

CYRS1061G

16-Mb (1 M × 16) Static RAM with ECC and RadStop™ Technology

Radiation Performance

Radiation Data

- Total dose = 200 krad
- Embedded ECC for single-bit error correction^[1, 2]
- Soft error rate (both heavy ion and proton) Heavy ions ≤ 1 × 10⁻¹⁰ upsets/bit-day
- Neutron = 1.5×10^{11} N/cm²
- Dose rates:

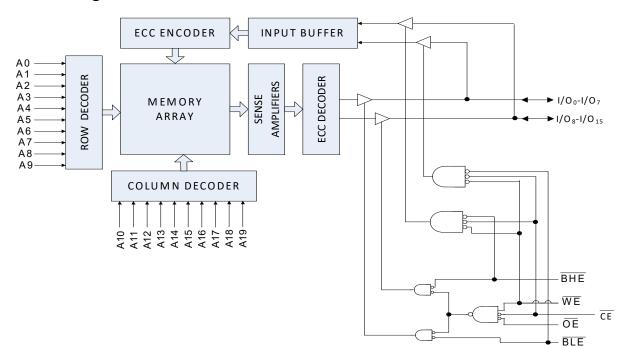
$$\label{eq:states} \begin{split} & \square \geq 3.0 \times 10^8 \; (rad(Si)/s) \; (R/W) \\ & \square \geq 2.0 \times 10^9 \; (rad(Si)/s) \; (static) \end{split}$$

- Dose rate latch-up survivability ≥ 5.0 × 10¹⁰ (rad(Si)/s) (125°C)
- Latch-up immunity >60 MeV.cm²/mg (95°C)

Processing Flows

■ V Grade - Class V flow in compliance with MIL-PRF 38535

Prototyping Options


CYPT1061G prototype units with the same functional and timing as flight units using non-radiation hardened die in a 54-lead ceramic TSOP package

Features

- Temperature ranges □ Military/Space: –55°C to 125°C
- High speed

⊐ t_{AA} = 10 ns

- Low active power
- \Box I_{CC} = 90 mA at 10 ns (typical)
- Low CMOS standby power □ I_{SB2} = 20 mA (typical)
- 1.0 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE} and \overline{OE} features
- Available in Gold plated lead 54-lead ceramic TSOP package
- For a complete list of related documentation, click here.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 002-27271 Rev. *A 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised January 10, 2020

Contents

Functional Description	. 3
Selection Guide	. 3
Pin Configuration	
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	
Capacitance	. 5
Thermal Resistance	
AC Test Loads and Waveforms	. 5
Data Retention Characteristics	. 6
Data Retention Waveform	. 6
AC Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	12
Ordering Code Definitions	12
Package Diagram	13
Acronyms	
Document Conventions	14
Units of Measure	14
Glossary	14
Document History Page	15
Sales, Solutions, and Legal Information	16
Worldwide Sales and Design Support	16
Products	
PSoC® Solutions	
Cypress Developer Community	16
Technical Support	

Functional Description

CYRS1061G is a high-performance CMOS static RAM organized as 1M words by 16 bits with RadStop[™] technology and embedded ECC. Cypress' state-of-the-art RadStop technology is radiation-hardened through proprietary design and process-hardening techniques. The 16-Mb fast asynchronous SRAM with the RadStop technology is also QML V certified with Defense Logistics Agency Land and Maritime (DLAM).

ECC logic can detect and correct single-bit error in read data word during read cycles.

This device has a single Chip Enable input and is accessed by asserting the Chip Enable input (CE) LOW.

To perform data writes, assert the Write Enable (WE) input LOW and provide the data and address on the device data pins $(I/O_0$ through I/O_{15}) and address pins $(A_0$ through A_{19}) respectively. The Byte High Enable (BHE) and Byte Low Enable (BLE) inputs control byte writes and write data on the corresponding I/O lines

to the memory location specified. $\overline{\text{BHE}}$ controls I/O₈ through I/O₁₅ and $\overline{\text{BLE}}$ controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable (OE) input and provide the required address on the address lines. Read data is accessible on I/O lines (I/O₀ through I/O₁₅). You can perform byte accesses by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are placed in a High-Z state when the device is deselected (\overline{CE} HIGH), or control signals are de-asserted (\overline{OE} , BLE, BHE). Refer to the Logic Block Diagram.

The CYRS1061G military device is available in 54-lead ceramic TSOP package with center power and ground (revolutionary) pinout.

For best practice recommendations, refer to the Cypress application note *AN1064*, *SRAM Board Design Guidelines*.

