSS Receive Data, serial data from DTE
Optional time-mark input (RS232 levels) using EXTINTO (internal jumper J6 fitment required)
GND
Timepulse 1 output (RS232 levels)
Not connected
not connected

Table 4: SUB-DB9 connector pin description for EVK-F9P-00

4.3.4 RST button

The RST button on the front panel resets the unit.

CAUTION Risk of data loss. The RESET pin deletes all information from the volatile memory and triggers a cold start. Reset the system only as a recovery option.

4.3.5 Safe boot button

This is used to set the unit in safe boot mode. In this mode, the receiver executes only minimal functionality, such as updating new firmware into the flash memory. To set the receiver in safe boot mode:

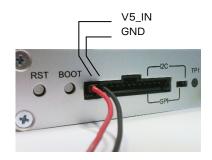
- 1. Press the BOOT button and keep holding it down.
- 2. Press the RST button.
- 3. Release the RST button.
- 4. Release the BOOT button.
- 5. If the UART interface is used, a training sequence must be sent to the receiver. The training sequence is a transmission of 0x55 0x55 at a baud rate of 9600 baud. Wait for at least 100 milliseconds before the interface is ready to accept commands.

4.3.6 Slide switch

Use the slide switch on the front panel to choose between I2C (and UART) and SPI communication ports. You must reset the unit by pressing the RST button when the slide switch has been changed.

• I2C – In this selection the EVK operates with the UART (RS232 DB9 – rear panel or the 3.3 V level TxD (MISO), RxD (MOSI) at the front panel). Also, the communication via 3.3 V DDC interface (I2C) is selected.

 SPI – In this selection the EVK operates only with the SPI interface. The RS232 (DB9) port is switched off.


4.3.7 Pin header

This 14-pin test-connector provides additional functionality to the EVK, allowing access to the interface pins and an ability to measure the current used by the ZED-F9P module. All pins are ESD protected.

Pin no.	Name	I/O	Level	Description
14	V5_IN	I	4.75 - 5.25 V	Power input – can be used instead of USB
13	GND	-	-	Common ground pin
12	CUR GPS1	0	5.0 V	Supply current measurement (Module current consumption) node 1. Current is measured over a 1 Ω 1% tolerance resistor between pins 12 and 11. Pin 12 (CUR_GPS1) is at higher potential.
11	CUR GPS2	0	5.0 V	Supply current measurement (Module current consumption) node 2. See description for pin 12.
10	TxD 2	0	-	Correction UART output
9	RxD 2	I		Correction UART input
8	TIMEPULSE 1	0	3.3V	Output signal for the timepulse1 signal
7	EXTINT	I	3.3 V	External interrupt or time-mark input (connected directly to the module pins)
6	RTK status	0	3.3 V	RTK status: 0 = RTK/PPP-RTK fixed blinking = receiving and using corrections 1 = no corrections
5	SDA/CS	I/O	3.3 V	If slide switch on I2C, the DDC interface is selected; Function: data input / output If slide switch on SPI, the SPI interface is selected; chip select input – LOW ACTIVE
4	SCL/CLK	I/O	3.3 V	Clock input / output (signals are pulled up and then straight to the module)
3	TxD/MISO	0	3.3 V	If slide switch on I2C, the DDC interface is selected / UART TxD (3.3 V level) If slide switch on SPI, the SPI interface is selected; Master in Slave out (MISO)
2	RxD/MOSI	I	3.3 V	If slide switch on I2C, the DDC interface is selected / UART RxD (3.3V Level) If slide switch on SPI, the SPI interface is selected; Master out Slave in (MOSI)
1	TX_READY	0	3.3 V	TX_Buffer full and ready for TX of data

Table 5: Connector pin description for EVK-F9P-00 (pins numbered from right to left on the front panel)

For accurate measurements, use a max 1 m cable. Figure 3 shows an example of a power supply connected to the test connector by using standard adapter cables from the manufacturer Hirschmann. Table 5 shows an example for overall current measurement. When connecting the 3.3 V digital interfaces RS232, SPI and DDC to your application, use a max 25 cm cable.

