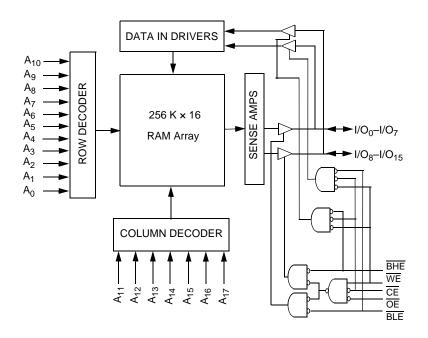


4-Mbit (256 K × 16) Static RAM

Features

- Very high speed: 45 ns
- Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V
- Ultra low standby power
 Typical Standby current: 1 μA
 Maximum Standby current: 7 μA
- Ultra low active power
 Typical active current: 2 mA at f = 1 MHz
- Easy memory expansion with \overline{CE} and \overline{OE} features
- Automatic power down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Available in Pb-free 44-pin thin small outline package (TSOP) II package

Functional Description


The CY62146ESL is a high performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra low active current. This

is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected (CE HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH) or during a write operation (CE LOW and WE LOW).

To write to the device, take Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

To read from the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 11 for a complete description of read and write modes.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 001-43142 Rev. *E 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised August 21, 2013

Contents

Pin Configurations	3
Product Portfolio	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Characteristics	
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	.12
Ordering Code Definitions	.12
Package Diagram	.13
Acronyms	.14
Document Conventions	.14
Units of Measure	.14
Document History Page	.15
Sales, Solutions, and Legal Information	.16
Worldwide Sales and Design Support	.16
Products	
PSoC® Solutions	.16
Cypress Developer Community	.16
Technical Support	

Pin Configurations

Figure 1. 44-pin TSOP II pinout (Top View)^[1]

	0		1	
A ₄ _	1	44		A ₅
A ₃ _	2	43		A ₆
A ₂ _	3	42		A ₇
$A_1 \square$	4	41		OE
A ₀ _	5	40		BHE
CE	6	39		BLE
I/O₀□	7	38		I/O ₁₅
I/O₁□	8	37		I/O ₁₄
I/O ₂ □	9	36		I/O ₁₃
I/O ₃	10	35		I/O ₁₂
V _{CC} □	11	34		V_{SS}
V _{SS} ⊑	12	33		V _{CC}
I/O4□	13	32		I/O ₁₁
I/O5	14	31		I/O ₁₀
I/O ₆ □	15	30		I/O ₉
I/O7	16	29		I/O ₈
WE L	17	28		NC
	18	27		A ₈
	19	26	Ц	A ₉
A ₁₅	20	25	Н	A ₁₀
A ₁₄ _ A ₁₃ _	21	24	H	A ₁₁
′ °13	22	23	Ц	A ₁₂

Product Portfolio

							Power Dissipation			
Product Range		V _{CC} Range (V) ^[2]	Speed	Operating I _{CC} , (mA)				Standby, I _{SB2} (μΑ)		
Troduct	Range	ACC Irginge (A)	(ns)	f = 1MHz f =		f = 1	max			
				Тур ^[3]	Max	Тур ^[3]	Max	Тур [3]	Max	
CY62146ESL	Industrial	2.2 V-3.6 V and 4.5 V-5.5 V	45	2	2.5	15	20	1	7	

Notes

NC pins are not connected on the die.
 Datasheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V, and V_{CC} = 5 V, T_A = 25 °C.