Selection Guide

Description	3.3 V / 5.0 V	Unit
Maximum access time	10	ns
Maximum operating current	160	mA
Maximum CMOS standby current	50	IIIA

Pin Configuration

Figure 1. 54-Lead Ceramic TSOP II (22.4 x 11.84 x 3.038 mm) Package Pinout (Top View)^[3]

	-			
I/O ₁₂	1	54		I/O ₁₁
V _{CC}	2	53		$V_{\rm SS}$
I/O ₁₃	3	52		I/O ₁₀
I/O ₁₄	4	51		I/O ₉
Vss	5	50		V _{CC}
I/O ₁₅	6	49		I/O ₈
A_4	7	48		A ₅
A ₃	8	47		A ₆
A ₂	9	46		A ₇
A ₁	10	45		A ₈
A ₀	11	44		A ₉
BHE	12	43		NC
CE	13	42		OE
V_{CC}	14	41		V_{SS}
WE	15	40		NC
CE2	16	39		BLE
A ₁₉	17	38		A ₁₀
A ₁₈	18	37		A ₁₁
A ₁₇	19	36		A ₁₂
A ₁₆	20	35	Ц	A ₁₃
A ₁₅	21	34	H	A ₁₄
I/O ₀	22	33	Н	1/0 ₇
V _{CC}	23	32	Н	VSS
I/O ₁	24	31	H	I/O ₆
1/0 ₂	25	30	H	I/O ₅
V _{SS}	26 27	29	H	V _{CC}
I/O ₃	- <u>-</u> 2'	28	۲	I/O ₄

Notes

2. SER FIT Rate < 0.1 FIT/Mb. Refer AN88889 for details.

^{1.} This device does not support automatic write-back on error detection.

^{3.} NC leads are not connected on the die.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature	–65 °C to +150 °C
Ambient temperature with power applied	–55 °C to +125 °C
Supply voltage on V _{CC} relative to GND ^[4]	–0.5 V to +6.0 V
DC voltage applied to outputs in High Z state ^[4]	–0.5 V to V _{CC} + 0.5 V
DC input voltage ^[4]	–0.5 V to V _{CC} + 0.5 V

Current into outputs (LOW)	20 mA
Static discharge voltage	
(MIL-STD-883, Method 3015)>	>2001 V
Latch up current>	140 mA

Operating Range

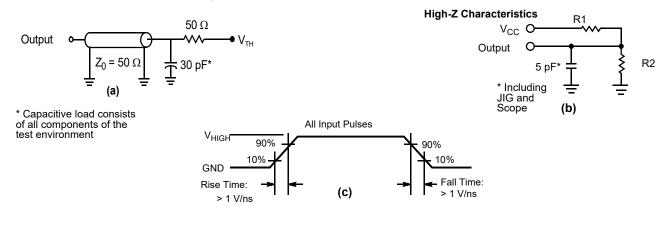
Range	Ambient Temperature	V _{cc}	Speed
Military/Space	–55 °C to +125 °C	2.2V to 3.6V 4.5V to 5.5V	10 ns 10 ns

DC Electrical Characteristics

Over the Operating Range

Baramatar	Description Test Conditions		Military	/Space	Unit	
Parameter	Description	Test Condition	15	Min	Max	Unit
		V_{CC} = Min, I_{OH} = -1.0 mA	2.2 V to 2.7 V	2.0	-	
		V _{CC} = Min, I _{OH} = -4.0 mA	2.7 V to 3.0 V	2.2	-	
V _{OH}	Output HIGH voltage	V _{CC} = Min, I _{OH} = -4.0 mA	3.0 V to 3.6 V	2.4	-	V
		V _{CC} = Min, I _{OH} = –4.0 mA	4.5 V to 5.5 V	2.4	-	
		V _{CC} = Min, I _{OH} = –0.1 mA	4.5 V to 5.5 V	$V_{CC} - 0.4$	-	
		V _{CC} = Min, I _{OL} = 2 mA	2.2 V to 2.7 V	-	0.4	
V _{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8 mA	2.7 V to 3.6 V	-	0.4	V
		V _{CC} = Min, I _{OL} = 8 mA	4.5 V to 5.5 V	-	0.4	
			2.2 V to 2.7 V	2.0	V _{CC} + 0.3	
V _{IH}	Input HIGH voltage		2.7 V to 3.6 V	2.0	V _{CC} + 0.3	V
			4.5 V to 5.5 V	2.0	V _{CC} + 0.5	
			2.2 V to 2.7 V	-0.3	0.6	
V _{IL}	Input LOW voltage		2.7 V to 3.6 V	-0.3	0.8	V
			4.5 V to 5.5 V	-0.5	0.8	
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$		-5	+5	
I _{OZ}	Output leakage current	GND <u><</u> V _{OUT} <u><</u> V _{CC} , output di	sabled	-5	+5	μA
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, f = f _{MAX} = 1/t _{RC}	100 MHz	-	160	
I _{SB1}	Automatic CE power-down current – TTL inputs	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x	-	60	mA
I _{SB2}	Automatic CE power-down current – CMOS inputs	$ \begin{array}{l} \mbox{Max V}_{CC}, \ \overline{CE} \geq V_{CC} - 0.2 \ V \\ \mbox{V}_{IN} \geq V_{CC} - 0.2 \ V, \ \mbox{or} \ V_{IN} \leq 0. \end{array} $	2 V, f = 0	-	50	