Hirschmann Part Nr.: 934160100

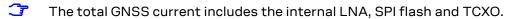
Figure 3: Example 5V DC power supply

4.3.8 LED

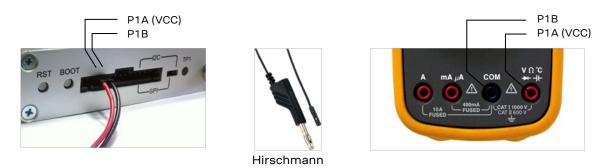
On the front panel of the EVK unit, there is a single blue LED with the following functionality:

LED	Description
Solid blue	The device is powered on with no GNSS fix.
Flashing blue	The LED flashes one pulse per second during a GNSS fix.
	The time pulse signal is configurable, see the Interface description [2] for details.

Table 6 LED description



5 Measuring current


At start-up, the receiver starts in acquisition state to search for available satellites and to download GNSS orbital data, i.e., ephemeris and almanac. Once the data has been downloaded, the receiver enters the tracking state. In continuous operation, the receiver typically remains in the tracking state once entering it. The current consumption reduces when the receiver enters the tracking state. The time required to enter the tracking mode can be reduced by downloading aiding data from the AssistNow™ Online service.

To measure the total GNSS supply current with EVK-F9P-00, follow these steps:

- 1. Place the EVK in clear sky view and perform the test with good signals to ensure that the receiver can acquire the satellite signals.
- 2. Power up EVK-F9P-00.
- 3. Connect a true RMS voltmeter across CUR GPS1 (pin 12) and CUR GPS2 (pin 11) of the 14-pin connector.
- 4. Read the voltage (and average if necessary) on the voltmeter and convert to current (1 mV equals 1 mA).

For more details see the schematic in Figure 7

Part No.: 934160100

Figure 4: Example - tracking current measurement

6 Block diagram

Figure 5 shows the main interfaces and internal connections of the evaluation kit for ZED-F9P-00 module:

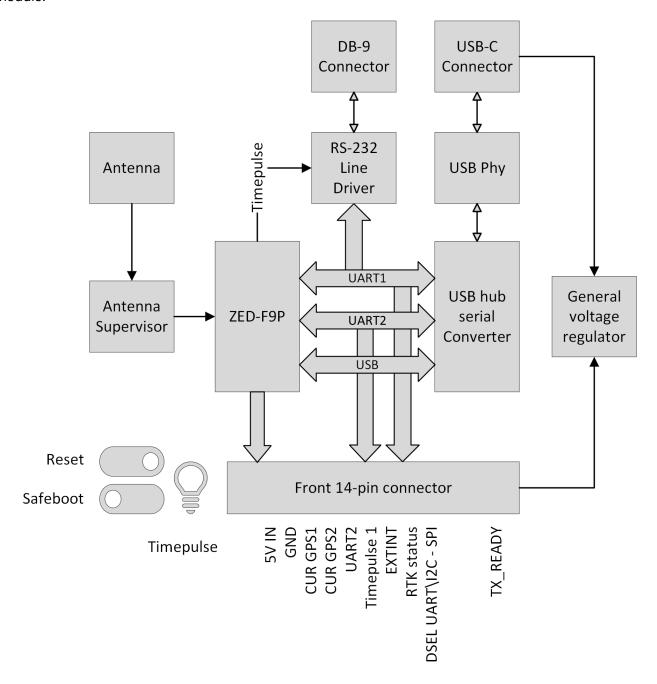


Figure 5: EVB-F9P block diagram

7 Board layout

Figure 6 shows the EVK-F9P-00 board layout. See Table 6 for the component list of the EVB.

