

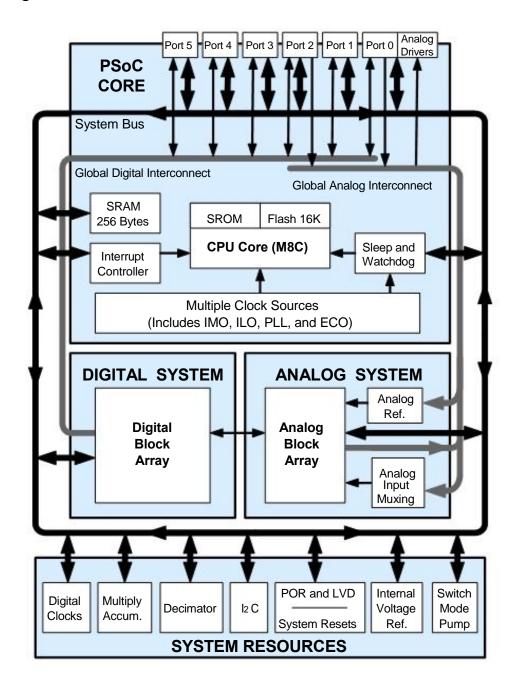
EZ-Color™ HB LED Controller

Features

- HB LED Controller
 - □ Configurable Dimmers Support up to Eight Independent LED Channels
 - 8 to 32 Bits of Resolution per Channel
 - Dynamic Reconfiguration Enables LED Controller Plus Other Features: CapSense, Battery Charging, and Motor Control
- Visual Embedded Design
 - LED-Based Drivers
 - Binning Compensation
 - Temperature Feedback
 - Optical Feedback
 - DMX512
- PrISM Modulation Technology
- □ Reduces Radiated EMI
- Reduces Low Frequency Blinking
- Powerful Harvard Architecture Processor
 - ☐ M8C Processor Speeds to 24 MHz
 - □ 3.0 to 5.25V Operating Voltage
 - Operating Voltages Down to 1.0V using On-Chip Switch Mode Pump (SMP)
 - □ Industrial Temperature Range: -40°C to +85°C ■

Flexible On-Chip Memory

- 16K Flash Program Storage 50,000 Erase/Write Cycles
- 256 bytes SRAM Data StorageIn-System Serial Programming (ISSP)
- Partial Flash Updates
- ☐ Flexible Protection Modes
- EEPROM Emulation in Flash


- Advanced Peripherals (PSoC[®] Blocks)
- □ Eight Digital PSoC Blocks Provide:
 - 8 to 32-Bit Timers, Counters, and PWMs •

Up to Two Full-Duplex UARTs

- Multiple SPI Masters or Slaves
- · Connectable to all GPIO pins
- 12 Rail-to-Rail Analog PSoC Blocks Provide:
 - Up to 14-Bit ADCs
 - Up to 9-Bit DACs
 - Programmable Gain Amplifiers
 - Programmable Filters and Comparators
- □ Complex peripherals by Combining Blocks
- Programmable Pin Configurations
 - 25 mA Sink, 10 mA Source on all GPIO
 - Pull Up, Pull Down, High Z, Strong, or Open Drain Drive Modes on all GPIO
 - Up to 12 Analog Inputs on GPIO
 - □ Four 30 mA Analog Outputs on GPIO
- Configurable interrupt on all GPIO
- Complete Development Tools
 - ☐ Free Development Software
 - PSoC Designer™
- ☐ Full Featured, In-Circuit Emulator and Programmer
- Full Speed Emulation
- □ Complex Breakpoint Structure
- □ 128 KBytes Trace Memory

Logic Block Diagram

CY8CLED08

Contents

1. EZ-Color™ Functional Overview	4
1.1 Target Applications	
1.2 The PSoC Core	
1.3 The Digital System	
1.4 The Analog System	
1.1 Additional System Resources	
1.2 EZ-Color Device Characteristics	
2. Getting Started	6
2.1 Development Kits	
2.2 Technical Training Modules	
2.3 Consultants	
2.4 Technical Support	
2.5 Application Notes	
3. Development Tools	7
3.1 PSoC Designer Software Subsystems	
3.2 In-Circuit Emulator	
4. Document Conventions	8
4.1 Acronyms Used	
4.2 Units of Measure	
4.3 Numeric Naming	8
5. Pin Information	
5.1 Pinouts	9
6. Register Reference	
6.1 Register Conventions	
6.2 Register Manning Tables	

7. Electrical Specifications	15
7.1 Absolute Maximum Ratings	16
7.2 Operating Temperature	
7.3 DC Electrical Characteristics	
7.4 AC Electrical Characteristics	
8. Packaging Information	35
8.1 Packaging Dimensions	
8.1 Thermal Impedances	38
8.2 Capacitance on Crystal Pins	
8.3 Solder Reflow Peak Temperature	38
9. Development Tool Selection	
9.1 Software Tools	
9.2 Hardware Tools	39
9.3 Evaluation Tools	39
9.4 Device Programmers	40
9.5 Accessories (Emulation and Programming)	41
9.6 Third Party Tools	41
9.7 Build a PSoC Emulator into Your Board	41
10. Ordering Information	42
10.1 Key Device Features	
10.2 Ordering Code Definitions	
11. Document History Page	43
12. Sales, Solutions, and Legal Information	
12.1 Worldwide Sales and Design Support	

1. EZ-Color™ Functional Overview

Cypress' EZ-Color family of devices offers the ideal control solution for High Brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of PSoC (Programmable System-on-Chip). Cypress' PrISM (precise illumination signal modulation) modulation technology provides lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports a range of independent LED channels from 4 channels at 32 bits of resolution each, up to 16 channels at 8 bits of resolution each. This enables lighting designers the flexibility to choose the LED array size and color quality. PSoC Designer software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature, optical, and LED binning compensation. EZ-Color's virtually limitless analog and digital customization enable simple integration of features in addition to intelligent lighting, such as battery charging, image stabilization, and motor control during the development process. These features, along with Cypress' best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

1.1 Target Applications

- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone Flash
- Flashlights

1.2 The PSoC Core

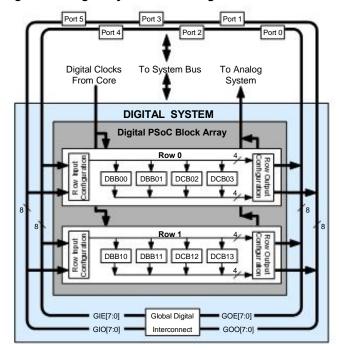
The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO (General Purpose I/O).

The M8C CPU core is a powerful processor with speeds up to 48 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller with 17 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).

Memory encompasses 16K of Flash for program storage, 256 bytes of SRAM for data storage, and up to 2K of EEPROM emulated using the Flash. Program Flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The EZ-Color family incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a

crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System


Resource), provide the flexibility to integrate almost any timing requirement into the EZ-Color device.

EZ-Color GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

1.3 The Digital System

The Digital System is composed of 8 digital blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Figure 1-1. Digital System Block Diagram

Digital peripheral configurations include the following: •

PrISM (8 to 32 bit)

- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity (up to 2)
- SPI slave and master (up to 2)
- I2C slave and multi-master (1 available as a System Resource)

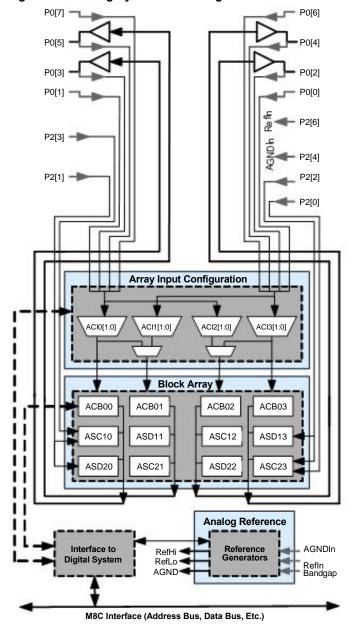
Cyclical Redundancy Checker/Generator (8 to 32 bit)

- IrDA (up to 2)
- Generators (8 to 32 bit)

Document Number: 001-12981 Rev. *E Page 4 of 44

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also enable signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by EZ-Color device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled EZ-Color Device Characteristics.


1.4 The Analog System

The analog system is composed of 12 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common EZ-Color analog functions (most available as user modules) are as follows:

- Analog-to-digital converters (up to 4, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2, 4, 6, and 8 pole band-pass, low-pass, and notch) Amplifiers (up to 4, with selectable gain to 48x)
- Instrumentation amplifiers (up to 2, with selectable gain to 93x) Comparators (up to 4, with 16 selectable thresholds)
- DACs (up to 4, with 6- to 9-bit resolution)
- Multiplying DACs (up to 4, with 6- to 9-bit resolution)
- High current output drivers (four with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are provided in columns of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks, as shown in the figure below.

Figure 1-2. Analog System Block Diagram

1.1 Additional System Resources

System Resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch mode pump, low voltage detection, and power on reset. Statements describing the merits of each system resource are below.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital blocks as clock dividers.
- Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters.

- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.2V battery cell, providing a low cost boost converter.

1.2 EZ-Color Device Characteristics

Depending on your EZ-Color device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific EZ-Color device groups. The device covered by this data sheet is shown in the highlighted row of the table

Table 1-1. EZ-Color Device Characteristics

Part Number	LED Channels	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM	Flash Size	CapSense
CY8CLED02	2	16	1	4	8	0	2	4	256 Bytes	4K	No
CY8CLED04	4	56	1	4	48	2	2	6	1K	16K	Yes
CY8CLED08	8	44	2	8	12	4	4	12	256 Bytes	16K	No
CY8CLED16	16	44	4	16	12	4	4	12	2K	32K	No

2. Getting Started

The quickest path to understanding the EZ-Color silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the EZ-Color integrated circuit and presents specific pin, register, and electrical specifications.

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest device data sheets on the web at http://www.cypress.com/ez-color.

2.1 Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, **C** compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com/store, click Lighting & Power Control to view a current list of available items.

2.2 Technical Training Modules

Free PSoC technical training modules are available for users new to PSoC. Training modules cover designing, debugging, advanced analog and CapSense. Go to http://www.cypress.com/techtrain.

2.3 Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located at the center of the web page, and select CYPros Consultants.

2.4 Technical Support

Application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support.

2.5 Application Notes

A long list of application notes will assist you in every aspect of your design effort. To view the application notes, go to the http://www.cypress.com web site and select Application Notes under the Documentation tab.

Document Number: 001-12981 Rev. *E Page 6 of 44

3. Development Tools

PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE runs on Windows XP or Windows Vista.

This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers.

PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family.

3.1 PSoC Designer Software Subsystems

3.1.1 System-Level View

A drag-and-drop visual embedded system design environment based on PSoC Designer. In the system level view you create a model of your system inputs, outputs, and communication interfaces. You define when and how an output device changes state based upon any or all other system devices. Based upon the design, PSoC Designer automatically selects one or more PSoC Mixed-Signal Controllers that match your system requirements. PSoC Designer generates all embedded code, then compiles and links it into a programming file for a specific PSoC device.

3.1.2 Chip-Level View

The chip-level view is a more traditional Integrated Development Environment (IDE) based on PSoC Designer. Choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic configuration allows for changing configurations at run time.

3.1.3 Hybrid Designs

You can begin in the system-level view, allow it to choose and configure your user modules, routing, and generate code, then switch to the chip-level view to gain complete control over on-chip resources. All views of the project share a common code editor, builder, and common debug, emulation, and programming tools.

3.1.4 Code Generation Tools

PSoC Designer supports multiple third party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to merge seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

3.1.5 Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

3.1.6 Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

3.2 In-Circuit Emulator

A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

Page 7 of 44

4. Document Conventions

4.1 Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description							
AC	alternating current							
ADC	analog-to-digital converter							
API	application programming interface							
CPU	central processing unit							
СТ	continuous time							
DAC	digital-to-analog converter							
DC	direct current							
ECO	external crystal oscillator							
EEPROM	electrically erasable programmable read-only memory							
FSR	full scale range							
GPIO	general purpose I/O							
GUI	graphical user interface							
НВМ	human body model							
ICE	in-circuit emulator							
ILO	internal low speed oscillator							
IMO	internal main oscillator							
I/O	input/output							
IPOR	imprecise power on reset							
LSb	least-significant bit							
LVD	low voltage detect							
MSb	most-significant bit							
PC	program counter							
PLL	phase-locked loop							
POR	power on reset							
PPOR	precision power on reset							
PSoC®	Programmable System-on-Chip							
PWM	pulse width modulator							
SC	switched capacitor							
SLIMO	slow IMO							
SMP	switch mode pump							
SRAM	static random access memory							

4.2 Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 7-1 on page 15 lists all the abbreviations used to measure the devices.

4.3 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

5. Pin Information

5.1 Pinouts

5.1.1 48-Pin Part Pinout SSOP

Table 5-1. 48-Pin Part Pinout (SSOP)

Pin Type Figure 5-1. 48-Pin Device Description Digital Analog Name I/O P0[7] Analog column mux input. 2 I/O I/O P0[5] Analog column mux input and column output. A, I, P0[7] 48 - Vdd 3 I/O I/O P0[3] Analog column mux input and column output. A, IO, P0[5] 47 **P**0[6], A, I A, IO, P0[3] 46 P0[4], A, IO 3 4 I/O P0[1] Analog column mux input. A, I, P0[1] = P2[7] = 45 **P**0[2], A, IO 5 I/O P2[7] 44 P0[0], A, I 43 P2[6], External VRef 5 6 I/O P2[5] P2[5] P2[3] 7 I/O Direct switched capacitor block input. 42 P2[4], External AGND A, I, P2[3] 8 I/O P2[1] Direct switched capacitor block input. 41 **P**2[2], A, I 40 **P**2[0], A, I A, I, P2[1] **=** 8 9 I/O P4[7] P4[7] = 9 P4[5] = 10 10 I/O P4[5] 39 **P** P4[6] 11 I/O P4[3] P4[3] **=** 11 38 **P**4[4] P4[1] - 12 37 P4[2] 36 P4[0] 35 XRES 12 I/O P4[1] **SSOP** SMP = 13 Switch Mode Pump (SMP) connection to external components required. 13 SMP Power P3[7] **=** 14 34 **P**3[6] P3[5] **=** 15 14 I/O P3[7] P3[3] = 16 33 **P**3[4] 15 1/0 P3[5] 32 **P**3[2] 31 **P**3[0] P3[1] **=** 17 I/O P3[3] 16 P5[3] = 18 P5[1] = 19 I2C SCL, P1[7] = 20 I2C SDA, P1[5] = 21 30 P5[2] 17 I/O P3[1] 18 I/O P5[3] 29 P5[0] 19 I/O P5[1] 28 **P**1[6] P1[3] = 22 27 P1[4], EXTCLK 26 P1[2] 20 I/O P1[7] I2C Serial Clock (SCL). I2C SCL, XTALin, P1[1] = 23 P1[5] I2C Serial Data (SDA). 21 I/O 25 P1[0], XTALout, I2C SDA Vss **=** 24 I/O 22 P1[3] I/O Crystal Input (XTALin), I2C Serial Clock (SCL), ISSP SCLK . 23 P1[1] 24 Power Vss Ground connection. Crystal Output (XTALout), I2C Serial Data (SDA), ISSP SDATA 1. 25 I/O P1[0] 26 I/O P1[2] 27 I/O P1[4] Optional External Clock Input (EXTCLK). Pin No. Pin Digital Analog Description P4[6] 28 I/O P1[6] 39 I/O 29 I/O P5[0] 39 I/O P4[6] 30 I/O P5[2] 40 I/O P2[0] Direct switched capacitor block input. 31 I/O P3[0] 41 I/O P2[2] Direct switched capacitor block input. 32 I/O P3[2] 42 I/O P2[4] External Analog Ground (AGND). 33 I/O P3[4] 43 I/O P2[6] External Voltage Reference (VRef). 34 I/O I/O P3[6] 44 P0[0] 1 Analog column mux input. 35 **XRES** Active high external reset with internal pull down. 45 I/O I/O P0[2] Analog column mux input and column output. Input 36 I/O P4[0] 46 I/O I/O Analog column mux input and column output. P0[4] 37 I/O P4[2] 47 I/O P0[6] Analog column mux input. 38 I/O P4[4] 48 Power Vdd Supply voltage.

LEGEND: A = Analog, I = Input, and O = Output.

Note

Document Number: 001-12981 Rev. *E Page 9 of 44

^{1.} These are the ISSP pins, which are not High Z at POR.

5.1.2 48-Pin Part Pinout QFN

Table 5-2. 48-Pin Part Pinout (QFN)[2]

I abi	e 5-2. 4	8-PIN P	art Pino	out (QFN) ^[2]
Pin	-	pe	Pin	Description
No.	Digital	Analog	Name	
1	I/O		P2[3]	Direct switched capacitor block input.
2	1/0	9 L 8	P2[1]	Direct switched capacitor block input.
3	I/O		P4[7]	
4	I/O		P4[5]	
5	I/O	3 - 3	P4[3]	
6	1/0	9	P4[1]	
7		wer	SMP	Switch Mode Pump (SMP) connection to external components required.
8	1/0		P3[7]	
9	1/0		P3[5]	
10	I/O		P3[3]	
11	I/O		P3[1]	
12	I/O		P5[3]	
13	I/O		P5[1]	
14	I/O		P1[7]	I2C Serial Clock (SCL).
15	I/O		P1[5]	I2C Serial Data (SDA).
16	I/O		P1[3]	
17	I/O		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL), ISSP-SCLK[1].
18	Pov	wer	Vss	Ground connection.
19	I/O		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA), ISSP-SDATA[1].
20	I/O		P1[2]	
21	I/O		P1[4]	Optional External Clock Input (EXTCLK).
22	I/O		P1[6]	
23	I/O	8 3	P5[0]	
24	I/O		P5[2]	
25	I/O		P3[0]	
26	I/O		P3[2]	
27	I/O	8 3	P3[4]	
28	I/O		P3[6]	
29	Inp	out	XRES	Active high external reset with internal pull down.
30	I/O	A	P4[0]	
31	I/O	63	P4[2]	
32	I/O		P4[4]	
33	I/O	3 3	P4[6]	
34	I/O		P2[0]	Direct switched capacitor block input.
35	I/O	I	P2[2]	Direct switched capacitor block input.
36	I/O	Y	P2[4]	External Analog Ground (AGND).
37	I/O		P2[6]	External Voltage Reference (VRef).
38	I/O	J. L.J.	P0[0]	Analog column mux input.
39	I/O	I/O	P0[2]	Analog column mux input and column output.
40	I/O	I/O	P0[4]	Analog column mux input and column output.
41	I/O	§ 1 §	P0[6]	Analog column mux input.
42	Pov	wer	Vdd	Supply voltage.
43	I/O	§ 1 §	P0[7]	Analog column mux input.
44	I/O	I/O	P0[5]	Analog column mux input and column output.
45	I/O	I/O	P0[3]	Analog column mux input and column output.
46	I/O	T	P0[1]	Analog column mux input.
47	I/O	8 8	P2[7]	
48	I/O		P2[5]	

