

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89920 Series

MB89923/925/P928/PV920

■ DESCRIPTION

The MB89920 series is a line of single-chip microcontrollers using the F²MC*-8L CPU core which can operate at low voltage but at high speed.

The microcontrollers in this series contain peripheral functions such as a PWM timer, an input capture/output compare control counter, an LCD controller/driver, an A/D converter, and a UART.

The MB89920 series can suit a wide range of applications such as analog input conversion, pulse input measurement/pulse output control, serial communications control, and display control.

*: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- High speed processing at low voltage
 Minimum execution time: 0.5 μs/8.0 MHz
- F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

- 8-bit PWM timer: 2 channels (also usable as a reload timer)
- 16-bit input capture: 2 channels / 16-bit output compare: 2 channels

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

- 20-bit time-base counter
- UART: 1 channel (with asynchronous transfer mode and 8-bit synchronous serial mode)
- 8-bit serial interface: 1 channel (LSB first/MSB first selectability)
- 10-bit A/D converter: 8 channels
- LCD controller/driver: 28 segments × 4 commons (max. 112 pixels)
- Low-voltage detection reset
- Watchdog timer reset
- External interrupt: 4 channels

Four channels are independent and capable of wake-up from the low-power consumption mode (with edge detection function)

- Buzzer output/clock output
- Low-power consumption modes:

Stop mode (The software stops oscillation to minimize the current consumption.)
Sleep mode (The CPU stops to reduce current consumption to approx. 1/3 of normal.)
Hardware standby mode (The pin input stops oscillation.)

■ PRODUCT LINEUP

Part number	MD00000	MDOCCOE	MDOCBOOO	MDOODYGGG	
Parameter	MB89923	MB89925	MB89P928	MB89PV920	
Classification		ction products M products)	One-time PROM product (for development)	Piggyback/evaluation product (for development)	
ROM size	$8 \text{ K} \times 8 \text{ bits}$ (internal mask ROM)	16 K × 8 bits (internal mask ROM)	48 K × 8 bits (internal PROM)	48 K × 8 bits (external ROM)	
RAM size	256 × 8 bits	512 × 8 bits	1024 >	< 8 bits	
CPU functions	Number of instr Instruction bit le Instruction leng Data bit length: Minimum execu Interrupt proces	ength: th: tion time:	136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.5 μs/8 MHz 4.5 μs/8 MHz		
Ports	I/O ports (CMO I/O ports (N-ch Total:		35 (25 ports also s 34 (All also serve a 69	erve as peripherals.) as peripherals.)	
Options	Specify with	mask options	Set with EPROM programmer	None	
20-bit time-base timer	20 bits (interva	I time selection: 4.10 m	ns, 16.38 ms, 65.54 ms,	262 ms/8 MHz)	
Real-time I/O		re: 16 bits \times 2 channels	s, 1.0 μs, 2.0 μs, 4.0 μs) s, external trigger edge s 6 bits × 2 channels		
LCD controller/ driver	Common output: 4 (selectable from 2 to 4 by software) Segment output: 28 (can be switched to ports in 4-pin unit by software) Bias power supply pins: 3 LCD display RAM size: 14 × 8 bits Dividing resistor for LCD driving: bult-in (external resistor selectability)				
o-bit Pyvivi timei	8 bits \times 2-channel reload timer operation 8 bits \times 2-channel PWM operation (4 cycles selectable) 8 bits \times 1-channel PPG operation (4 oscillation clocks selectable)				
UART	full-duplex	with internal double but	aud rate generator, erro uffer, NRZ transmission chronous transfer capab	formation,	
8-bit serial I/O	(one external	One clock selectable fr	SB first selectability, rom four transfer clocks al shift clocks: 1.0 μs, 4.	0 μs, 16.0 μs)	
10-bit A/D converter	10-bit resolution × 8 channels A/D conversion mode (conversion time: 16.5 μs (33 instruction cycles)) Sense mode (conversion time: 9.0 μs (18 instruction cycles)) Continuous activation by an internal clock capable				
Watchdog timer		• •	rox. 130 to 260 ms		
Low-voltage detection reset		Reset release vo	oltage: 3.0 to 4.3 V ltage: 3.1 to 4.5 V		
Hardware standby		-	illation by pin input		
Buzzer/clock output	,		2 KHz, 4 KHz, and divid		
External interrupt	4 channels (rising edge/falling edge selectability)				
Package	0.0	QFP-80	074.001/	MQFP-80	
Operating voltage EPROM for use	2.2 to	6.0 V* —	2.7 to 6.0 V*	2.7 to 6.0 V* MBM27C512-20TV (LCC package)	

^{*:} The minimum operating voltage varies with conditions such as the operating frequencies, functions, and development tool.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89923 MB89925 MB89P928	MB89PV920
FPT-80P-M06	0	×
MQP-80C-P01	×	0

○ : Available × : Not available

Note: For more information about each package, see section "■ Package Dimensions".

■ DIFFERENCES AMONG PRODUCTS

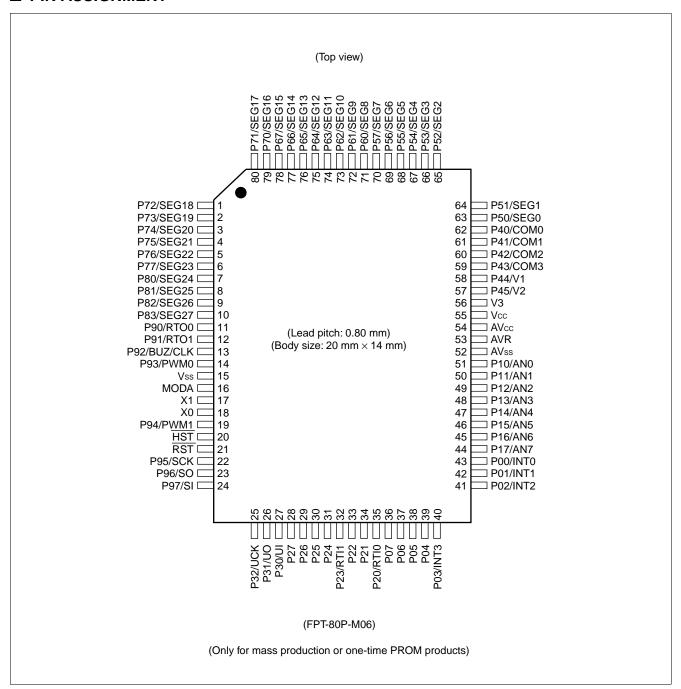
1. Memory Size

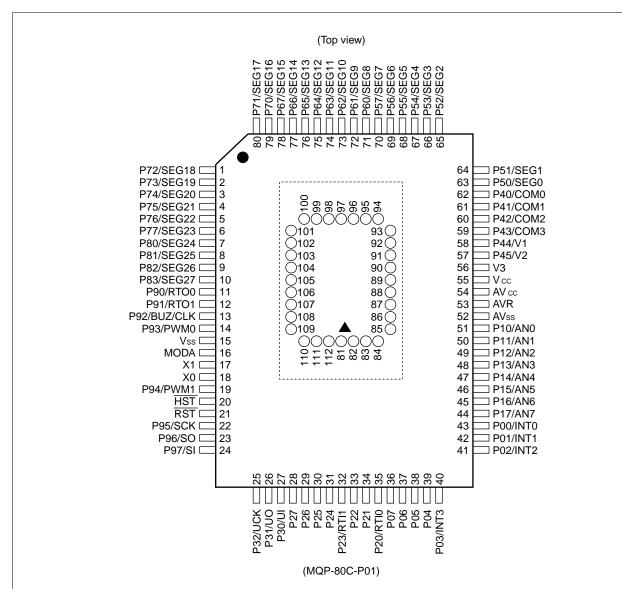
Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- The stack area, etc., is set at the upper limit of the RAM.
- The external area is used.