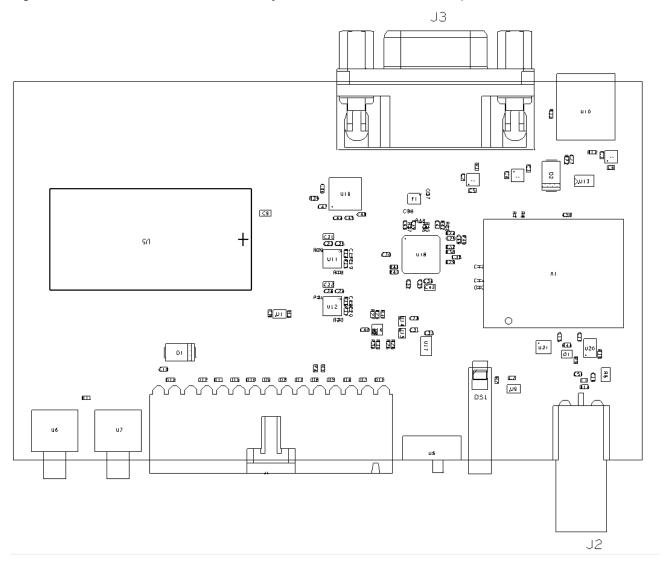


Figure 6: EVB-F9P layout

8 Component list

Regular Components	Description
A1	GNSS RECEIVER U-BLOX ZED-F9P-04B -40/+85C
C1 C2 C3 C27 C31 C33	CAP CER X5R 0402 1U0 10% 6.3V
C4 C5 C6 C10	CAP CER X5R 0402 10U 20% 10V
C7 C8 C11 C15 C23 C24 C25 C26 C28 C29 C30 C32 C34 C35 C38 C39 C40 C41 C43 C44 C45 C46 C47 C48 C49 C50	CAP CER X5R 0402 100N 10% 50V
C9 C21 C22 C42	CAP CER X5R 0603 4U7 10% 6.3V
C16	CAP CER X7R 0402 10N 10% 16V -55/+125C
C17 C18 C19 C20	CAP CER COG 0201 47P 2% 50V
C36 C37	CAP CER COG 0201 18P 5% 50V -55/+125C
C51	CAP CER COG 0402 47P 5% 25V
D1 D2	SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER SS14 1A - 55/+125C
D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D15 D16	VARISTOR BOURNS MLE SERIES CG0402MLE-18G 18V
D14	ESD PROTECTION FOR HIGH-SPEED LINES, TYCO, 0.25PF, PESD0402-140 -55/+125C
DS1	LED OSRAM HYPER MINI TOPLED LB M673-L1N2-35 BLUE 0.02A
J1	14PIN 90° 2.54MM PITCH DISCONNECTABLE CRIMP CONNECTOR - 40/+85C
J2	CON SMA SMD STRAIGHT JACK 11.4MM HEIGHT WITHOUT WASHER AND NUT
J3	9 POLE SUBD CONNECTOR FEMALE
L1	IND MURATA LQG15H 0402 47N 5% 0.2A
Q1	COMPLEMENTARY N- AND P-CHANNEL 20V (D-S) MOSFET VISHAY Si1016 SC89-6
R1	RES THICK FILM CHIP 0402 CURRENT SENSE 1R 1% 1.1V -55/+125C
R2 R11	RES THICK FILM CHIP 0402 100R 5% 0.1W
R3	RES THICK FILM CHIP 0402 51R 1% 0.1W -55/+155C
R4 R5 R22 R41 R43	RES THICK FILM CHIP 0402 10K 5% 0.1W
R6 R7 R18 R19	RES THICK FILM CHIP 0201 0R 0 0.5A
R8	RES THICK FILM CHIP 0805 10R 5% 0.125W -55/+155C
R9	RES THICK FILM CHIP 0402 1K0 1% 0.063W
R10 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R39 R40 R42 R44	RES THICK FILM CHIP 0402 100K 1% 0.063W
R12 R13	RES THICK FILM CHIP 0402 56K 5% 0.1W
R14 R15 R16 R17	RES THICK FILM CHIP 0402 27R 5% YAGEO 27R 5% 0.063W - 55/+155C
R23	RES THICK FILM CHIP 0201 51K 1% 0.05W