Figure 5-2. 48-Pin Device | A | | A |0 | A |0 | A | | External VRef < < < < A, I, P2[3] P2[4], External AGND A, I, P2[1] 35= P2[2], A, I 34 P4[7] P2[0], A, I 33 P4[6] P4[5] 32 P4[4] P4[3] P4[1] **QFN** 31= P4[2] SMP 30 = P4[0] (Top View) P3[7] 29 = **XRES** P3[6] P3[5] 28 P3[3] 27 P3[4] P3[1] P3[2] P5[3] P3[0] IC SOA XTALout, Piloj Piloj EXTCH, Pild Piloj Piloj Piloj Pq1)
BC SCL P1[7]
BC SD A P1[9]
P1[3]
SCL XTALh, P1[1]

LEGEND: A = Analog, I = Input, and O = Output.

Note

Document Number: 001-12981 Rev. *E Page 10 of 44

The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

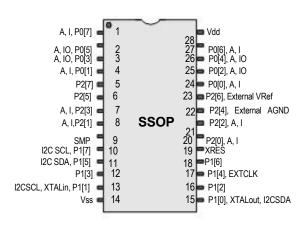

5.0.1 28-Pin Part Pinout

Table 5-3. 28-Pin Part Pinout (SSOP)

Pin	Ту		Pin	Description			
No.	Digital	Analog	Name	Description			
1	I/O	J I	P0[7]	Analog column mux input.			
2	I/O	I/O	P0[5]	Analog column mux input and column output.			
3	I/O	I/O	P0[3]	Analog column mux input and column output.			
4	I/O	§ 1 (P0[1]	Analog column mux input.			
5	I/O		P2[7]				
6	I/O		P2[5]	541 5-1			
7	I/O	§ 1 %	P2[3]	Direct switched capacitor block input.			
8	I/O	. I	P2[1]	Direct switched capacitor block input.			
9	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required.			
10	I/O		P1[7]	I2C Serial Clock (SCL).			
11	I/O	8 8	P1[5]	I2C Serial Data (SDA).			
12	I/O		P1[3]				
13	I/O		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SC ISSP-SCLK 1).			
14	Pov	wer	Vss	Ground connection.			
15	I/O		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA), ISSP-SDATA ^[1] .			
16	I/O		P1[2]	9			
17	I/O		P1[4]	Optional External Clock Input (EXTCLK).			
18	I/O		P1[6]	· V.			
19	Inp	out	XRES	Active high external reset with internal pull down.			
20	I/O	(I)	P2[0]	Direct switched capacitor block input.			
21	I/O	. I	P2[2]	Direct switched capacitor block input.			
22	I/O		P2[4]	External Analog Ground (AGND).			
23	I/O		P2[6]	External Voltage Reference (VRef).			
24	I/O	ğ I ў	P0[0]	Analog column mux input.			
25	I/O	I/O	P0[2]	Analog column mux input and column output.			
26	I/O	I/O	P0[4]	Analog column mux input and column output.			
27	I/O	8 T 8	P0[6]	Analog column mux input.			
28	Pov	wer	Vdd	Supply voltage.			

LEGEND: A = Analog, I = Input, and O = Output.

Figure 5-3. 28-Pin Device

6. Register Reference

This chapter lists the registers of the CY8CLED08 EZ-Color device.

6.1 Register Conventions

The register conventions specific to this section are listed in the following table. Register Mapping Tables

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
Ĺ	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

6.2 Register Mapping Tables

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and should not be accessed.

Table 6-1. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW	8 3	44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW	3	46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	0
PRT2DR	08	RW	8	48		ASC12CR0	88	RW		C8	
PRT2IE	09	RW	2	49		ASC12CR1	89	RW	- 7	C9	
PRT2GS	0A	RW		4A		ASC12CR2	8A	RW	- 3	CA	3
PRT2DM2	0B	RW		4B		ASC12CR3	8B	RW		СВ	2
PRT3DR	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW	3	4D	-	ASD13CR1	8D	RW	- 3	CD	8 9
PRT3GS	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3DM2	0F	RW		4F		ASD13CR3	8F	RW		CF	9 1
PRT4DR	10	RW		50		ASD20CR0	90	RW		D0	
PRT4IE	11	RW	8	51		ASD20CR1	91	RW		D1	8
PRT4GS	12	RW		52		ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	8	53		ASD20CR3	93	RW		D3	
PRT5DR	14	RW		54		ASC21CR0	94	RW		D4	
PRT5IE	15	RW		55		ASC21CR1	95	RW		D5	
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	8 3	57		ASC21CR3	97	RW	I2C_SCR	D7	#
	18			58		ASD22CR0	98	RW	I2C_DR	D8	RW
Š.	19	9 5	8	59		ASD22CR1	99	RW	I2C_MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B	1 0		5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
2	1C			5C		ASC23CR0	9C	RW		DC	
3	1D	3 8		5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
3	1E		2	5E		ASC23CR2	9E	RW	INT_MSK3	DE	RW
8	1F	8	8	5F		ASC23CR3	9F	RW		DF	2 3
DBB00DR0	20	#	AMX_IN	60	RW		A0	9. 3	INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1	2 3	INT_MSK1	E1	RW
DBB00DR2	22	RW	3 3	62			A2	8	INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4	8	DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6	1	DEC_CR0	E6	RW

Blank fields are Reserved and should not be accessed.

Access is bit specific.

Document Number: 001-12981 Rev. *E Page 12 of 44

Table 6-1. Register Map Bank 0 Table: User Space (continued)

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	8	68			A8	3 3	MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL_Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B			AB		MUL_DL	EB	R
DCB03DR0	2C	#	8 8	6C			AC	3	ACC_DR1	EC	RW
DCB03DR1	2D	W		6D			AD		ACC_DR0	ED	RW
DCB03DR2	2E	RW	8	6E			AE		ACC_DR3	EE	RW
DCB03CR0	2F	#		6F			AF		ACC_DR2	EF	RW
DBB10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW	3	F0	7
DBB10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	3
DBB10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	Ÿ.
DBB11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	3
DBB11CR0	37	#	ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	§
DCB12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	5
DCB12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCB12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	2
DCB13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	7
DCB13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	8
DCB13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCB13CR0	3F	#	ACB03CR2	7F	RW		BF		CPU_SCR0	FF	#

Blank fields are Reserved and should not be accessed.

Access is bit specific.

Table 6-2. Register Map Bank 1 Table: Configuration Space

Name	Add (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASC10CR0	80	RW		C0	
PRT0DM1	01	RW	13	41		ASC10CR1	81	RW	9	C1	
PRT0IC0	02	RW		42		ASC10CR2	82	RW		C2	$\overline{}$
PRT0IC1	03	RW	8	43		ASC10CR3	83	RW	98 9	C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	\top
PRT1DM1	05	RW	8	45		ASD11CR1	85	RW	8 %	C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	$\overline{}$
PRT1IC1	07	RW		47		ASD11CR3	87	RW	S S	C7	
PRT2DM0	08	RW		48		ASC12CR0	88	RW		C8	$\overline{}$
PRT2DM1	09	RW		49		ASC12CR1	89	RW	8	C9	
PRT2IC0	0A	RW		4A		ASC12CR2	8A	RW		CA	$\overline{}$
PRT2IC1	0B	RW	W	4B		ASC12CR3	8B	RW	35 - 8	СВ	
PRT3DM0	0C	RW		4C		ASD13CR0	8C	RW	8 8	CC	
PRT3DM1	0D	RW		4D		ASD13CR1	8D	RW	3 3	CD	
PRT3IC0	0E	RW		4E		ASD13CR2	8E	RW	N	CE	
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW	3	CF	
PRT4DM0	10	RW		50		ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW		54		ASC21CR0	94	RW		D4	
PRT5DM1	15	RW		55		ASC21CR1	95	RW		D5	$\overline{}$
PRT5IC0	16	RW	0	56		ASC21CR2	96	RW	35	D6	
PRT5IC1	17	RW		57		ASC21CR3	97	RW		D7	$\overline{}$
ę.	18			58		ASD22CR0	98	RW	9 9	D8	
	19			59		ASD22CR1	99	RW		D9	$\overline{}$
Š.	1A			5A		ASD22CR2	9A	RW		DA	
	1B			5B		ASD22CR3	9B	RW		DB	$\overline{}$
3.	1C			5C		ASC23CR0	9C	RW	9	DC	
	1D			5D		ASC23CR1	9D	RW	OSC_GO_EN	DD	RW
3	1E			5E		ASC23CR2	9E	RW	OSC_CR4	DE	RW
	1F			5F		ASC23CR3	9F	RW	OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW

Blank fields are Reserved and should not be accessed.