Capacitance


Parameter ^[4]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	10	pF
C _{OUT}	I/O capacitance	$T_{A} = 23^{\circ}$ C, $T = 110112$, V _{CC} = 3.5 V	10	р

Thermal Resistance

Parameter ^[4]	Description	Test Conditions	Ceramic Flat Package	Unit
Θ ^{JC}	Thermal resistance (junction to case)	Test according to MIL-PRF 38538	3.38	°C/W

AC Test Loads and Waveforms

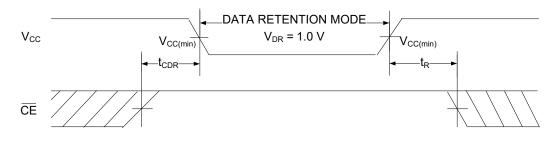
Figure 2. AC Test Loads and Waveforms^[5]

Parameters	3.0 V	5.0 V	Unit
R1	317	317	0
R2	351	351	Ω
V _{TH}	1.5	1.5	V
V _{HIGH}	3	3	v

5. Full device AC operation assumes a 100- μ s ramp time from 0 to V_{CC}(min) and 100- μ s wait time after V_{CC} stabilization.

Notes

^{4.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V_{CC} for data retention	-	1.0	-	V
CODK	Data retention current	$V_{CC} = V_{DR}, \overline{CE} \ge V_{CC} - 0.2 \text{ V}, \\ V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	-	50.0	mA
t _{CDR} ^[6]	Chip deselect to data retention time	-	0	-	
t _R [6, 7]	Operation recovery time	V _{CC} ≥ 2.2 V	10.0	-	ns
'R'	Operation recovery time	V _{CC} < 2.2 V	12.0	_	

Data Retention Waveform

Notes

6. Tested initially and after any design or process changes that may affect these parameters. 7. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} \geq 100 µs or stable at V_{CC(min.)} \geq 100 µs.

AC Switching Characteristics

Over the Operating Range

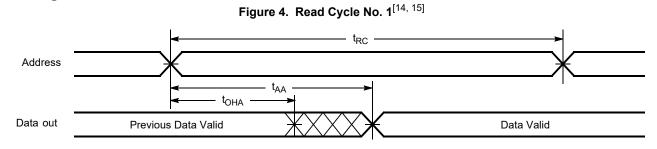
Parameter ^[8]	Description	10	10 ns		
Parameter	Description	Min	Мах	- Unit	
Read Cycle					
t _{power}	V _{CC} (typical) to the first access ^[9, 10]	100	-	S	
t _{RC}	Read cycle time	10	-		
t _{AA}	Address to data valid	-	10		
t _{OHA}	Data hold from address change	3	-	1	
t _{ACE}	CE LOW to data valid	-	10	1	
t _{DOE}	OE LOW to data valid	-	5	1	
t _{LZOE}	OE LOW to low Z ^[11, 12, 13]	0	-	ns	
t _{HZOE}	OE HIGH to High-Z ^[11, 12, 13]	-	5	1	
t _{LZCE}	CE LOW to low Z ^[11, 12, 13]	3	-	1	
t _{HZCE}	CE HIGH to High-Z ^[11, 12, 13]	-	5	1	
t _{PU}	CE LOW to Power-up ^[10]	0	-	1	
t _{PD}	CE HIGH to Power-down ^[10]	-	10	1	
Write Cycle ^{[12, 13}	3]	·		·	
t _{WC}	Write cycle time	10	-		
t _{SCE}	CE LOW to write end ^[10]	7	-	1	
t _{AW}	Address setup to write end	7	-	1	
t _{HA}	Address hold from write end	0	-	1	
t _{SA}	Address setup to write start	0	-	ns	
t _{PWE}	WE pulse width	7	ns		
t _{SD}	Data setup to write end	5	-		
t _{HD}	Data hold from write end	0	-		
t _{LZWE}	WE HIGH to low Z ^[11, 12, 13]	3	-		
t _{HZWE}	WE LOW to High-Z ^[11, 12, 13]	-	5		