Regular Components	Description
R35 R36	RES THICK FILM CHIP 0201 22R 5% 0.05W
R37	RES THICK FILM CHIP 0201 12K 1% 0.05W
R38	RES THICK FILM CHIP 0201 1M0 5% 0.05W
U1 U9	TINY LOGIC UHS BUFFER OE_N ACTIVE LOW FAIRCHILD NC7SZ125 SC70
U2 U3 U4	LOW DROPOUT REGULATOR ON SEMI NCV8705 WDFN6 0.5A 3.3V
U5	BATTERY HOLDER CR2032 3V -40/+105C
U6 U7	SWITCH SPST ON 1POL TYCO -40/+85C
U8	2 WAY SUB-MINIATURE SLIDE SWITCH SMD JS SERIES - SPDT - 40/+85C
U10	CON USB 3.1 TYPE C RECEPTACLE 24P
U11 U12	USB INTERFACE IC USB TO BASIC SERIAL UART -40/+85C
U13	USB DATA LINE PROTECTION ST USBLC6-2SC6 SOT23-6
U14 U15	TINY LOGIC ULP-A 2-INPUT AND GATE 1.45X1.0 6-LEAD MICROPAK - 40/+85C
U16	TINY LOGIC ULP DUAL 2-INPUT AND GATE FAIRCHILD NC7WP08 MICROPAK
U17	TINY LOGIC UHS BUFFER OE ACTIVE HIGH FAIRCHILD NC7SZ126 SOT23-5
U18	SMSC USB 2.0 HI-SPEED HUB CONTROLLER -40/+85C
U19	RS-232 TRANSCEIVER 1MBIT 3-5,5VOLT TRSF3223 - VQFN20 5.5V 5.5V -40/+85C
U20	PRECISION RAIL TO RAIL OP AMP LINEAR LT6000 DCB
U21	TRIPLE BUFFER WITH OPEN-DRAIN OUTPUT 74LVC3G07 -40/+125C
Y1	CRYSTAL CL=6PF MURATA XRCGB_F_H 24MHZ 10PPM -40/+85C
Additional Component	PCB FOR EVK-F9P-ZED VERSION A -40/+85
Additional Component	SOLDER PASTE OM338 SAC405