2. Current Consumption

- In the case of the MB89PV920, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.


However, the current consumption in sleep/stop modes is the same. (For more information, see section "Electrical Characteristics".)


3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options".

■ PIN ASSIGNMENT

Pin assignment on package top (only for piggyback/evaluation product)

Pin no.	Pin name						
81	N.C.	89	A2	97	N.C.	105	OE/V _{PP}
82	A15	90	A1	98	O4	106	N.C.
83	A12	91	A0	99	O5	107	A11
84	A7	92	N.C.	100	O6	108	A9
85	A6	93	01	101	07	109	A8
86	A5	94	02	102	08	110	A13
87	A4	95	O3	103	CE	111	A14
88	А3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

(Only for piggyback/evaluation product)

■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function	
17	X1	А	Clock oscillator pins	
18	X0			
16	MODA	В	Operation mode selection input pin Connect this pin to Vss (GND).	
20	HST	В	Hardware standby input pin	
21	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".	
11, 12	P90/RTO0, P91/RTO1	D	General-purpose I/O ports A pull-up resistor option is provided. Also serve as an output compare data output.	
13	P92/BUZ/CLK	D	General-purpose I/O port Also serves as a buzzer/clock output.	
14	P93/PWM0	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit PWM output.	
19	P94/PWM1	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit PWM output.	
22	P95/SCK	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O (SCK) for the serial I/O. The SCK input is a hysteresis input. The output type can be switched between N-ch open-drain and CMOS.	
23	P96/SO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output (SO) for the serial I/O. The output type can be switched between N-ch open-drain and CMOS.	
24	P97/SI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input (SI) for the serial I/O.	
25	P32/UCK	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a UART clock I/O (UCK). The UCK input is hysteresis input. The output type can be switched between N-ch open-drain and CMOS.	
26	P31/UO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as a UART data output (UO). The output type can be switched between N-ch open-drain and CMOS.	

(Continued)

(Continued)

Pin no.	Pin name	Circuit type	Function
27	P30/UI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a UART data input (UI).
28 to 31	P27 to P24	D	General-purpose I/O ports A pull-up resistor option is provided.
32	P23/RTI1	Е	General-purpose I/O port A pull-up resistor option is provided. Also serves as an input capture data input.
33, 34	P22, P21	D	General-purpose I/O ports A pull-up resistor option is provided.
35	P20/RTI0	Е	General-purpose I/O port A pull-up resistor option is provided. Also serves as an input capture data input.
36 to 39	P07 to P04	D	General-purpose I/O ports A pull-up resistor options is provided.
40 to 43	P03/INT3 to P00/INT0	Е	General-purpose I/O ports A pull-up resistor options is provided. Also serve as an external interrupt input (INT0 to INT3).
44 to 51	P17/AN7 to P10/AN0	G	CMOS I/O ports Also serve as an A/D converter analog input.
57, 58	P45/V2, P44/V1	F	LCD driving power supply pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD driving power supply.
59 to 62	P43/COM3 to P40/COM0	F	LCD common output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD common output.
63 to 70	P50/SEG0 to P57/SEG7	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.
71 to 78	P60/SEG8 to P67/SEG15	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.
79, 80	P70/SEG16, P71/SEG17	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.
1 to 6	P72/SEG18 to P77/SEG23	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.
7 to 10	P80/SEG24 to P83/SEG27	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.
52	AVss		A/D converter power supply (GND) pin
53	AVR		A/D converter reference power supply pin
54	AVcc	_	A/D converter power supply pin
55	Vcc		Power supply pin
56	V3		LCD driving power supply pin
15	Vss	_	Power supply (GND) pin

• External EPROM pins (the MB89PV920 only)

Pin no.	Pin name	I/O	Function
82 83 84 85 86 87 88 89 90	A15 A12 A7 A6 A5 A4 A3 A2 A1	0	Address output pins
93 94 95	O1 O2 O3	I	Data input pins
96	Vss	0	Power supply (GND) pin
98 99 100 101 102	O4 O5 O6 O7 O8	I	Data input pins
103	CE	0	ROM chip enable pin Outputs "H" during standby.
104	A10	0	Address output pin
105	OE/V _{PP}	0	ROM output enable pin Outputs "L" at all times.
107 108 109	A11 A9 A8	0	Address output pins
110	A13	0	Address output pin
111	A14	0	Address output pin
112	Vcc	0	EPROM power supply pin
81 92 97 106	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 N-ch Standby control signal	• At an oscillation feedback resistor of approximately 1 M Ω (1 to 8 MHz)
В		CMOS input
С	R P-ch N-ch	 At an output pull-up resistor of approximately 50 KΩ (5.0 V) Hysteresis input
D	R P-ch N-ch	CMOS output CMOS input Pull-up resistor optional
Е	R P-ch N-ch	 CMOS output CMOS input Hysteresis input (peripheral input) Pull-up resistor optional

(Continued)

(Continued)

Туре	Circuit	Remarks
F	P-ch N-ch P-ch N-ch P-ch	N-ch open-drain I/O Also serves as LCD controller/driver common/ segment output.
G	P-ch N-ch Analog input	CMOS I/O Analog input

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D Converter

Connect to be AVcc = Vcc and AVss = AVR = Vss even if the A/D converter is not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

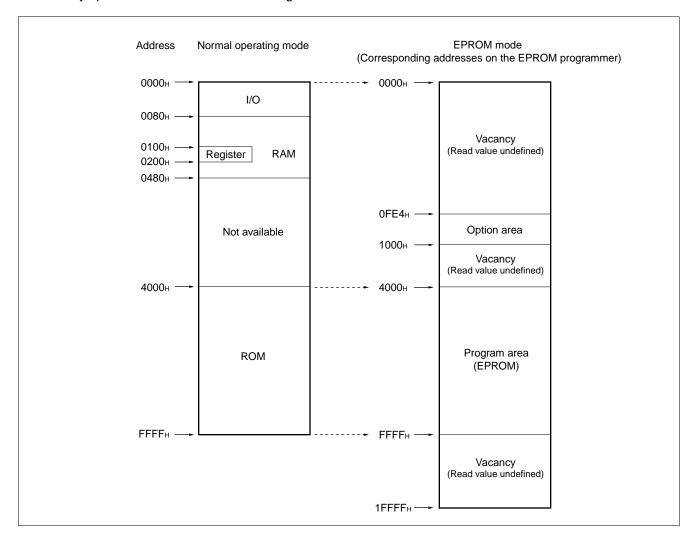
5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P928


The MB89P928 is an OTPROM version of the MB89920 series.