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied
Supply voltage to ground potential–0.5 V to 6.0 V
DC voltage applied to outputs in High Z State $^{[4, 5]}$ 0.5 V to 6.0 V
DC input voltage ^[4, 5] –0.5 V to 6.0 V

Output current into outputs (LOW)	20 mA
Static discharge voltage	
(MIL-STD-883, Method 3015)	>2001 V
Latch up current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[6]
CY62146ESL	Industrial	–40 °C to +85 °C	2.2 V–3.6 V, and 4.5 V–5.5 V

Electrical Characteristics

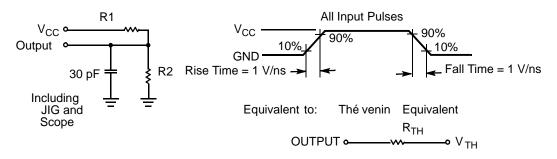
Over the Operating Range

Deremeter	Description	Test Conditions		45 ns		Unit
Parameter	Description	Test Conditions	Min	Тур [7]	Max	Unit
V _{OH}	Output high voltage	$2.2 \le V_{CC} \le 2.7$ $I_{OH} = -0.1 \text{ mA}$	2.0	-	_	V
		$2.7 \le V_{CC} \le 3.6$ $I_{OH} = -1.0 \text{ mA}$	2.4	-	-	
		$4.5 \le V_{CC} \le 5.5$ $I_{OH} = -1.0 \text{ mA}$	2.4	-	-	
V _{OL}	Output low voltage	$2.2 \le V_{CC} \le 2.7$ $I_{OL} = 0.1 \text{ mA}$	-	-	0.4	V
		$2.7 \le V_{CC} \le 3.6$ $I_{OL} = 2.1 \text{mA}$	-	-	0.4	
		$4.5 \le V_{CC} \le 5.5$ $I_{OL} = 2.1 \text{mA}$	-	-	0.4	
V _{IH}	Input high voltage	$2.2 \le V_{CC} \le 2.7$	1.8	-	V _{CC} + 0.3	V
		$2.7 \le V_{CC} \le 3.6$	2.2	-	V _{CC} +0.3	
		$4.5 \le V_{CC} \le 5.5$	2.2	-	V _{CC} + 0.5	
V _{IL}	Input low voltage	$2.2 \le V_{CC} \le 2.7$	-0.3	-	0.6	V
		$2.7 \le V_{CC} \le 3.6$	-0.3	-	0.8	
		$4.5 \le V_{CC} \le 5.5$	-0.5	-	0.8	
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1	-	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled	-1	-	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$f = f_{max} = 1/t_{RC}$ $V_{CC} = V_{CCmax}$	-	15	20	mA
		f = 1 MHz I _{OUT} = 0 mA, CMOS levels	-	2	2.5	
I _{SB1} ^[8]	Automatic CE Power down	$\overline{CE} \ge V_{CC} - 0.2 V,$	-	1	7	μΑ
	Current – CMOS Inputs					
I _{SB2} ^[8]	Automatic CE Power down Current – CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c c } \hline \overline{CE} \geq V_{CC} - 0.2 \text{ V}, \\ V_{IN} \geq V_{CC} - 0.2 \text{ V or } V_{IN} \leq 0.2 \text{ V}, \\ f = 0, \ V_{CC} = V_{CC(max)} \end{array}$	-	1	7	μΑ

Notes

Notes
4. V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
5. V_{IH}(max) = V_{CC} + 0.75 V for pulse durations less than 20 ns.
6. Full Device AC operation assumes a 100 µs ramp time from 0 to V_{CC} (min) and 200 µs wait time after V_{CC} stabilization.
7. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V, and V_{CC} = 5 V, T_A = 25 °C.
8. Chip enable (CE) must be HIGH at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.


Capacitance

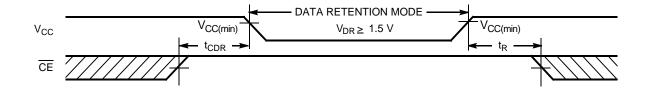

Parameter ^[9]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter ^[9]	Description	Test Conditions	TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3×4.5 inch, two-layer printed circuit board	77	°C/W
Θ _{JC}	Thermal resistance (junction to case)		13	°C/W

AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	5.0 V	Unit
R1	16667	1103	1800	Ω
R2	15385	1554	990	Ω
R _{TH}	8000	645	639	Ω
V _{TH}	1.20	1.75	1.77	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ ^[10]	Max	Unit
V _{DR}	V _{CC} for data retention			1.5	_	_	V
I _{CCDR} ^[11]	Data retention current	$\label{eq:central_constraint} \begin{split} & \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \text{ or} \\ & \text{V}_{\text{IN}} \leq 0.2 \text{ V} \end{split}$	V _{CC} = 1.5 V	-	1	7	μΑ
t _{CDR} ^[12]	Chip deselect to data retention time			0	_	_	ns
t _R ^[13]	Operation recovery time			45	_	_	ns

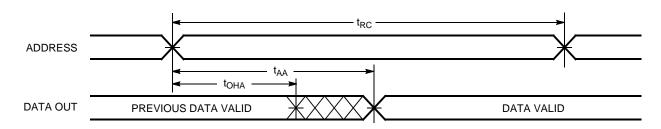
Data Retention Waveform

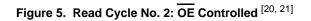
Figure 3. Data Retention Waveform

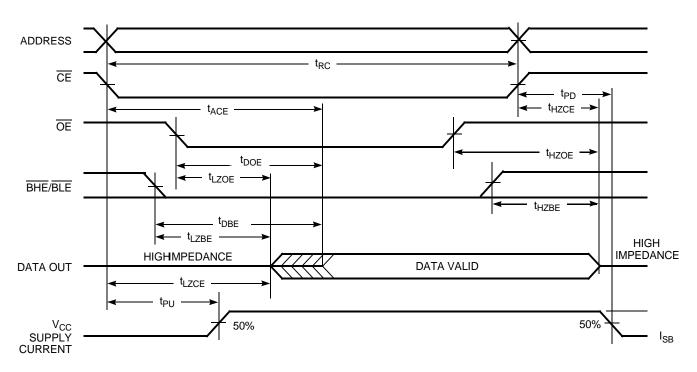
- 10. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 \text{ V}$, and $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$. 11. Chip enable (CE) must be HIGH at CMOS level to meet the $I_{SB1} / I_{SB2} / I_{CCDR}$ spec. Other inputs can be left floating. 12. Tested initially and after any design or process changes that may affect these parameters. 13. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \text{ } \mu \text{s}$ or stable at $V_{CC(min)} \ge 100 \text{ } \mu \text{s}$.

Switching Characteristics

Over the Operating Range

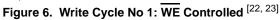

Parameter ^[14, 15]	Description	45	45 ns			
Parameter	Description	Min	Min Max			
Read Cycle		•				
t _{RC}	Read cycle time	45	-	ns		
t _{AA}	Address to data valid	-	45	ns		
t _{OHA}	Data hold from address change	10	-	ns		
t _{ACE}	CE LOW to data valid	-	45	ns		
t _{DOE}	OE LOW to data valid	-	22	ns		
t _{LZOE}	OE LOW to Low Z ^[16]	5	-	ns		
t _{HZOE}	OE HIGH to High Z ^[16, 17]	-	18	ns		
t _{LZCE}	CE LOW to Low Z ^[16]	10	-	ns		
t _{HZCE}	CE HIGH to High Z ^[16, 17]	-	18	ns		
t _{PU}	CE LOW to power up	0	-	ns		
t _{PD}	CE HIGH to power down	-	45	ns		
t _{DBE}	BLE/BHE LOW to data valid	-	22	ns		
t _{LZBE}	BLE/BHE LOW to Low Z ^[16]	5	-	ns		
t _{HZBE}	BLE/BHE HIGH to High Z ^[16, 17]	-	18	ns		
Write Cycle [18]						
t _{WC}	Write cycle time	45	-	ns		
t _{SCE}	CE LOW to write end	35	-	ns		
t _{AW}	Address setup to write end	35	-	ns		
t _{HA}	Address hold from write end	0	-	ns		
t _{SA}	Address setup to Write Start	0	-	ns		
t _{PWE}	WE pulse width	35	-	ns		
t _{BW}	BLE/BHE LOW to write end	35	-	ns		
t _{SD}	Data Setup to write end	25	-	ns		
t _{HD}	Data Hold from write end	0	-	ns		
t _{HZWE}	WE LOW to High Z ^[16, 17] –					
t _{LZWE}	WE HIGH to Low Z ^[16]	10	-	ns		