Notes

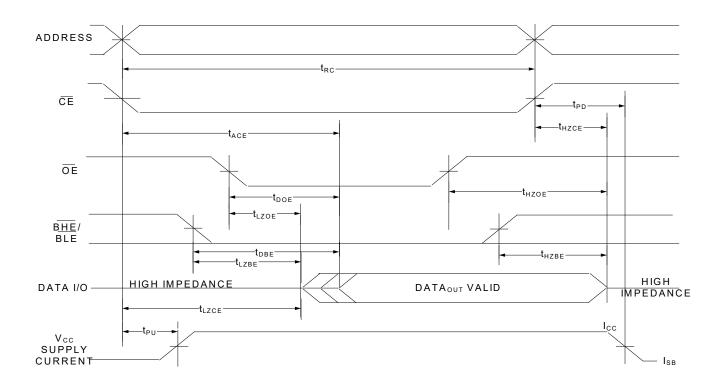
Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3V). Test conditions for the read cycle use output loading shown in part (a) of Figure 2 on page 5, unless specified otherwise.

9. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access is performed.

10. These parameters are guaranteed by design and are not tested.


11. t_{HZOE}, t_{HZCE}, t_{HZWE}, t_{LZCE}, and t_{LZWE} are specified with a load capacitance of 5 pF as shown in (b) of Figure 2. Transition is measured ±200 mV from steady state voltage.


12. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZWE} for any device.


13. Tested initially and after any design or process changes that may affect these parameters.

Switching Waveforms

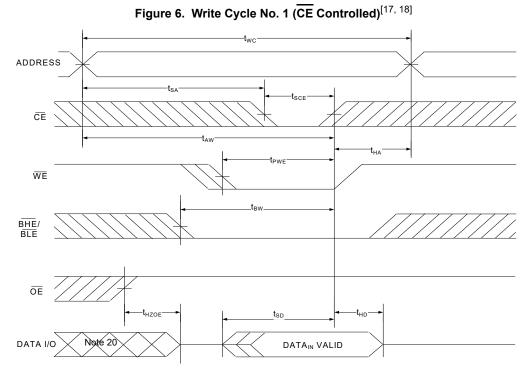
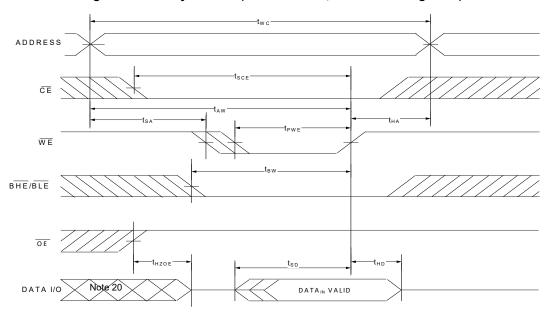
Notes

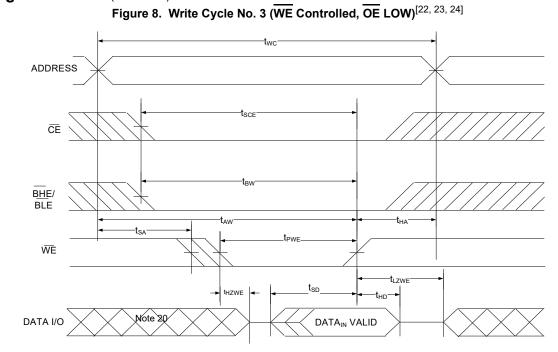
14. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} .

15. WE is HIGH for read cycle.

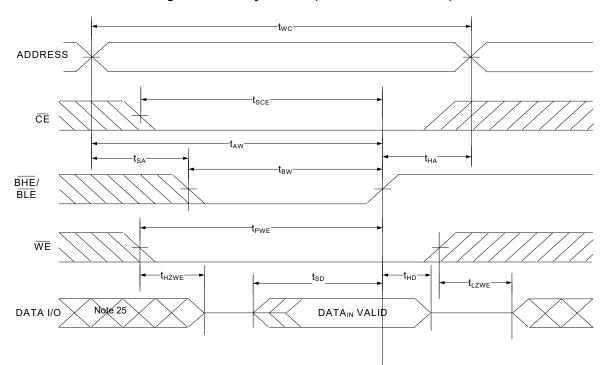
16. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)


Figure 7. Write Cycle No. 2 (WE Controlled, OE HIGH During Write)^[17, 18]

Notes


- 17. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 18. Data I/O is in High-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 19. The minimum write cycle width should be sum of t_{HZWE} and t_{SD} .
- 20. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Figure 9. Write Cycle No. 4 (BLE or BHE Controlled)^[22, 23]

Notes

- 22. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write. 23. Data I/O is in High-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 24. The minimum write cycle width should be sum of t_{HZWE} and t_{SD} .