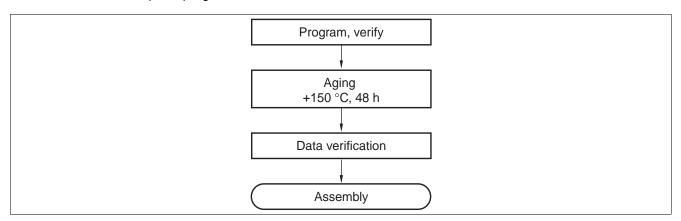
1. Features

- 48-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C1001A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in the EPROM mode is diagrammed below.

3. Programming to the PROM


In EPROM mode, the MB89P928 functions equivalent to the MBM27C1001A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

• Programming procedure

- (1) Set the EPROM programmer to the MBM27C1001A.
- (2) Load program data into the EPROM programmer at 0FE4_H to FFFF_H.
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. PROM Option Bit Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0FE4н	Vacancy Readable	Vacancy Readable	Vacancy Readable	Oscillation stabilization time 1: Crystal 0: Ceramic	Reset pin output 1: Yes 0: No	Power-on reset 1: Yes 0: No	Vacancy Readable	Vacancy Readable
0FE8н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0FEСн	P27	P26	P25	P24	P23	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0FF0н	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	P32 Pull-up 1: No 0: Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
0FF4н	P97	P96	P95	P94	P93	P92	P91	P90
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0FF8 _H	Vacancy Readable	Vacancy Readable	WDT/low-voltage control 1: Register 0: Option EPROM		e detection rage 01: 3.3 V 11: 4.0 V	Low-voltage reset 1: Yes 0: No	Low-voltage detection 1: Automatic 0: Prohibited	Watchdog timer (WDT) 1: Automatic 0: Prohibited
0FFCн	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
	Readable	Readable	Readable	Readable	Readable	Readable	Readable	Readable

[•] The initial value of each bit is "1".

Notes: • Do not write 0 to the vacant bit.

The read value of the vacant bit is 1, unless 0 is written to it.

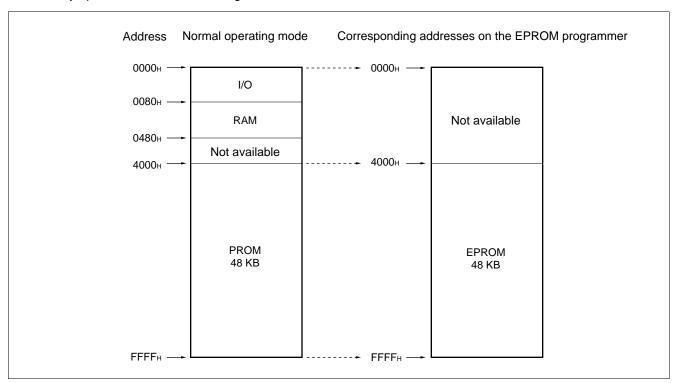
• Write the same value as each option register to the 3-byte vacant address that follows above option registers.

Example: In the case of 0FE4H, write the same value to 0FE5H, 0FE6H and 0FF7H.

• This optional information is taken into the OTPROM while the oscillation is being reset. Therefore, if the hardware state is initially shifted to standby state after the power supply is turned on, the optional information will not be valid during the transition (in a state of the initial value 1).

After the hardware standby state is cleared, the oscillation starts and the optional information becomes valid.

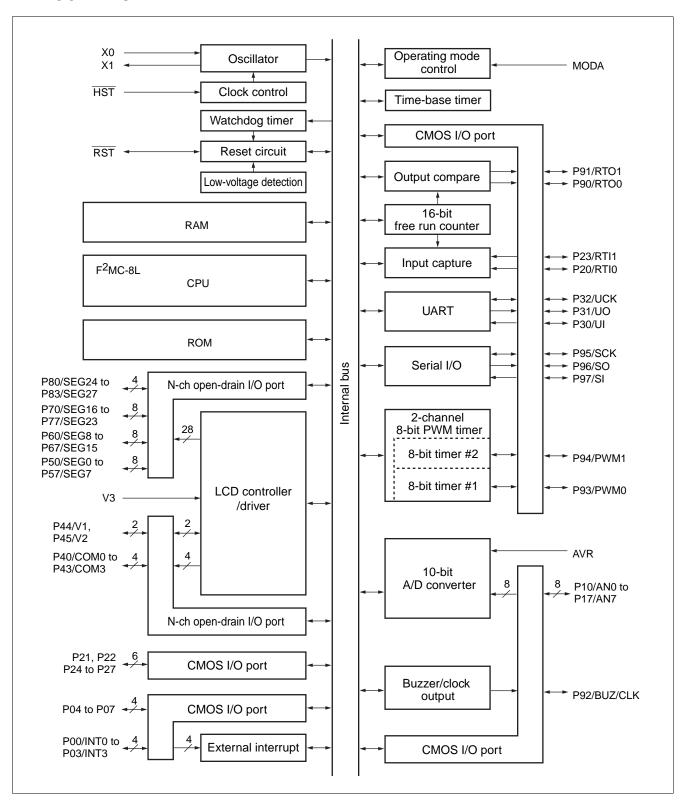
Note that if the hardware is shifted to the standby or stop state in the course of a normal operation (oscillation), the contents of the optional register are valid since the option data has already been taken into the OTPROM.


■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV

2. Memory Space


Memory space in each mode is diagrammed below.

3. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C512.
- (2) Load program data into the EPROM programmer at 4000_H to FFFF_H.
- (3) Program to 4000_H to FFFF_H with the EPROM programmer.

■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89920 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89920 series is structured as illustrated below.

2. Registers

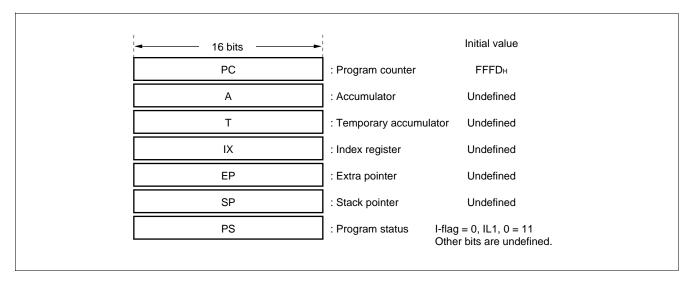
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

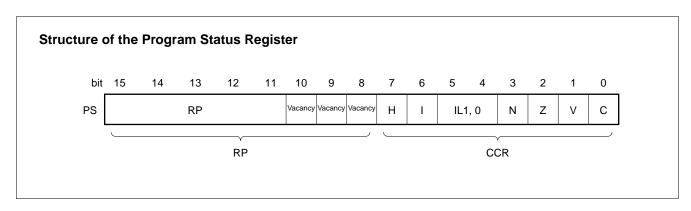
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

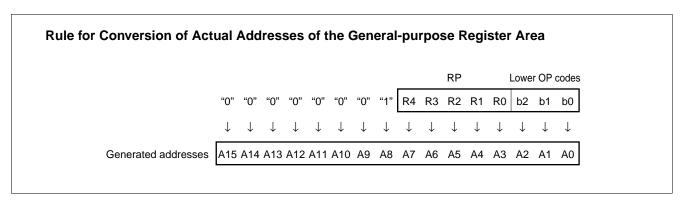
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

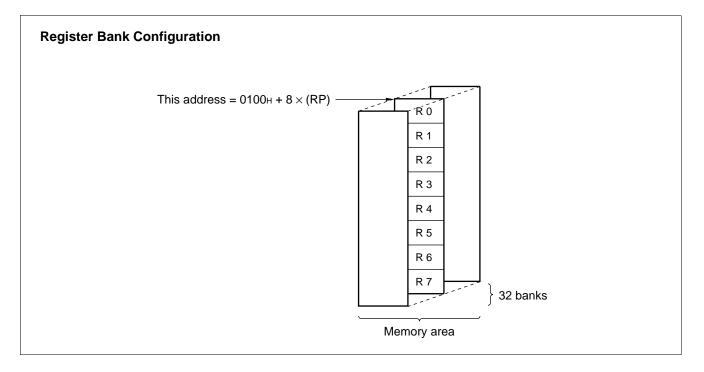
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.