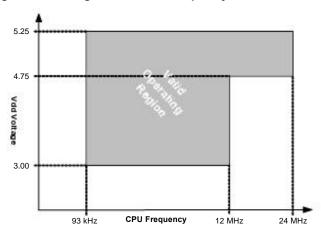
Access is bit specific.

Table 6-2. Register Map Bank 1 Table: Configuration Space (continued)

Name	Add (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6	9		E6	
	27		ALT_CR0	67	RW		A7			E7	T
DCB02FN	28	RW	ALT_CR1	68	RW		A8		IMO_TR	E8	W
DCB02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	W
DCB02OU	2A	RW	9	6A			AA		BDG_TR	EA	RW
	2B	- 2		6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC		8 :	EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE		8	EE	T
9	2F	- 8		6F			AF			EF	
DBB10FN	30	RW	ACB00CR3	70	RW	RDI0RI	B0	RW	9 3	F0	
DBB10IN	31	RW	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10OU	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW	S	F2	
	33	- 8	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11FN	34	RW	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11IN	35	RW	ACB01CR0	75	RW	RDI0RO0	B5	RW	8	F5	
DBB11OU	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
č.	37	- 3	ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12FN	38	RW	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	\top
DCB12IN	39	RW	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB12OU	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
	3B	3	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
DCB13FN	3C	RW	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	T
DCB13IN	3D	RW	ACB03CR0	7D	RW	RDI1RO0	BD	RW	0	FD	
DCB13OU	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
	3F		ACB03CR2	7F	RW		BF		CPU_SCR0	FF	#

Blank fields are Reserved and should not be accessed.

Access is bit specific.



7. Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED08 EZ-Color device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/ez-color.

Specifications are valid for -40°C \leq T_A \leq 85°C and T_J \leq 100°C, except where noted. Specifications for devices running at greater than 12 MHz are valid for -40°C \leq T_A \leq 70°C and T_J \leq 82°C.

Figure 7-1. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this section.

Table 7-1. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μ۷۷	microwatts
dB	decibels	mA	milli-ampere
fF	femto farad	ms	milli-second
Hz	hertz	m∨	milli-volts
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolts
kΩ	kilohm	Ω	ohm
MHz	megahertz	pА	picoampere
MΩ	megaohm	pF	picofarad
μΑ	microampere	рр	peak-to-peak
μF	microfarad	ppm	parts per million
μН	microhenry	ps	picosecond
μS	microsecond	sps	samples per second
μV	microvolts	σ	sigma: one standard deviation
μVrms	microvolts root-mean-square		volts

Document Number: 001-12981 Rev. *E Page 15 of 44

7.1 Absolute Maximum Ratings

Table 7-2. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	°C	Higher storage temperatures will reduce data retention time. Recommended storage temperature is +25°C ± 25°C. Extended duration storage temperatures above 65°C will degrade reliability.
ТА	Ambient Temperature with Power Applied	-40	-	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
Vio	DC Input Voltage	Vss- 0.5	-	Vdd + 0.5	V	
Vioz	DC Voltage Applied to Tri-state	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	-]	+50	mA	
I _{MAIO}	Maximum Current into any Port Pin Configured as Analog Driver	-50	- [+50	mA	
ESD	Electro Static Discharge Voltage	2000	\$ - 3	- 8	V	Human Body Model ESD.
LU	Latch up Current	-	- 1	200	mA	

7.2 Operating Temperature

Table 7-3. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
TA	Ambient Temperature	-40	-	+85	°C	
TJ	Junction Temperature	-40		+100		The temperature rise from ambient to junction is package specific. See "Thermal Impedances" on page 38. The user must limit the power consumption to comply with this requirement.

7.3 DC Electrical Characteristics

7.3.1 DC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 7-4. DC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.00	- 8	5.25	V	
I _{DD}	Supply Current	-	5	8	mA	Conditions are Vdd = 5.0V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DD3}	Supply Current	•	3.3	6.0	mA	Conditions are Vdd = 3.3 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^[3]	-	3	6.5	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 $^{\circ}$ C \leq T _A \leq 55 $^{\circ}$ C.
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. [3]	-	4	25	μΑ	Conditions are with internal slow speed oscillator, Vdd = $3.3V$, 55 °C < $T_A \le 85$ °C.
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal.	-	4	7.5	μА	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3V, -40 °C \leq T _A \leq 55 °C.
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. [3]	-	5	26	μА	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3V, 55 °C < T _A \leq 85 °C.
VREF	Reference Voltage (Bandgap) for Silicon A [4]	1.275	1.300	1.325	V	Trimmed for appropriate Vdd.
VREF	Reference Voltage (Bandgap) for Silicon B [4]	1.280	1.300	1.320	V	Trimmed for appropriate Vdd.

Document Number: 001-12981 Rev. *E Page 17 of 44

^{3.} Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

^{4.} Refer to the "Ordering Information" on page 42.

7.4 DC General Purpose I/O Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-5. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Rpu	Pull up Resistor	4	5.6	8	kΩ	
RPD	Pull down Resistor	4	5.6	8	kΩ	
Vон	High Output Level	Vdd - 1.0	-	-	V	IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd por pins (for example, P0[3], P1[5])).
VoL	Low Output Level	-	-	0.75	V	IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd por pins (for example, P0[3], P1[5])).
I _{OH}	High Level Source Current	10	-	-	mA	VOH = Vdd-1.0V. See the limitations of the total current in the Note for VOH.
I _{OL}	Low Level Sink Current	25	-	-	mA	VOL = 0.75V. See the limitations of the total current in the Note for VOL.
VIL	Input Low Level	11 - 1	-	0.8	V	Vdd = 3.0 to 5.25.
VIH	Input High Level	2.1	-		V	Vdd = 3.0 to 5.25.
Vн	Input Hysterisis		60		mV	
I _{IL}	Input Leakage (Absolute Value)	110 - 1	1	- 1	nA	Gross tested to 1 μA.
Cin	Capacitive Load on Pins as Input	-	3.5	10	pF	Package and pin dependent. Temp = 25°C.
Соит	Capacitive Load on Pins as Output	-	3.5	10	pF	Package and pin dependent. Temp = 25°C.

7.4.1 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 7-6. 5V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vosoa	Input Offset Voltage (absolute value) Power = Low, Opamp Bias = High	-	1.6	10	mV	
	Power = Medium, Opamp Bias = High	-	1.3	8	mV	
9.	Power = High, Opamp Bias = High		1.2	7.5	mV	
TCV _{OSOA}	Average Input Offset Voltage Drift		7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pА	Gross tested to 1 μA.
CINOA	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.

Document Number: 001-12981 Rev. *E Page 18 of 44

Table 7-6. 5V DC Operational Amplifier Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
VCMOA	Common Mode Voltage Range Common Mode Voltage Range (high power or high opamp bias)	0.0 0.5	- -	Vdd Vdd - 0.5	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio Power = Low Power = Medium Power = High	60 60 60	-	-	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80	-	-	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
VOHIGHOA	High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High	Vdd - 0.2 Vdd - 0.2 Vdd - 0.5	- - -		V V V	
Volowoa	Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High			0.2 0.2 0.5	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low, Opamp Bias = Low Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = Low Power = High, Opamp Bias = High	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	60	-	-	dB	$ \label{eq:Vss} \begin{tabular}{ll} Vss \le VIN \le (Vdd - 2.25)$ or (Vdd - 1.25V) \le VIN \le Vdd. \\ \end{tabular} $

Table 7-7. 3.3V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vosoa	Input Offset Voltage (absolute value) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High High Power is 5 Volts Only	1 1	1.65 1.32	10 8	mV mV	
TCV _{OSOA}	Average Input Offset Voltage Drift		7.0	35.0	μV/°C	Ţ
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	1	pА	Gross tested to 1 μA.
CINOA	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
Vсмоа	Common Mode Voltage Range	0.2		Vdd - 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.