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	X ^[26]	X ^[26]	X ^[26]	X ^[26]	High-Z	High-Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	
L	L	Н	L	Н	Data out	High-Z	Read lower bits only	
L	L	Н	Н	L	High-Z	Data out	Read upper bits only	
L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	High-Z	Write lower bits only	Active (ICC)
L	Х	L	Н	L	High-Z	Data in	Write upper bits only	
L	Н	Н	Х	Х	High-Z	High-Z	Selected, outputs disabled	
L	Х	Х	Н	Н	High-Z	High-Z	Selected, outputs disabled	

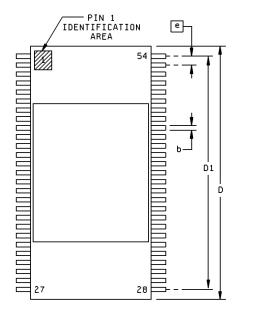
Ordering Information

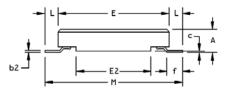

The following table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at www.cypress.com/products

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at cypress.com/datasheet/offices.

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CYRS1061G30-10GGMB		54-lead ceramic TSOP II package	
10	CYPT1061G30-10GGMB	002-18372	54-lead ceramic TSOP II package, Prototype part	Military
10	5962R2020201VXC		54-lead ceramic TSOP II package, DLAM QML-V part	

Contact your local Cypress sales representative for availability of these parts


Ordering Code Definitions



Package Diagram

Figure 10. 54-Lead Ceramic TSOP II (22.4 \times 11.84 \times 3.038 mm) Package Outline, 002-18372

Symbol	Millimeters		Combal	Millimeters	
	Min	Max	Symbol	Min	Max
A	2.416	3.038	E2	7.00	7.40
b	.300	.400	e	.80 BSC	
b2	.150		f	1.588	2.096
с	.073		L	1.233 NOM (ref)	
D	22.173	22.633	М	14.173	14.427
D1	20.60	21.00	N	54	
E	11.636	12.036			

NOTES:

1. Index area: a notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the area shown. The manufacturer's identification shall not be used as pin one identification mark.

002-18372 **

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description
CE	chip enable
CMOS	complementary metal oxide semiconductor
DLAM	Defense Logistics Agency Land and Maritime
DNU	do not use
ECC	error correcting code
EDAC	error detection and correction
I/O	input/output
LET	linear energy transfer
OE	output enable
QML	qualified manufacturers list
SEC-DED	single error correction – double error detection
SEL	single-event latch-up
SRAM	static random access memory
TSOP	thin small outline package
TTL	transistor-transistor logic
WE	write enable

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	megahertz	
μA	microampere	
μs	microsecond	
mA	milliampere	
ns	nanosecond	
%	percent	
pF	picofarad	
V	volt	
W	watt	

Glossary

Total Dose	Permanent device damage due to ions over device life
Heavy Ion	Instantaneous device latch up due to single ion
LET	Linear energy transfer (measured in MeVcm ²)
krad	Unit of measurement to determine device life in radiation environments.
Neutron	Permanent device damage due to energetic neutrons or protons
Prompt Dose	Data loss of permanent device damage due to X-rays and gamma rays <20 ns
RadStop Technology	Cypress's patented Rad Hard design methodology
QML V	Space level certification from DSCC.
DLAM	Defense Logistics Agency Land and Maritime
LSBU	Logical Single Bit Upset. Single bits in a single correction word are in error.
LMBU	Logical Multi Bit Upset. Multiple bits in a single correction word are in error

Document History Page

Document Title: CYRS1061G, 16-Mb (1 M × 16) Static RAM with ECC and RadStop™ Technology Document Number: 002-27271

Rev.	ECN No.	Submission Date	Description of Change
**	6613597	07/16/2019	New datasheet.
*A	6741437		Updated dose rates in Features Changed Thermal Resistance to 3.38 from 3.6 Updated Ordering Information

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress hardware solely for use, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware solely for use with Cypress hardware products, only internally within your organization, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware solely for use with Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified).

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or properly damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor: CYPT1061G30-10GGMB