C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89925. Up to a total of 16 banks can be used on the MB89923. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

■ I/O MAP

Address	Read/write	Register	Register description	Intial value	
00н	(R/W)	PDR0	Port 0 data register	XXXX XXXXB	
01н	(W)	DDR0	Port 0 data direction register	00000000в	
02н	(R/W)	PDR1	Port 1 data register	XXXX XXXXB	
03н	(W)	DDR1	Port 1 data direction register	00000000в	
04н		Vacancy			
05н	Vacancy				
06н		Vacancy			
07н			Vacancy		
08н	(R/W)	STBC	Standby control register	0001 ХХХХВ	
09н	(R/W)	WDTE	Watchdog timer control register	XXXX XXXXB	
0Ан	(R/W)	TBCR	Time-base timer control register	ХХХО ООООВ	
0Вн	(R/W)	LVRC	Low-voltage detection reset control register	0 X 1 1 X 0 0 X B	
0Сн	(R/W)	PDR3	Port 3 data/peripheral I/O control register	0000 – ХХХВ	
0Dн	(W)	DDR3	Port 3 data direction register	O O O в	
0Ен	(R/W)	PDR4	Port 4 data register	111111 в	
0Fн	(R/W)	PDR5	Port 5 data register	11111111	
10н	(R/W)	PDR6	Port 6 data register	11111111	
11н	(R/W)	PDR7	Port 7 data register	11111111	
12н	(R/W)	PDR8	Port 8 data register	 1111в	
13н	(R/W)	PDR9	Port 9 data register	XXXX XXXX B	
14н	(W)	DDR9	Port 9 data direction register	00000000в	
15н	(R/W)	PDR2	Port 2 data register	XXXX XXXX B	
16н	(R/W)	DDR2	Port 2 data direction register	00000000в	
17н	(R/W)	BUZR	Buzzer control register	X X X X 0 0 0 0 B	
18н	(R/W)	ADC1	AD converter control register 1	00000000в	
19н	(R/W)	ADC2	AD converter control register 2	Х О О О О О О 1 в	
1Ан	(R/W)	ADCH	AD converter data register "H"	X X в	
1Вн	(R/W)	ADCL	AD converter data register "L"	XXXX XXXX B	
1Сн	(R/W)	SMR	Serial mode register	0000 0000 в	
1Dн	(R/W)	SDR	Serial data register	XXXX XXXX B	
1Ен			Vacancy		
1 Fн	(W)	ICR1	Port 1 input control register	0000 0000 в	

-: Unused X: Undefined (Continued)

Note: Do not use vacancies

Address	Read/write	Register	Register description	Initial value	
20н	(R/W)	CNTR1	PWM timer control register 1	00000000в	
21н	(R/W)	CNTR2	PWM timer control register 2	00000000в	
22н	(R/W)	CNTR3	PWM timer control register 3	000X 0000B	
23н	(W)	COMR2	PWM timer compare register 2	XXXX XXXX B	
24н	(W)	COMR1	PWM timer compare register 1	XXXX XXXX B	
25н			Vacancy		
26н			Vacancy		
27н			Vacancy		
28н	(R/W)	TMCR	Timer control register	0 0 X X 0 0 0 0 B	
29н	(R)	TCHR	Timer count register (H)	00000000в	
2Ан	(R)	TCLR	Timer count register (L)	00000000в	
2Вн	(R/W)	OPCR	Output control register	00000000в	
2Сн	(R/W)	CPR0H	Output compare register 0 (H)	00000000в	
2Dн	(R/W)	CPR0L	Output compare register 0 (L)	00000000в	
2Ен	(R/W)	CPR1H	Output compare register 1 (H)	00000000в	
2Fн	(R/W)	CPR1L	Output compare register 1 (L)	00000000в	
30н	(R/W)	ICCR	Input capture control register	ХООО ХОООВ	
31н	(R/W)	ICIC	Input capture interrupt control register	Х 0 0 0 0 Х 0 0 в	
32н	(R)	ICR0H	Input capture register 0 (H)	XXXX XXXX B	
33н	(R)	ICR0L	Input capture register 0 (L)	XXXX XXXX B	
34н	(R)	ICR1H	Input capture register 1 (H)	XXXX XXXX B	
35н	(R)	ICR1L	Input capture register 1 (L)	XXXX XXXX B	
36н			Vacancy		
37н			Vacancy		
38н	(R/W)	EIC1	External interrupt control register 1	00000000в	
39н	(R/W)	EIC2	External interrupt control register 2	00000000в	
ЗАн			Vacancy		
3Вн			Vacancy		
3Сн			Vacancy		
3Dн	Vacancy				
3Ен		Vacancy			
3Fн			Vacancy		

-: Unused X: Undefined (Continued)

Note: Do not use vacancies

(Continued)

Address	Read/write	Register	Register description	Initial value
40н	(R/W)	USMR	UART mode register	00000000в
41н	(R/W)	USCR	UART control register	00000000в
42н	(R/W)	USTR	UART status register	0000 1 Х Х Х в
43н	(R) (W)	RXDR TXDR	UART receiver data register UART transmitter data register	X X X X X X X X B X X X X X B
44н			Vacancy	
45н	(R/W)	RRDR	Baud rate generator/reload data register	XXXX XXXX B
46н			Vacancy	
47н			Vacancy	
48 to 5Fн			Vacancy	
60 to 6Dн	(R/W)	VRAM	Display data RAM	XXXX XXXX B
70н	(R/W)	LCR1	LCD controller/driver control register 1	00000000в
71н	(R/W)	LCR2	LCD controller/driver control register 2	0 0 0 в
72н	(R/W)	LCR3	LCD controller/driver control register 3	00000000в
73 to 7Вн			Vacancy	
7Сн	(W)	ILR1	Interrupt level setting register 1	111111111
7Dн	(W)	ILR2	Interrupt level setting register 2	111111111
7Ен	(W)	ILR3	Interrupt level setting register 3	111111111
7 Fн			Vacancy	

-: Unused X: Undefined

Note: Do not use vacancies

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = 0.0 V)