Document Number: 001-12981 Rev. *E Page 19 of 44

Table 7-7. 3.3V DC Operational Amplifier Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
CMRR _{OA}	Common Mode Rejection Ratio Power = Low Power = Medium Power = High	50 50 50	-	-	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80	-	1	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
VOHIGHOA	High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High is 5V only	Vdd - 0.2 Vdd - 0.2 Vdd - 0.2	111	111	V V V	
Volowoa	Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High	- - -		0.2 0.2 0.2	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low, Opamp Bias = Low Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = Low Power = High, Opamp Bias = High	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	50	80	-	dB	$\label{eq:Vss} \begin{tabular}{ll} Vss \le VIN \le (Vdd - 2.25)$ or $(Vdd - 1.25V) \le VIN \le Vdd. \end{tabular}$

7.4.2 DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 7-8. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
VREFLPC	Low power comparator (LPC) reference voltage range	0.2	-	Vdd - 1	V	
I _{SLPC}	LPC supply current		10	40	μΑ	
VOSLPC	LPC voltage offset		2.5	30	mV	

Document Number: 001-12981 Rev. *E Page 20 of 44

7.4.3 DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

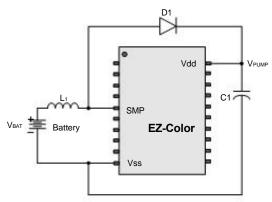
Table 7-9. 5V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vosob	Input Offset Voltage (Absolute Value)	-	3	12	mV	
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	-	μV/°C	
Vсмов	Common-Mode Input Voltage Range	0.5	-	Vdd - 1.0	V	
Rоитов	Output Resistance Power = Low Power = High		1	-	Ω Ω	
Vohighob	High Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High	0.5 x Vdd + 1.3 0.5 x Vdd + 1.3		-	V	
Volowob	Low Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High	-	-	0.5 x Vdd - 1.3 0.5 x Vdd - 1.3		
I _{SOB}	Supply Current Including Bias Cell (No Load) Power = Low Power = High	-	1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply Voltage Rejection Ratio	60	64	-	dB	

Table 7-10. 3.3V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vosob	Input Offset Voltage (Absolute Value)	-	3	12	mV	
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	<u>-</u>	μV/°C	
VCMOB	Common Mode Input Voltage Range	0.5	-	Vdd - 1.0	V	Ĵ
Rоитов	Output Resistance Power = Low Power = High		1 1	-	Ω	
VOHIGHOB	High Output Voltage Swing (Load = 1k ohms to Vdd/2) Power = Low Power = High	0.5 x Vdd + 1.0 0.5 x Vdd + 1.0	-	-	V V	
Volowob	Low Output Voltage Swing (Load = 1k ohms to Vdd/2) Power = Low Power = High	1 1	-	0.5 x Vdd - 1.0 0.5 x Vdd - 1.0	V V	
I _{SOB}	Supply Current Including Bias Cell (No Load) Power = Low Power = High	-	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply Voltage Rejection Ratio	60	64	-	dB	

Document Number: 001-12981 Rev. *E Page 21 of 44


7.4.4 DC Switch Mode Pump Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-11. DC Switch Mode Pump (SMP) Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
VPUMP 5V	5V Output Voltage	4.75	5.0	5.25		Configuration of footnote.[5] Average, neglecting ripple. SMP trip voltage is set to 5.0V.
VPUMP 3V	3V Output Voltage	3.00	3.25	3.60	V	Configuration of footnote. _[5] Average, neglecting ripple. SMP trip voltage is set to 3.25V.
I _{PUMP}	Available Output Current = 1.5V, V = 3.25V VBAT = 1.8V, VPUMP = 5.0V RAT = 1.8V, VPUMP = 5.0V Input Voltage Range from Battery	8 5	-	-	mA mA	Configuration of footnote. [5] SMP trip voltage is set to 3.25V. SMP trip voltage is set to 5.0V.
V 5V BAT		1.8	-	5.0		Configuration of footnote.[5] SMP trip voltage is set to 5.0V.
VBAT 3V	Input Voltage Range from Battery	1.0	-	3.3	V	Configuration of footnote.[5] SMP trip voltage is set to 3.25V.
VBATSTART	Minimum Input Voltage from Battery to Start Pump	1.1	-	-	V	Configuration of footnote. [5]
ΔV_{PUMP_Line}	Line Regulation (over V _{BAT} range)	-	5	-	%Vo	Configuration of footnote. ^[5] V _O is the "Vdd Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 7-15 on page 24.
$\Delta V_{ extsf{PUMP}}$ Load	Load Regulation		5	-	%V _O	Configuration of footnote. ^[5] V _O is the "Vdd Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 7-15 on page 24.
ΔV_{PUMP_Ripple}	Output Voltage Ripple (depends on capacitor/load)	-	100	-	mVpp	Configuration of footnote. Load is 5 mA.
E ₃	Efficiency	35	50	-	%	Configuration of footnote. Load is 5 mA. SMP trip voltage is set to 3.25V.
F _{PUMP}	Switching Frequency	ei <u> </u>	1.3	-	MHz	
DC _{PUMP}	Switching Duty Cycle	- V	50	-	%	

Figure 7-2. Basic Switch Mode Pump Circuit

Note

5. L1 = 2 μ H inductor, C1 = 10 μ F capacitor, D1 = Schottky diode.

Document Number: 001-12981 Rev. *E

7.3.7 DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Table 7-12. 5V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V
<u> </u>	$AGND = Vdd/2^{[6]}$	Vdd/2 - 0.030	Vdd/2	Vdd/2 + 0.007	V
2	AGND = 2 x BandGap ^[6]	2 x BG - 0.043	2 x BG	2 x BG + 0.024	V
-	AGND = P2[4] (P2[4] = Vdd/2) ^[6]	P2[4] - 0.011	P2[4]	P2[4] + 0.011	V
-	AGND = BandGap ^[6]	BG - 0.009	BG	BG + 0.009	V
-	AGND = 1.6 x BandGap ^[6]	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
1	AGND Block to Block Variation (AGND = Vdd/2) ^[6]	-0.034	0.000	0.034	V
-	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.1	Vdd/2 + BG - 0.01	Vdd/2 + BG + 0.1	V
-	RefHi = 3 x BandGap	3 x BG - 0.06	3 x BG - 0.01	3 x BG + 0.06	V
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.06	2 x BG + P2[6] - 0.01	2 x BG + P2[6] + 0.06	V
<u>-</u>	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.06	P2[4] + BG - 0.01	P2[4] + BG + 0.06	V
2	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.06	V
75 V	RefHi = 3.2 x BandGap	3.2 x BG - 0.06	3.2 x BG - 0.01	3.2 x BG + 0.06	V
-	RefLo = Vdd/2 - BandGap	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.01	Vdd/2 - BG + 0.06	V
-	RefLo = BandGap	BG - 0.06	BG + 0.01	BG + 0.06	V
1	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.04	2 x BG - P2[6] + 0.01	2 x BG - P2[6] + 0.04	V
-	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.01	P2[4] - BG + 0.056	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.056	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.056	V

Table 7-13. 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units				
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V				
_	$AGND = Vdd/2^{[6]}$	Vdd/2 - 0.027	Vdd/2	Vdd/2 + 0.005	. V				
_	AGND = 2 x BandGap ^[6]	J.	Not Allowed						
_	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4]	P2[4] + 0.009	V				
<u>-</u>	AGND = BandGap ^[6]	BG - 0.009	BG	BG + 0.009	V				
<u>//</u>	AGND = 1.6 x BandGap ^[6]	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V				
	AGND Block to Block Variation (AGND = Vdd/2) ^[6]	-0.034	0.000	0.034	mV				
_	RefHi = Vdd/2 + BandGap	11	Not Allowed						
_	RefHi = 3 x BandGap	I.	Not Allowed						
2	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)		Not Allowed						
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	1	Not Allowed	10.7					
-2	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.057	V				
_	RefHi = 3.2 x BandGap		Not Allowed	Ŝ:	666				
<u></u>	RefLo = Vdd/2 - BandGap	7	Not Allowed						
1	RefLo = BandGap	Not Allowed							
·	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed							
_	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	Not Allowed	46	A22					
7	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.048	V				

Note

Document Number: 001-12981 Rev. *E Page 23 of 44

AGND tolerance includes the offsets of the local buffer in the PSoC block. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

7.3.8 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-14. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Rст	Resistor Unit Value (Continuous Time)	-	12.2	-	kΩ	
Csc	Capacitor Unit Value (Switched Capacitor)	- 4	80	-	fF	

7.3.9 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register.

Table 7-15. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
VPPOR0R VPPOR1R VPPOR2R	Vdd Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.91 4.39 4.55	-	V V V	Vdd must be greater than or equal to 2.5V during startup, reset from the XRES pin, or reset from Watchdog.
VPPOR0 VPPOR1 VPPOR2	Vdd Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.82 4.39 4.55	-	V V V	
VPH0 VPH1 VPH2	PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b		92 0 0		mV mV mV	
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	Vdd Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 101b VM[2:0] = 111b VM[2:0] = 111b	2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72	2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81	2.98 ^[7] 3.08 3.20 4.08 4.57 4.74 ^[8] 4.82 4.91	>>>>>>>	
VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7	Vdd Value for PUMP Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 111b VM[2:0] = 111b	2.96 3.03 3.18 4.11 4.55 4.63 4.72 4.90	3.02 3.10 3.25 4.19 4.64 4.73 4.82 5.00	3.08 3.16 3.32 4.28 4.74 4.82 4.91 5.10	V V V V V	

Notes

Document Number: 001-12981 Rev. *E

Page 24 of 44

^{7.} Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

^{8.} Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

7.3.10 DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40° C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40° C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 7-16. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
I_{DDP}	Supply Current During Programming or Verify	- 1	5	25	mA	
VILP	Input Low Voltage During Programming or Verify	-	-	0.8	V	
VIHP	Input High Voltage During Programming or Verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	-	- (0.2	mA	Driving internal pull down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull down resistor.
Volv	Output Low Voltage During Programming or Verify	-	-	Vss + 0.75	V	
Vонv	Output High Voltage During Programming or Verify	Vdd - 1.0	-	Vdd	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000 ^[9]	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^[10]	1,800,000	- 1	-	-	Erase/write cycles.
Flash _{DR}	Flash Data Retention	10	- 0		Years	9

Notes

Document Number: 001-12981 Rev. *E Page 25 of 44

^{9.} The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0V to 3.6V and 4.75V to 5.25V.