Table 6: EVB-F9P component list

9 Schematic

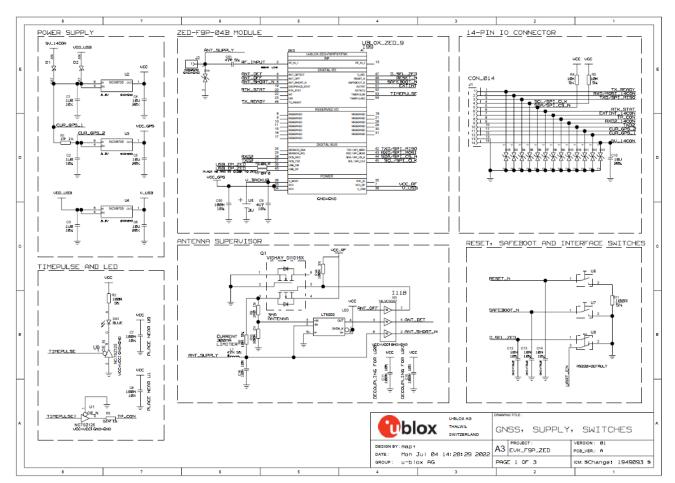


Figure 7: Schematic EVK-F9P-00: GNSS, Antenna supervisor, Supply

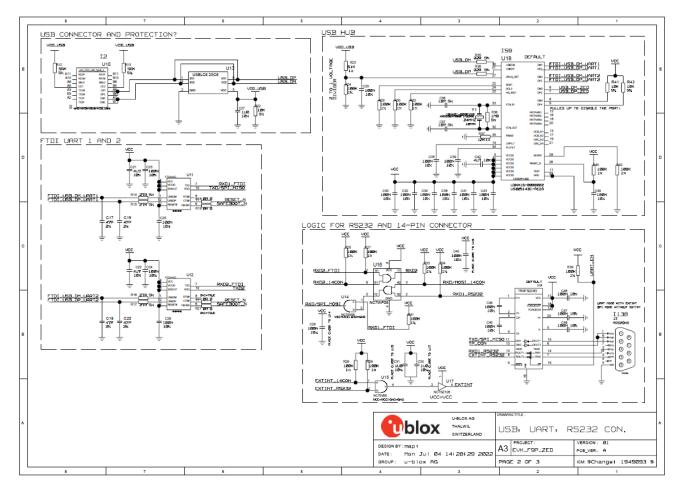


Figure 8: Schematic EVK-F9P-00: Connectors

10 Troubleshooting

My application (e.g., u-center) does not receive anything

- Check that the EVK is in clear sky view or that the antenna cable is connected.
- Check that the slide switch on the front panel of the EVK is set to the communication port that user is using.
- Check the LED is on the front panel of the EVK. A solid blue LED indicates the EVK is powered on. If it is not on, connect the power source either via USB on the back or through the V5_IN input on the front of the EVK.

My application (e.g., u-center) does not receive all messages

When using UART, make sure the baud rate is sufficient. If the baud rate is insufficient, GNSS receivers based on u-blox F9 GNSS technology will skip excessive messages. Some serial port cards/adapters (i.e., USB to RS232 converter) frequently generate errors. If a communication error occurs while u-center receives a message, the message will be discarded.

My application (e.g., u-center) loses the connection to the GNSS receiver

u-blox F9 positioning technology and u-center both have an autobauding feature. If frequent communication errors occur (e.g., due to problems with the serial port), the connection may be lost. This happens because u-center and the GNSS receiver both autonomously try to adjust the baud rate. Do not enable the u-center autobauding if the GNSS receiver has the autobauding flag enabled.

The COM port does not send any messages

Be sure that the slide switch at the front panel is set to I2C and not SPI. In the SPI mode, the RS232 pins on the DB9 connector are switched off and the RxD and TxD output at the front panel are used for SPI (MISO, MOSI).

CAUTION Changing the interface switch position while the EVK is powered on may damage the GNSS receiver chip. Power off the EVK before changing the interface switch setting

Some COM ports are not shown in the port list of my application (e.g., u-center)

Only the COM ports that are available on your computer will show up in the COM port drop-down list. If a COM Port is gray, another application running on the computer is using it.

The position is off by a few dozen meters

u-blox F9 GNSS technology starts up with the WGS84 standard GNSS datum. If your application expects a different datum, you will most likely find the positions to be off by a few dozen meters. Do not forget to check the calibration of u-center map files.

The position is off by hundreds of meters

Position drift may also occur when almanac navigation is enabled. The satellite orbit information retrieved from an almanac is much less accurate than the information retrieved from the ephemeris. With an almanac only solution, the position will only have an accuracy of a few kilometers, but it may start up faster or still navigate in areas with obscured visibility when the ephemeris from one or several satellites have not yet been received. The almanac information is NOT used for calculating a position, if valid ephemeris information is present, regardless of the setting of this flag.

In NMEA protocol, position solutions with high deviation (e.g., due to enabling almanac navigation) can be filtered with the Position Accuracy Mask. UBX protocol does not directly support this since it provides a position accuracy estimation, which allows the user to filter the position according to his requirements. However, the 'Position within Limits' flag of the UBX-NAV-STATUS message indicates whether the configured thresholds (i.e., P Accuracy Mask and PDOP) are exceeded.

TTFF times at start-up are much longer than specified

At startup (after the first position fix), the GNSS receiver performs an RTC calibration to have an accurate internal time source. A calibrated RTC is required to achieve minimal startup time.

Before shutting down the receiver externally, check the status in MON-HW in field 'Real Time Clock Status'. Do not shut down the receiver if the RTC is not calibrated.

The EVK-F9P-00 does not meet the TTFF specification

Make sure the antenna has a good sky view. An obstructed view leads to prolonged startup times. In a well-designed system, the average of the C/N0 ratio of high elevation satellites should be in the range of 40 dBHz to about 50 dBHz. With a standard off-the-shelf active antenna, 47 dBHz should easily be achieved. Low C/N0 values lead to a prolonged startup time.