Donomoton	Cumb al	Va	lue	11	Domostro
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 7.0	V	*1
Power supply voltage	AVcc	Vss - 0.3	Vcc + 0.3	V	*1
Tower supply voltage	AVR	Vss-0.3	Vss + 7.0	V	AVR must not exceed AVcc + 0.3 V.
LCD power supply voltage	V1 to V3	Vss-0.3	Vss + 7.0	V	V1 ≤ V2 ≤ V3 *2
Input voltage	VI1	Vss-0.3	Vcc + 0.3	V	
	Vo ₁	Vss-0.3	Vcc + 0.3	V	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P90 to P97
Output voltage	V _{O2}	Vss-0.3	Vss + 7.0	V	P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83 Must not exceed "V3 + 0.3 V"
"L" level maximum output current	Іоь	_	20	mA	Peak value
"L" level average output current	lolav	_	4	mA	Average value
"L" level total maximum output current	∑lo∟		100	mA	Peak value
"L" level total average output current	Σ lolav		40	mA	Average value
"H" level maximum output current	Іон		-20	mA	Peak value
"H" level average output current	lohav	_	-4	mA	Average value
"H" level total maximum output current	∑Іон		-50	mA	Peak value
"H" level total average output current	Σ lohav		-20	mA	Average value
Power consumption	PD	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1:} Use AVcc and Vcc set at the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{*2:} Vcc must not exceed V3. Unless LCD is used, the same setting must be executed.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Faranietei	Syllibol	Min.	Max.	Oill	Kemarks
		2.2*1	6.0	V	Normal operation assurance range
Power supply voltage	Vcc	2.7*1	6.0	V	MB89PV920/P928
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	3.0	AVcc	V	
LCD power supply voltage	V1 to V3	Vss	Vss + 6.0	V	V1 ≤ V2 ≤ V3*²
Operating temperature	TA	-40	+85	°C	

^{*1:} These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics".

Figure 1 Operating Voltage vs. Clock Operating Frequency

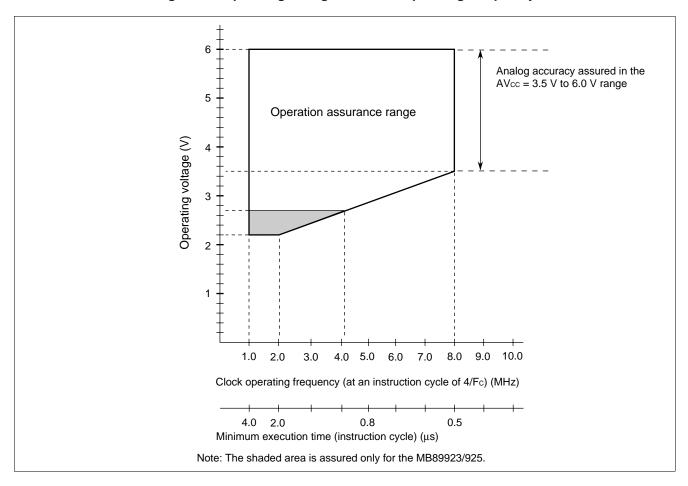


Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fc. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

^{*2:} Vcc must not exceed V3.

3. DC Characteristics

 $(Vcc = 5.0 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Sym-		A 11.1	(۷00	Value	788 = 0.0 V		40°C to +85°C)
Parameter	bol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input	Vін	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97	_	0.7 Vcc	_	Vcc + 0.3	V	
voltage	Vihs	RST, MODA, HST P00 to P03, P20, P23, P30, P32, P95, P97	_	0.8 Vcc	_	Vcc + 0.3	V	Peripheral input of the port 0, 2, 3, and 9
"L" level input	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97	_	Vss- 0.3	_	0.3 Vcc	V	
voltage	VILS	RST, MODA, HST P00 to P03, P20, P23, P30, P32, P95, P97	_	Vss- 0.3	_	0.2 Vcc	V	Peripheral input of the port 0, 2, 3, and 9
Open-drain output pin application voltage	VD	P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83 ^{*1}	_	Vss- 0.3	_	Vss + 6.0	V	
"H" level output	V _{OH1}	P00 to P07, P10 to P17, P30 to P32, P90 to P97	lон = −2.0 mA	4.0	_	_	V	
voltage	V _{OH2}	P20 to P27	$I_{OH} = -5.0 \text{ mA}$	2.4		_	V	
"L" level output voltage	V _{OL1}	P00 to P07, P10 to P17, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97	loL = 4.0 mA	_	_	0.4	V	
	V _{OL2}	P20 to P27	IoL = 5.0 mA	_		0.4	V	
	V _{OL3}	RST	IoL = 4.0 mA	_	_	0.4	V	
Input leakage current (Hi-Z output leakage current)	IL11	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97, MODA	0.45 V < V _I < V _{CC}	_	_	±5	μА	Without pull- up resistor
Pull-up resistance	Rpulu	P00 to P07, P20 to P27, P30 to P32, P90 to P97	Vı = 0.0 V	25	50	100	kΩ	With pull-up resistor

(Continued)

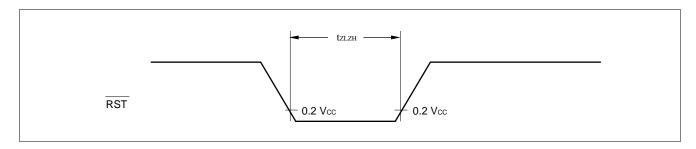
(Continued)

 $(Vcc = 5.0 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

		T		55 – U.U V	, IA — —	40°C to +85°C)		
Parameter	Sym-	Pin	Condition		Value		Unit	Remarks
i arameter	bol		Condition	Min.	Тур.	Max.	Oilit	iveillai ks
	Icc		Vcc = 5.0 V	_	12	20	mA	$t_{\text{inst}} = 0.5 \ \mu s$
	Iccs	Vcc	Vcc = 5.0 V		3	7	mA	Sleep mode t _{inst} = 0.5 μs
	Іссн		T _A = +25°C	_	_	1	μΑ	Stop mode
Power supply current*2	IA		when A/D conversion is activated	_	6	8	mA	
	Іан	AVcc	when A/D conversion is stopped TA = +25°C	_	_	1	μА	
LCD divided resistance	RLCD	Between V3 and Vss		200	300	450	kΩ	
COM0 to 3 output impedance	Rvсом	COM0 to COM3	V1 to V3 = 5.0 V	_	_	2.5	kΩ	
SEG0 to 27 output impedance	Rvseg	SEG0 to SEG27	V1 to V3 = 5.0 V	_	_	15	kΩ	
LCD controller/ driver leakage current	ILCDL	V1 to V3, COM0 to COM3, SEG0 to SEG27	V1 to V3 = 5.0 V	_	_	±1	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} V_D must not exceed V3.

Note: For pins which serve as the LCD and ports (P40 to P45, P50 to P57, P60 to P67, P70 to P77, and P80 to P83), see the port parameter when these pins are used as ports and the LCD parameter when they are used as LCD pins.

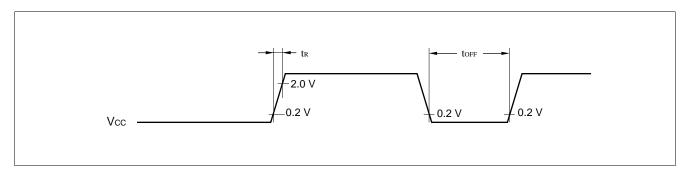

^{*2:} The measurement conditions of power supply current are as follows: the external clock and $T_A = +25$ °C. In the case of the MB89PV920, the current consumed by the connected EPROM and ICE is not included.