^{10.} A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block

ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

7.4 AC Electrical Characteristics

7.4.1 AC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, or 3.0V to 3.6V and $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 7-17. AC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO}	Internal Main Oscillator Frequency	23.4	24	24.6 ^[11]	MHz	Trimmed. Using factory trim values.
F _{CPU1}	CPU Frequency (5V Nominal)	0.093	24	24.6 ^[11,12]	MHz	Trimmed. Using factory trim values.
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.093	12	12.3 ^[12,13]	MHz	Trimmed. Using factory trim values.
F _{48M}	Digital PSoC Block Frequency	0	48	49.2 ^[11,12,14]	MHz	Refer to the AC Digital Block Specifications below.
F _{24M}	Digital PSoC Block Frequency	0	24	24.6 ^[12, 14]	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
F _{32K_U}	Internal Low Speed Oscillator Untrimmed Frequency	5	-	-	kHz	After a reset and before the m8c starts to run, the ILO is not trimmed. See the System Resets section of the PSot Technical Reference Manual for details on timing this.
DC _{ILO}	Internal Low Speed Oscillator Duty Cycle	20	50	80	%	
F _{32K2}	External Crystal Oscillator	-	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	-	23.986	-	MHz	Multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	j	600	ps	
T _{PLLSLEW}	PLL Lock Time	0.5	- [10	ms	
T _{PLLSLEWSL} OW	PLL Lock Time for Low Gain Setting	0.5	-	50	ms	
Tos	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
Tosacc	External Crystal Oscillator Startup to 100 ppm	-	2800	3800	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 μ W maximum drive level 32.768 kHz crystal. $3.0V \le Vdd \le 5.5V, -40 ^{\circ}\text{C} \le T_A \le 85 ^{\circ}\text{C}$.
Jitter32k	32 kHz Period Jitter	-	100	1	ns	V.
T _{XRST}	External Reset Pulse Width	10	- 1	9	μS	
DC24M	24 MHz Duty Cycle	40	50	60	%	
Step24M	24 MHz Trim Step Size	-	50	- 1	kHz	

Notes

Document Number: 001-12981 Rev. *E Page 26 of 44

^{11.4.75}V < Vdd < 5.25V.

^{12.} Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.
13.3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

^{14.} See the individual user module data sheets for information on maximum frequencies for user modules.

Table 7-17. AC Chip Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^[11,13]	MHz	Trimmed. Utilizing factory trim values.
Jitter24M1	24 MHz Period Jitter (IMO)	-	600		ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-]	12.3	MHz	
SR _{POWER} _	Power Supply Slew Rate	-	-	250	V/ms	Vdd slew rate during power up.
T _{POWERUP}	Time from End of POR to CPU Executing Code	-	16	100	ms	Power up from 0V. See the System Resets section of the PSoC Technical Reference Manual.

Figure 7-3. PLL Lock Timing Diagram

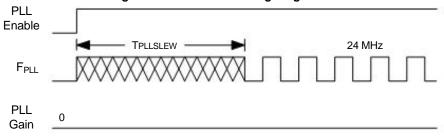


Figure 7-4. PLL Lock for Low Gain Setting Timing Diagram

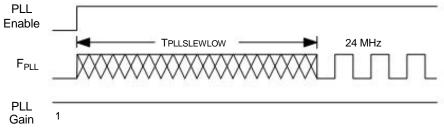


Figure 7-5. External Crystal Oscillator Startup Timing Diagram

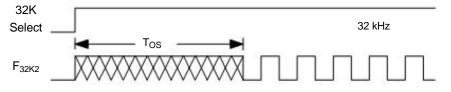


Figure 7-6. 24 MHz Period Jitter (IMO) Timing Diagram

Figure 7-7. 32 kHz Period Jitter (ECO) Timing Diagram

7.5 AC General Purpose I/O Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-18. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	-	12	MHz	Normal Strong Mode
TRiseF	Rise Time, Normal Strong Mode, Cload = 50 pF	3	- "	18	ns	Vdd = 4.5 to 5.25V, 10% - 90%
TFallF	Fall Time, Normal Strong Mode, Cload = 50 pF	2	-	18	ns	Vdd = 4.5 to 5.25V, 10% - 90%
TRiseS	Rise Time, Slow Strong Mode, Cload = 50 pF	10	27	-	ns	Vdd = 3 to 5.25V, 10% - 90%
TFallS	Fall Time, Slow Strong Mode, Cload = 50 pF	10	22	- 1	ns	Vdd = 3 to 5.25V, 10% - 90%

GPIO Pin Output Voltage

TRiseF
TRiseS

TFallF
TFallS

Figure 1. GPIO Timing Diagram

7.5.1 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \leq T_{A} \leq 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \leq T_{A} \leq 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only. Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

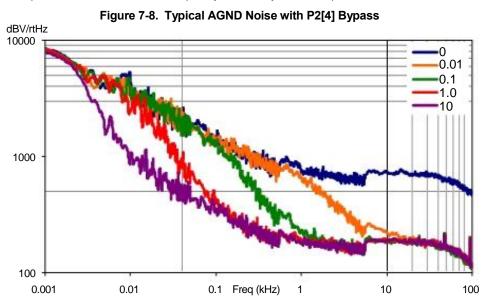
Power = High and Opamp Bias = High is not supported at 3.3V.

Table 7-19. 5V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV					
	(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	3.9	μS	
	Power = Medium, Opamp Bias = High	-	-	0.72	μs	
	Power = High, Opamp Bias = High	-	-	0.62	μS	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10					
00/1	pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	5.9	μS	
	Power = Medium, Opamp Bias = High	-	-	0.92	μS	
	Power = High, Opamp Bias = High	- 8	-	0.72	μS	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
110/1	Power = Low, Opamp Bias = Low	0.15	-	-	V/μs	
	Power = Medium, Opamp Bias = High	1.7	-	-	V/μs	
	Power = High, Opamp Bias = High	6.5	-		V/μs	

Document Number: 001-12981 Rev. *E

Page 28 of 44


Table 7-19. 5V AC Operational Amplifier Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)	1		9 8		
	Power = Low, Opamp Bias = Low	0.01	-	-	V/μs	
	Power = Medium, Opamp Bias = High	0.5	-	-	V/μs	
	Power = High, Opamp Bias = High	4.0	-		V/μs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.75	-	-	MHz	
	Power = Medium, Opamp Bias = High	3.1	-	-	MHz	
	Power = High, Opamp Bias = High	5.4	-	-]	MHz	
ENOA	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100		nV/rt-Hz	

Table 7-20. 3.3V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Low, Opamp Bias = High	-	-	3.92 0.72	μs μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High	- -	- -	5.41 0.72	μs μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High	0.31 2.7	-		V/μs V/μs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High	0.24 1.8	-		V/μs V/μs	
BW _{OA}	Gain Bandwidth Product Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High	0.67 2.8	<u>-</u>	-	MHz MHz	
ENOA	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	- 1	100	_	nV/rt-Hz	

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

Document Number: 001-12981 Rev. *E

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

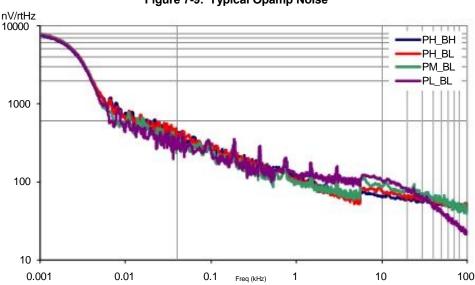


Figure 7-9. Typical Opamp Noise

7.4.4 AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$, 3.0V to 3.6V and $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 7-21. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	,	50	μS	\geq 50 mV overdrive comparator reference set within V _{REFLPC} .

7.4.5 AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-22. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
<u>A</u> II	Maximum Block Clocking Frequency (> 4.75V)			49.2		4.75V < Vdd < 5.25V.
Functions	Maximum Block Clocking Frequency (< 4.75V)			24.6		3.0V < Vdd < 4.75V.
Timer	Capture Pulse Width	50 ^[15]	-	- 1	ns	2
	Maximum Frequency, No Capture		-	49.2	MHz	4.75V < Vdd < 5.25V.
L.	Maximum Frequency, With Capture		-	24.6	MHz	
Counter	Enable Pulse Width	50 ^[15]	-		ns	
	Maximum Frequency, No Enable Input		-	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, Enable Input	-	-	24.6	MHz	
Dead Band	Kill Pulse Width:	170	0	975 - 77 - 12	3 0	46
	Asynchronous Restart Mode	20	-		ns	
	Synchronous Restart Mode	50 ^[15]	-	-	ns	
	Disable Mode	50 ^[15]	-	-	ns	
	Maximum Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V.