The EVK-F9P-00 does not preserve the configuration in case of reset

u-blox F9 GNSS technology uses a slightly different concept than most other GNSS receivers do. Settings are initially stored to volatile memory. In order to save them permanently, sending a second command is required. This allows testing the new settings and reverting to the old settings by resetting the receiver if the new settings are not good. This provides safety, as it is no longer possible to accidentally program a bad configuration (e.g., disabling the main communication port).

The EVK-F9P-00 does not work properly when connected with a GNSS simulator

When using an EVK together with a GNSS simulator, pay attention to proper handling of the EVK. A GNSS receiver is designed for real-life use, i.e., time is always moving forward. By using a GNSS simulator, the user can change scenarios, which enables jumping backwards in time. This can have serious side effects on the performance of GNSS receivers.

The solution is to configure the GPS week rollover to 1200, which corresponds to Jan 2003. Then, issue the cold start command before every simulator test to avoid receiver confusion due to the time jumps.

Power save mode and USB

For communication in power save mode, use the RS232.

11 Common evaluation pitfalls

- A parameter may have the same name but a different definition. GNSS receivers may have a similar size, price, and power consumption, but can still have different functionalities (e.g., no support for passive antennas, different temperature range). Also, the definitions of hot, warm, and cold start times may differ between suppliers.
- Verify design-critical parameters; do not base a decision on unconfirmed numbers from data sheets.
- Try to use identical or at least similar settings when comparing the GNSS performance of different receivers.
- Data that has not been recorded at the same time and the same place should not be compared.
 The satellite constellation, the number of visible satellites, and the sky view might have been different.
- Do not compare momentary measurements. GNSS is a non-deterministic system. The satellite constellation changes constantly. Atmospheric effects (i.e., dawn and dusk) have an impact on signal travel time. The position of the GNSS receiver is typically not the same between two tests. Comparative tests should therefore be conducted in parallel by using one antenna and a signal splitter; statistical tests shall be run for 24 hours.
- Monitor the carrier-to-noise ratio. The average C/N0 ratio of the high elevation satellites should be between 40 dBHz and about 50 dBHz. A low C/N0 ratio will result in a prolonged TTFF and more position drift.
- When comparing receivers, make sure that all receivers have the same signal levels. The best way
 to achieve this is by using a signal splitter. Comparing results measured with different antenna
 types (with different sensitivity) will lead to incorrect conclusions.
- Try to feed the same signal to all receivers in parallel (i.e., through a splitter); the receivers will not have the same sky view otherwise. Even small differences can have an impact on the accuracy. One additional satellite can lead to a lower DOP and less position drift.
- When doing reacquisition tests, cover the antenna to block the sky view. Do not unplug the
 antenna since the u-blox F9 positioning technology continuously performs a noise calibration on
 idle channels.

Appendix

A Glossary

Abbreviation	Definition		
BeiDou	Chinese navigation satellite system		
EVK	Evaluation Kit		
I2C	Inter-Integrated Circuit bus		
ESD	Electrostatic Discharge		
Galileo	European navigation satellite system		
GLONASS	Russian navigation satellite system		
GND	Ground		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
IEC	International Electrotechnical Commission		
PCB	Printed Circuit Board		
RF	Radio frequency		
UBX	u-blox		
QZSS	Quasi-Zenith Satellite System		

Related documentation

- [1] ZED-F9P-04B Data sheet, UBX-21044850
- [2] u-blox F9-HPG-1.32 Interface description, UBX-22008968
- [3] ZED-F9P Integration manual, UBX-18010802
- [4] u-center User guide, UBX-13005250
- [5] Information technology equipment Safety Standard IEC 62368-1:2018

For product change notifications and regular updates of u-blox documentation, register on our website, www.u-blox.com.

Revision history

Revision	Date	Name	Comments
R01	07-Dec-2022	dbhu	Early Production Information

Contact

Address: u-blox AG

Zürcherstrasse 68 8800 Thalwil Switzerland

For further support and contact information, visit us at www.u-blox.com/support.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 $\frac{\text{u-blox}}{\text{EVK-F9P-00}}$