5. AC Characteristics

(1) Reset Timing

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

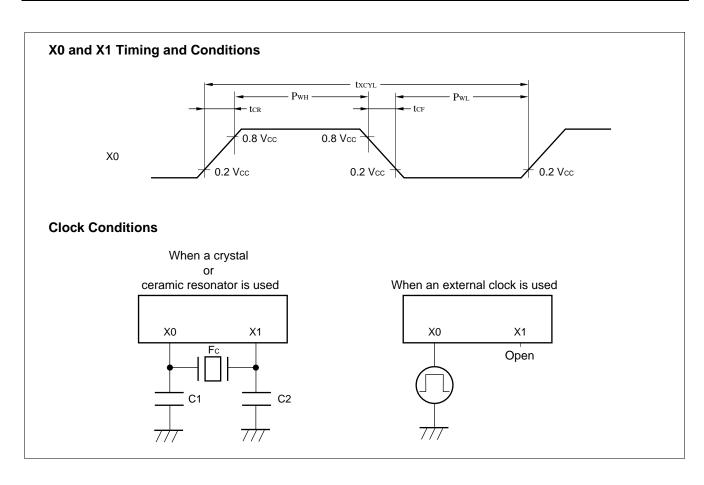
Parameter	Symbol	Condition	Value		Unit	Remarks	
Parameter	Syllibol	Condition	Min.	Max.	Oilit	Remarks	
RST "L" pulse width	t zlzh	_	48 txcyl	_	ns		


(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Va	lue	Unit	Remarks	
Farameter	Syllibol	Condition	Min.	Max.	Ollit	Keiliaiks	
Power supply rising time	t R		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time.

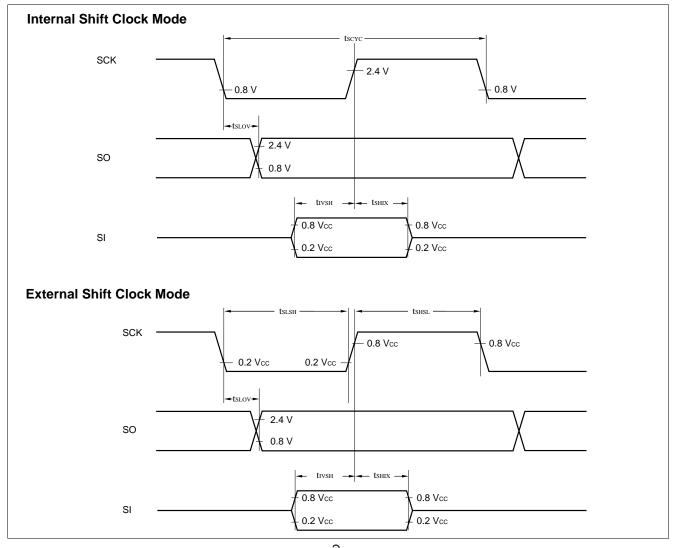

If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol	FIII	Condition	Min.	Max.	Onit		
Clock frequency	Fc	X0, X1		1	8	MHz		
Clock cycle time	txcyL	X0, X1		125	1000	ns		
Input clock pulse width	Pwh PwL	Х0	<u>—</u>	20	_	ns	External clock	
Input clock rising/falling time	tcr tcr	Х0		_	10	ns	External clock	

(4) Instruction Cycle

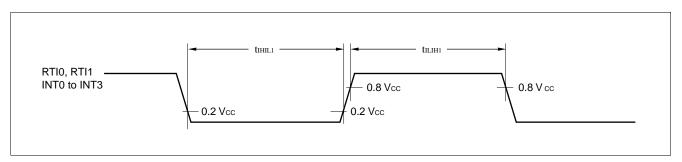

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fc	μs	(4/Fc) $t_{inst} = 0.5 \ \mu s$ when operating at Fc = 8 MHz

(5) Serial I/O Timing

 $(AVcc = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin Condition		Valu	Value		Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Unit	Kemarks
Serial clock cycle time	tscyc	SCK	Internal shift	2 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK $↑$	tıvsh	SI, SCK	clock mode	1/2 tinst*	_	μs	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI	_	1/2 tinst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK		1 tinst*	_	μs	
Serial clock "L" pulse width	tslsh	SCK	Ī	1 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO	External shift clock mode	0	200	ns	
Valid SI \rightarrow SCK ↑	tivsh	SI, SCK		1/2 tinst*	_	μs	
$SCK \uparrow \rightarrow valid SI hold time$	tshix	SCK, SI		1/2 tinst*	_	μs	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle".

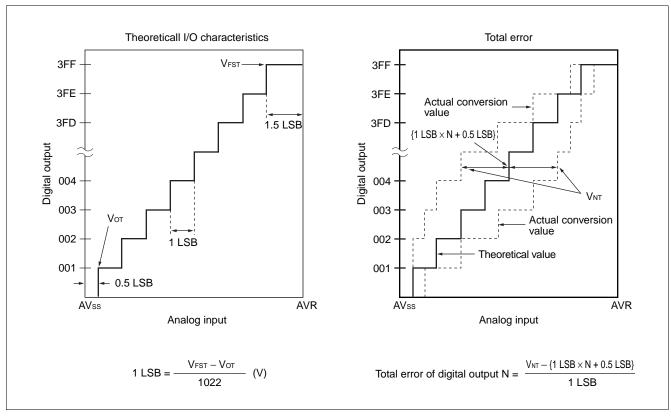


(6) Peripheral Input Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

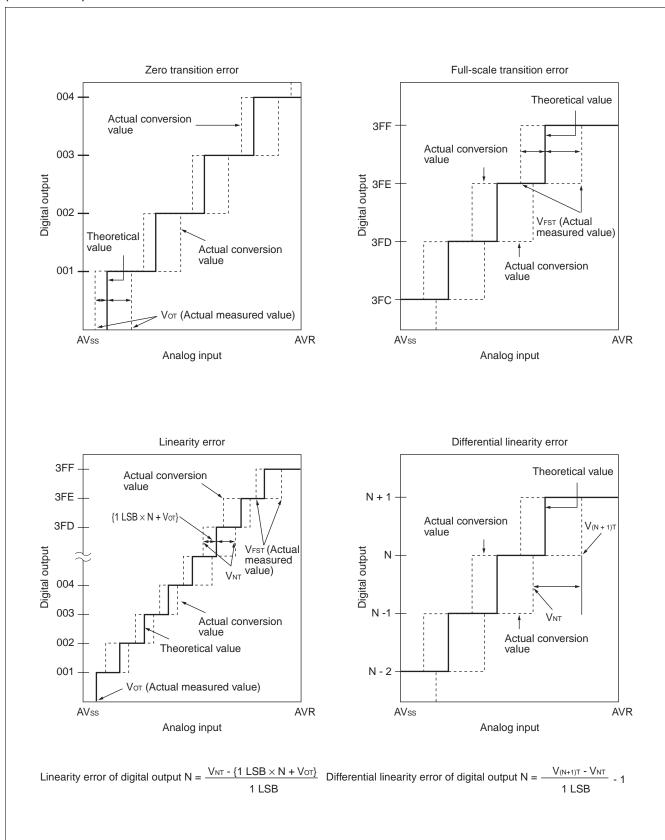
Parameter	Symbol	Pin	Value		Unit	Remarks
Faranieter	Syllibol	FIII	Min.	Max.	Ullit	Remarks
Peripheral input "H" pulse width 1	tılıH1	INT0 to INT3, RTI0, RTI1	2 tinst*	_	_	
Peripheral input "L" pulse width 1	t _{IHIL1}	INT0 to INT3, RTI0, RTI1	2 tinst*	_	_	

^{*:} For information on tinst, see "(4) Instruction Cycle".