Document Number: 001-12981 Rev. *E Page 30 of 44

Table 7-22. AC Digital Block Specifications (continued)

Function	Description	Min	Тур	Max	Units	Notes
CRCPRS (PRS Mode)	Maximum Input Clock Frequency	1	-	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (CRC Mode)	Maximum Input Clock Frequency	-	-	24.6	MHz	
SPIM	Maximum Input Clock Frequency	-	-	8.2	MHz	Maximum data rate at 4.1 MHz due to 2 x over clocking.
SPIS	Maximum Input Clock Frequency	-	-	4.1	ns	
	Width of SS_ Negated Between Transmissions	50 ^[15]	-	i - i	ns	
Transmitter	Maximum Input Clock Frequency Maximum Input Clock Frequency with Vdd ≥ 4.75V, 2 Stop Bits	-	-	24.6 49.2	MHz MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking. Maximum data rate at 6.15 MHz due to 8 x over clocking.
Receiver	Maximum Input Clock Frequency Maximum Input Clock Frequency with Vdd ≥ 4.75V, 2 Stop Bits	-	-	24.6 49.2	MHz MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking. Maximum data rate at 6.15 MHz due to 8 x over clocking.

7.4.6 AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-23. 5V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100pF Load Power = Low Power = High	-	-	2.5 2.5	μS μS	
T _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100pF Load Power = Low Power = High	- -		2.2 2.2	μS μS	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100pF Load Power = Low Power = High	0.65 0.65		-	V/μs V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100pF Load Power = Low Power = High	0.65 0.65	-	-	V/μs V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100pF Load Power = Low Power = High	0.8 0.8	-	-	MHz MHz	
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100pF Load Power = Low Power = High	300 300	<u>-</u>	-	kHz kHz	

Note

Document Number: 001-12981 Rev. *E Page 31 of 44

^{15.50} ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

Table 7-24. 3.3V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100pF Load Power = Low Power = High			3.8 3.8	μ S μ S	
T _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100pF Load Power = Low Power = High	1 1		2.6 2.6	μS μS	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100pF Load Power = Low Power = High	0.5 0.5		-	V/μs V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100pF Load Power = Low Power = High	0.5 0.5		-	V/μs V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100pF Load Power = Low Power = High	0.7 0.7		-	MHz MHz	
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100pF Load Power = Low Power = High	200 200	-	-	kHz kHz	

7.4.7 AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 7-25. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Foscext	Frequency	0.093	-	24.6	MHz	
	High Period	20.6	-	5300	ns	
ļ	Low Period	20.6	-	<u> </u>	ns	
_	Power Up IMO to Switch	150	-	-	μS	

Table 7-26. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Foscext	Frequency with CPU Clock divide by 1 ^[16]	0.093	-	12.3	MHz	
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater ^[17]	0.186	-	24.6	MHz	
_	High Period with CPU Clock divide by 1	41.7	-	5300	ns	
	Low Period with CPU Clock divide by 1	41.7	-	g -	ns	
<u>-</u>	Power Up IMO to Switch	150	-	<u>-</u>	μS	

Notes

Document Number: 001-12981 Rev. *E Page 32 of 44

^{16.} Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

^{17.} If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.

7.4.8 AC Programming Specifications

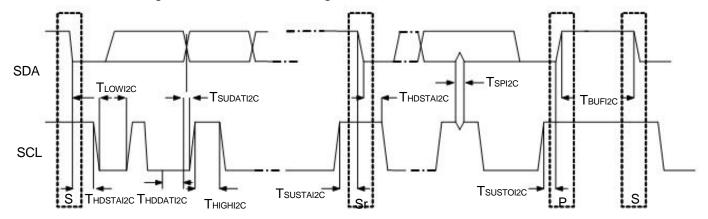
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 7-27. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	- "	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	- 1	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	- 3	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	- 1	-	ns	
F _{SCLK}	Frequency of SCLK	0	- 1	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	10	-	ms	
T _{WRITE}	Flash Block Write Time	-	10	- 1	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	- [45	ns	Vdd > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-] - [50	ns	$3.0 \le Vdd \le 3.6$
T _{ERASEALL}	Flash Erase Time (Bulk)	-	95	-	ms	Erase all blocks and protection fields at once.
T _{PROGRAM_HOT}	Flash Block Erase + Flash Block Write Time	-	- 1	80 ^[18]	ms	$0^{\circ}C \le T_J \le 100^{\circ}C$
	Flash Block Erase + Flash Block Write Time	-] - j	160 ^[18] r	ns	-40 °C $\leq T_J \leq 0$ °C

Document Number: 001-12981 Rev. *E Page 33 of 44

^{18.} For the full industrial range, the user must employ a Temperature Sensor User Module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.


7.4.9 AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 7-28. AC Characteristics of the I²C SDA and SCL Pins

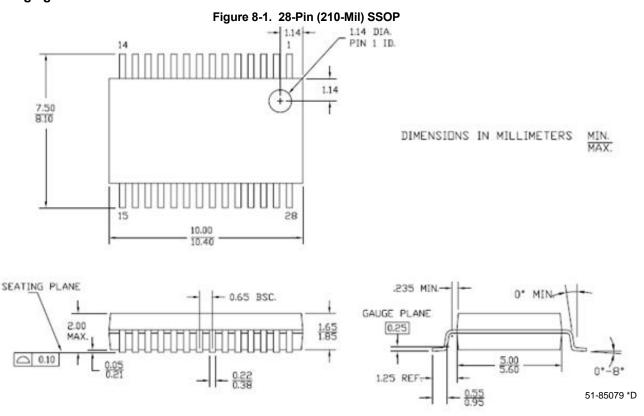
Cumbal	Description	Standar	d-Mode	Fast-l	Fast-Mode		Notes
Symbol	Description	Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	ļ.
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS	
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μS	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS	Ŭ .
T _{SUSTAI2C}	Set-up Time for a Repeated START Condition	4.7	- 1	0.6	- 1	μS	
T _{HDDATI2C}	Data Hold Time	0	-]	0	-	μS	J.
T _{SUDATI2C}	Data Set Up Time	250	- 1	100 ^[19]	-	ns	
T _{SUSTOI2C} S	et-up Time for STOP Condition	4.0	-]	0.6	-	μS	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	-	μS	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	-	- [0	50	ns	

Figure 7-10. Definition for Timing for Fast-/Standard-Mode on the I²C Bus

Note

Document Number: 001-12981 Rev. *E

^{19.} A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU;DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.



8. Packaging Information

This section illustrates the packaging specifications for the CY8CLED08 EZ-Color device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

8.1 Packaging Dimensions

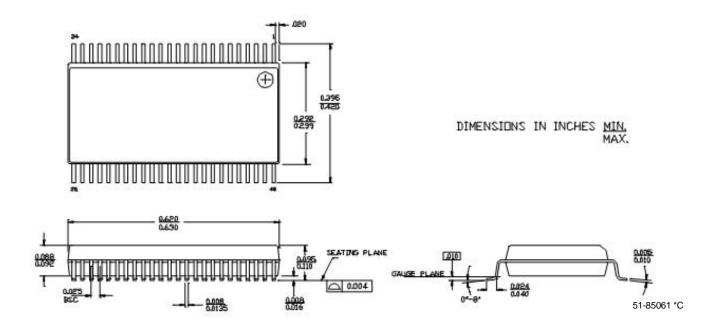
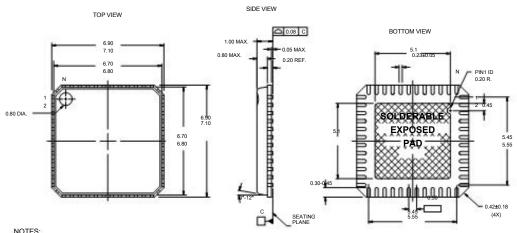



Figure 8-3. 48-Pin (7x7 mm) QFN (Punched)

NOTES:

- 1. HATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.13g
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART#	DESCRIPTION
LF48A	STANDARD
LY48A	LEAD FREE

001-12919 *B

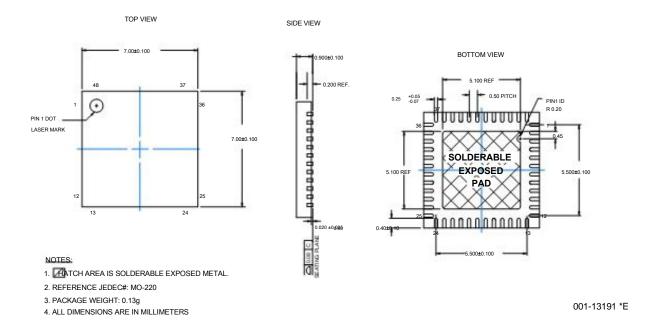


Figure 8-4. 48-Pin (7x7x1.0 mm) QFN (Sawn)

Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.