(7) A/D Converter Electrical Characteristics

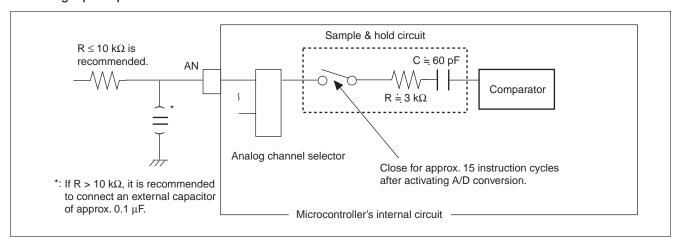
 $(AVcc = Vcc = +3.5 \text{ V to } +6.0 \text{ V}, Fc = 8 \text{ MHz}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Sym-	Pin	Condition		Value		Unit
Parameter	bol	FIII	Condition	Min.	Тур.	Max.	Ullit
Resolution				_	_	10	bit
Linearity error				_	_	±2.0	LSB
Differential linearity error	_	_	_	_	±1.5	LSB	
Differential total error				_	_	±3.0	LSB
Zero transition voltage	Vот	AN0 to AN7	AVcc = AVR =	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V
Full-scale transition voltage	V _{FST}	AN0 to AN7	Vcc	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V
Interchannel disparity				_	_	4	LSB
A/D mode conversion time	_	_		_	_	16.5	μs
Analog port input current	VAIN	AN0 to AN7	Source oscillation at 8 MHz	_	_	10	μА
Analog input voltage		AN0 to AN7	_	0.0	_	AVR	V
Reference voltage	_	AVR	_	0.0	_	AVcc	V
Reference voltage supply current	IR	AVR	AVR = 5.0 V	_	200	_	μΑ


6. A/D Converter Glossary

- Resolution
 - Analog changes that are identifiable with the A/D converter.
- Linearity error
 - The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics
- Differential linearity error
 - The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error
 - The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise.

(Continued)


(Continued)

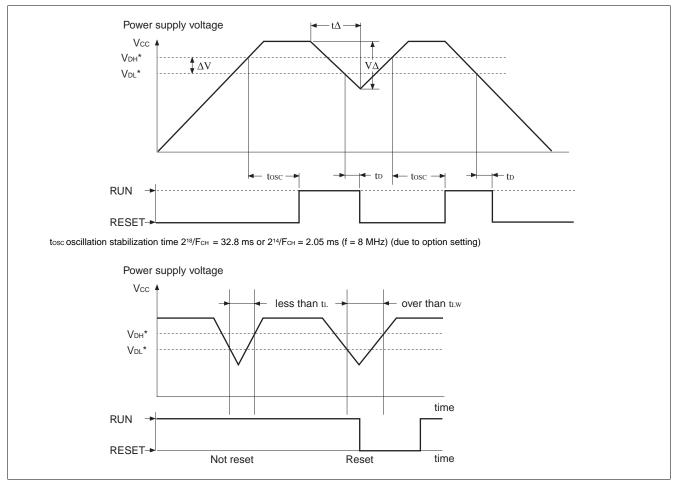
7. Notes on A/D Converter

- The smaller | AVR AVss |, the greater the error would become relatively.
- The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 k Ω If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 7.5 μ s at 8 MHz oscillation).

An analog input equivalent circuit is shown below.

Since the A/D converter contains sample & hold circuit, the level of the analog input pin might not stabilize within the sampling period after A/D activation, resulting in inaccurate A/D conversion values, if the input impedance to the analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.

It is recommended to keep the input impedance to the analog pin not exceed 10 k Ω . If it exceeds 10 k Ω , it is recommended to connect a capacitor of approx. 0.1 μ F for the analog input pin.

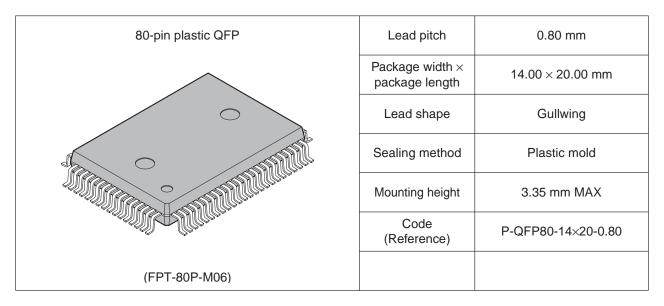

Except for the sampling period after A/D activation, the input leakage current of the analog input pin is less than 10 µA.

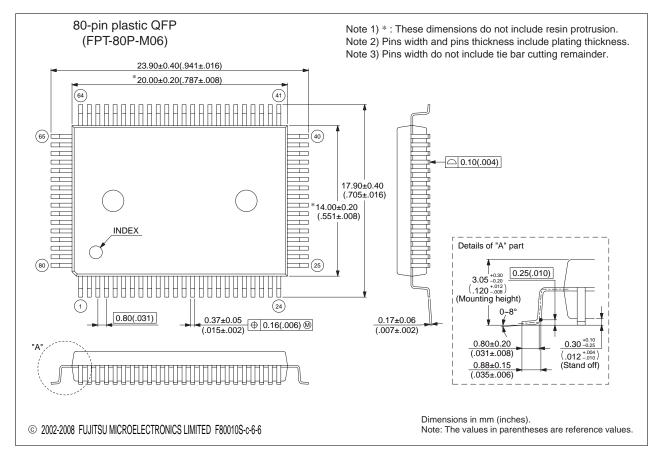
8. Low-voltage Detection Reset

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.	Ullit	Remarks
Value and the state of the stat	V _{DL1}		3.00	3.60	V	
Voltage detected at power supply voltage drop	V _{DL2}		3.30	3.90	V	
Totago drop	V _{DL3}		3.70	4.30	V	*1
Value and Later	V _{DH1}		3.10	3.80	V	
Voltage detected at power supply voltage rise	V _{DH2}		3.40	4.10	V	
Voltage Nee	V _{DH3}		3.80	4.50	V	
Hysteresis width	ΔV		0.10	_	V	
Reset ignore time	t∟		0.3	_	μs	
Reset sense time	tw		16 txcyL	_	ns	
Reset detection deley time	t D		_	2.0	μs	
Voltage regulation (VΔ/tΔ)	VCR		_	0.10	V/μs	

^{*1:} V_{DH} and V_{DL} can be set for the MB89923 and MB89925 by mask options; for the MB89PV920 and MB89P928 by registers.