Important Note Pinned vias for thermal conduction are not required for the low-power device.

8.1 Thermal Impedances

Table 8-1. Thermal Impedances per Package

Package	Typical θ _{JA[20]}
48 SSOP	69 °C/W
48 QFN ^[21]	18 °C/W
28 SSOP	95 °C/W

8.2 Capacitance on Crystal Pins

Table 8-2. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
48 SSOP	3.3 pF
48 QFN	2.3 pF
28 SSOP	2.8 pF

8.3 Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 8-3. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature	Maximum Peak Tem- perature
48 SSOP	220°C	260°C
48 QFN	240°C	260°C
28 SSOP	240°C	260°C

Notes

Document Number: 001-12981 Rev. *E Page 38 of 44

^{20.} $T_J = T_A + POWER \times \theta_{JA}$

^{21.} To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.

^{22.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5°C with Sn-Pb or 245 ± 5°C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

9. Development Tool Selection

This section presents the development tools available for all current PSoC based devices including the CY8CLED08 EZ-Color family.

9.1 Software Tools

9.1.1 PSoC DesignerTM

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

9.1.2 PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free ofcharge at http://www.cypress.com/psocprogrammer.

9.2 Hardware Tools

9.2.1 In-Circuit Emulator

A low cost, high functionality ICE (In-Circuit Emulator) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of the USB port. The base unit is universal and will operate with all PSoC based devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

9.2.2 I2C to USB Bridge

The I2C to USB Bridge is a quick and easy link from any design or application's I2C bus to a PC via USB for design testing, debugging and communication.

9.2.3 PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free ofcharge at http://www.cypress.com/psocprogrammer.

9.3 Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

9.3.1 CY3261A-RGB EZ-Color RGB Kit

The CY3261A-RGB board is a preprogrammed HB LED color mix board with seven pre-set colors using the CY8CLED16 EZ-Color HB LED Controller. The board is accompanied by a CD containing the color selector software application, PSoC Designer, PSoC Programmer, and a suite of documents, schematics, and firmware examples. The color selector software application can be installed on a host PC and is used to control the EZ-Color HB LED controller using the included USB cable. The application enables you to select colors via a CIE 1931 chart or by entering coordinates. The kit includes:

- Training Board (CY8CLED16)
- One mini-A to mini-B USB Cable
- PSoC Designer CD-ROM
- Design Files and Application Installation CD-ROM
 To program and tune this kit via PSoC Designer you must use a
 Mini Programmer Unit (CY3217 Kit) and a CY3240-I2CUSB kit.

9.3.2 CY3263-ColorLock Evaluation Board

- Tools CD, which includes:
 - PSoC Programmer
 - $\hfill \square$.NET Framework 2.0 (for Windows 2000 and Windows XP) $\hfill \square$ PSoC Designer
 - ColorLock Express Pack
 - CY3263-ColorLock EZ-Color Kit CD
 - □ ColorLock Monitor Application
 - ☐ Kit Documents (Quick Start, Kit Guide, Release Note, Application Note, Data Sheets, Schematics, and Layouts)
 - □ Firmware
- Retractable USB Cable (A to Mini-B)
- PSoC MiniProg Programmer
- Power Supply Adapter

Document Number: 001-12981 Rev. *E Page 39 of 44

9.3.3 CY3265-RGB EZ-Color Evaluation Kit

The CY3265-RGB evaluation board demonstrates the ability of the EZ-Color device to use real-time temperature feedback to control three primary, high brightness LEDs and create accurate, mixed-color output. There are three variations of the kit available, depending on the LED manufacturer of the LEDs on the board: CY3265C-RGB (Cree LEDs), CY3265N-RGB (Nichia LEDs), or CY3265O-RGB (OSRAM LEDs). The kit includes:

- CY3265C-RGB Evaluation Board
- Tools CD, which includes:
 - PSoC Programmer
 - □ PSoC Designer
 - .NET Framework 2.0 (Windows XP 32 bit)
- Kit Documents (Quick Start, Kit Guide, Release Note, Application Note, Data Sheets, Schematics, and Layouts) Firmware
- Blue PCA Enclosure/Case
- 12V 1A Power Supply
- Retractable USB Cable (A to Mini-B)
- PSoC MiniProg Programmer
- Quick Start Guide

9.3.4 CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

9.3.5 CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

9.4 Device Programmers

All device programmers can be purchased from the Cypress Online Store.

9.4.1 CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

9.4.2 CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Page 40 of 44

9.5 Accessories (Emulation and Programming)

Table 1. Emulation and Programming Accessories

Part #	Pin Package	Flex-Pod Kit ^[23]	Foot Kit ^[24]	Adapter ^[25]		
CY8CLED08-48PVXI	48 SSOP	CY3250-LED08		Adapters can be found at		
CY8CLED08-48LFXI/ CY8CLED08-48LTXI	48 QFN	CY3250-LED08QFN	CY3250-48QFN-FK	http://www.emulation.com.		
CY8CLED08-28PVXI	28 SSOP	CY3250-LED08	CY3250-28SSOP-FK			

9.6 Third Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Design Support >> Development Kits/Boards.

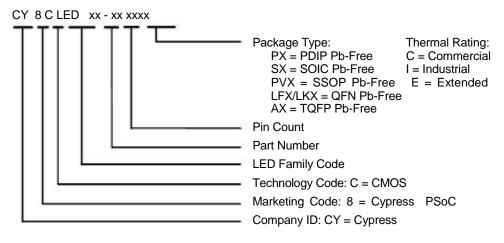
9.7 Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, see Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323".

Document Number: 001-12981 Rev. *E Page 41 of 44

^{23.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.
24. Foot kit includes surface mount feet that can be soldered to the target PCB.
25. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

10. Ordering Information


10.1 Key Device Features

The following table lists the CY8CLED08 EZ-Color devices' key package features and ordering codes.

Table 2. Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	RAM (Bytes)	Switch Mode Rump	Temperature Range	Digital Blocks (Rows of 4)	Analog Bocks (Columns of 3)	Digital I/O Pins	An alog In puts	An alog Outputs	XRESPin
48 Pin (300 Mil) SSOP	CY8CLED08-48PVXI	16K	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (300 Mil) SSOP (Tape and Reel)	CY8CLED08-48PVXIT	16K	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) QFN (Punched)	CY8CLED08-48LFXI	16K	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) QFN (Tape and Reel) (Punched)	CY8CLED08-48LFXIT	16K	256	Yes	-40C to +85C	8	12	44	12	4	Yes
28 Pin (210 Mil) SSOP	CY8CLED08-28PVXI	16K	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (210 Mil) SSOP (Tape and Reel)	CY8CLED08-28PVXIT	16K	256	Yes	-40C to +85C	8	12	24	12	4	Yes
48 Pin (7x7) QFN (Sawn)	CY8CLED08-48LTXI	16K	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) QFN (Tape and Reel) (Sawn)	CY8CLED08-48LTXIT	16K	256	Yes	-40C to +85C	8	12	44	12	4	Yes

10.2 Ordering Code Definitions

11. Document History Page

Document Title: CY8CLED08 EZ-Color™ HB LED Controller Document Number: 001-12981					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	1148504	SFVTMP3	06/13/2007	New document (revision **).	
*A	1391163	AESA	See ECN	Added 28 pin SSOP	
*B	2763950	DPT	10/01/0209	Added 48QFN package diagram (Sawn) Saw Marketing part number in ordering information.	
*C	2794355	ХВМ	10/28/2009	Added "Contents" on page 3 Updated "Development Tools" on page 7. Corrected FCPU1 and FCPU2 parameters in "AC Chip Level Specifications" on page 26.	
*D	2819954	CGX	12/02/2009	Corrected package diagram for 28-Pin (210-Mil) SSOP (Figure 8-1.)	
*E	2850593	FRE	01/14/2010	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Replaced TRAMP (time) with SRPOWER_UP (slew rate) specification. Added note to Flash Endurance specification. Added IOH, IOL, DCILO, F32K_U, TPOWERUP, TERASEALL, TPROGRAM_HOT, and TPROGRAM_COLD specifications. Corrected the Pod Kit part numbers. Updated Development Tool Selection. Updated copyright and Sales, Solutions, and Legal Information URLs. Updated 28-Pin (210-Mil) SSOP package diagram.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive
Clocks & Buffers cypress.com/go/clocks
Interface cypress.com/go/interface
Lighting & Power Control cypress.com/go/powerpsoc

cypress.com/go/plc

Memory cypress.com/go/memory

Optical & Image Sensing cypress.com/go/image

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/USB

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2007-2009, 2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12981 Rev. *E

Revised January 15, 2010

Page 44 of 44

PSoC Designer™ and EZ-Color™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corporation.

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.

All other products and company names mentioned in this document may be the trademarks of their respective holders.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

CY8CLED08-48LFXIT CY8CLED08-48PVXIT CY8CLED08-48LFXI CY8CLED08-48PVXI CY8CLED08-28PVXI