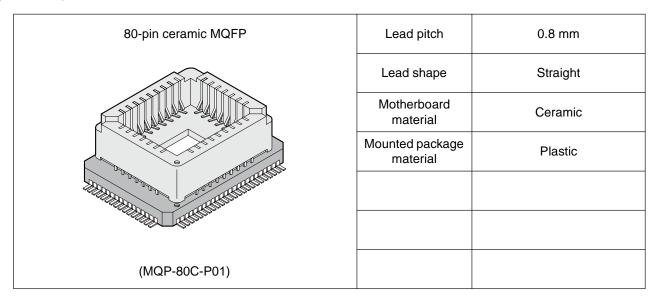

■ MASK OPTIONS

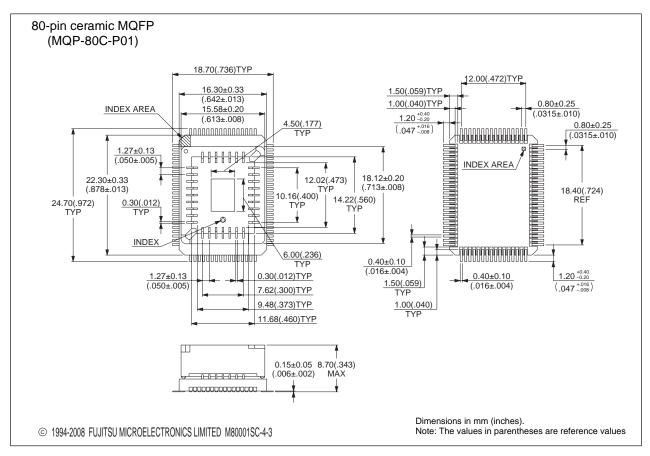

No.	Part number	MB89923 MB89925	MB89P928	MB89PV920
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
	Pull-up resistors	P00 to P07, P20 to P27,	P00 to P07, P20 to P27,	
1	P00 to P07, P20 to P27, P30 to P32, P90 to P97	P30 to P32, P90 to P97 : Selectable by pin	P30 to P32, P90 to P97 : Can be set per pin	No pull-up resistor
2	Power-on reset provided No power-on reset	Selectable	Can be set	With power-on reset
3	Oscillation stabilization time slection (at 8 MHz) Cystal oscillator (32.8 ms/8MHz) Ceramic oscillator (2.05 ms/8 MHz)	Selectable	Can be set	Crystal oscillator (32.8 ms/8 MHz)
4	Reset pin output Reset output provided No reset output	Selectable	Can be set	With reset output
5	Watchdog timer	Selectable	Can be set	Inactive by default (Can be activated by software)
6	Low-voltage detection reset circuit Activation prohibited Automatic activation	Selectable	Can be set	Inactive by default (Can be activated by software)
7	Low-voltage detection reset output Output disabled Output enabled	Selectable	Can be set	Inactive by default (Can be activated by software)
8	Low-voltage detection voltage 3.3 V ± 0.3 V 3.6 V ± 0.3 V 4.0 V ± 0.3 V	Selectable	Can be set	Register setting
9	Low-voltage detection reset/watchdog timer function selection Register setting valid Option setting valid	Selectable	Can be set	Fixed to register setting

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89923PF MB89925PF MB89P928PF	80-pin Plastic QFP (FPT-80P-M06)	
MB89PV920CF	80-pin Ceramic MQFP (MQP-80C-P01)	

■ PACKAGE DIMENSIONS

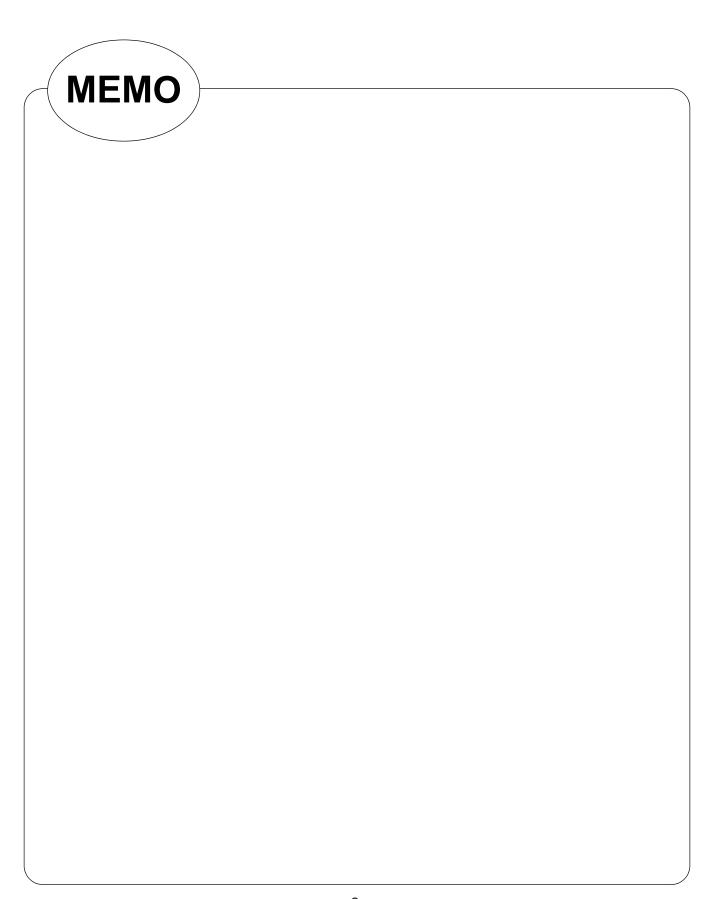




Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

(Continued)



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
5, 6	PIN ASSIGNMENT	Changed the pin name of pin 13. P92/CLK → P92/BUZ/CLK
6		Changed the pin name of pin 86 to pin 91. AD7 to AD0 \rightarrow A7 to A0
8	PIN DESCRIPTION	Changed a pin no 7 to 11 \rightarrow 7 to 10
14	■ PROGRAMMING TO THE EPROM ON THE MB89P928	Deleted the "6. EPROM Programmer Socket Adapter".
16	■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE	Deleted the "2. Programming Socket Adapter".
17	■ BLOCK DIAGRAM	Changed a pin name in bottom right corner.
29	■ ELECTRICAL CHARACTERISTICS 4. AC. Characteristics	(1) Reset Timing Changed the Value Min. 48 thcyl → 48 txcyl
33	■ ELECTRICAL CHARACTERISTICS 5. A/D Converter Electrical Characteristics	Changed the unit of "Zero transition voltage" and "Full-scale transition voltage" mV \rightarrow V
	■ INSTRUCTIONS (136 INSTRUCTIONS)	Deleted the "INSTRUCTIONS (136 INSTRUCTIONS)"
	■ INSTRUCTION MAP	Deleted the "INSTRUCTION MAP"

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3347 Fax: +81-3-5322-3387

http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999

101. 11 400 101 0000 Tax. 11 400 101 000

http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong

Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Business & Media Promotion Dept.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

 MB89923PF-G-195-BNDE1
 MB89925PF-G-121-BNDE1
 MB89925PMC1-G-161-BNDE1
 MB89925PF-G-225-BNDE1

 MB89925PF-G-221-BNDE1
 MB89925PF-G-232-BNDE1
 MB89925PFR-G-210E1
 MB89925PF-G-206-BNDE1

 MB89925PF-G-198-BNDE1
 MB89925PF-G-170-BNDE1
 MB89925PF-G-214-BNDE1
 MB89925PF-G-147-BNDE1

 MB89925PF-G-182-BNDE1
 MB89925PF-G-240E1
 MB89925PF-G-159-BNDE1
 MB89925PF-G-171-BNDE1

 MB89925PF-G-148-BNDE1
 MB89925PF-G-186-BNDE1
 MB89925PF-G-114-BNDE1
 MB89925PF-G-166-BNDE1

 MB89925PF-G-234E1
 MB89925PF-G-202-BNDE1
 MB89925PF-G-105-BNDE1
 MB89925PF-G-238E1
 MB89925PF-G-127-BNDE1

 BNDE1
 MB89925PF-G-227-BNDE1
 MB89925PF-G-133-BNDE1
 MB89925PF-G-207-BNDE1
 MB89925PF-G-127-BNDE1