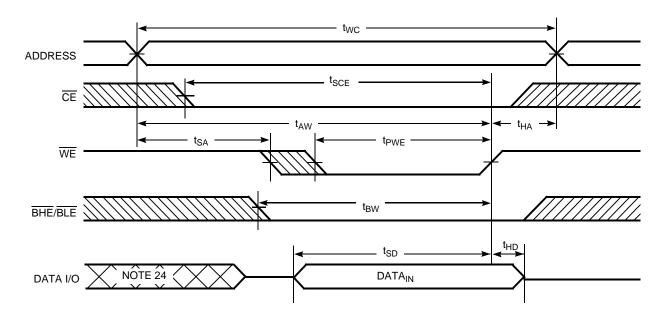

<sup>Notes
14. In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the byte enable and/or chip enable signals as described in the Application Note AN66311. However, the issue has been fixed and in production now, and hence, this Application Note is no longer applicable. It is available for download on our website as it contains information on the date code of the parts, beyond which the fix has been in production.
15. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3 V, and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 2 on page 5.
16. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, t_{HZCE}, and t_{HZWE} is less than t_{LZWE} for any device.
17. t_{HZCE}, t_{HZCE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
18. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.</sup>



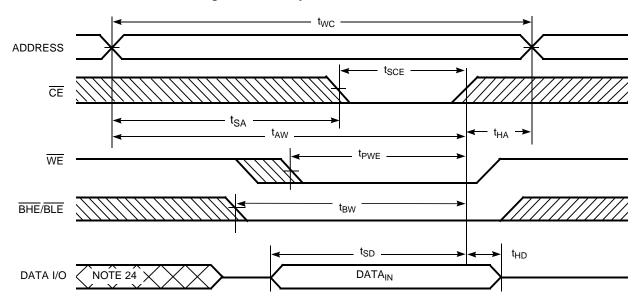
Switching Waveforms

Figure 4. Read Cycle No.1: Address Transition Controlled ^[19, 20]





- 19. <u>The</u> device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , \overline{BLE} , or both = V_{IL} .
- 20. WE is HIGH for read cycle.
- 21. Address valid before or similar to \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.



Switching Waveforms (continued)

Figure 7. Write Cycle 2: CE Controlled ^[22, 23]

- 22. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.
 23. If CE goes HIGH simultaneously with WE = V_{IH}, the output remains in a high impedance state.
 24. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

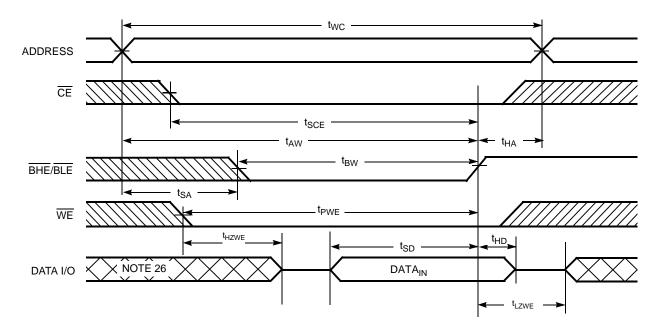
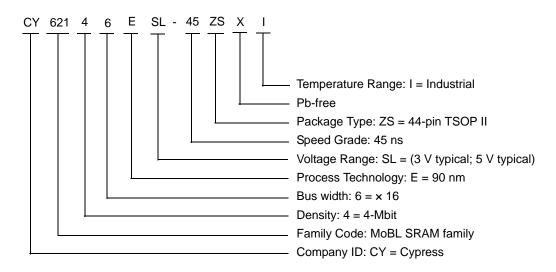


Figure 8. Write Cycle 3: BHE/BLE Controlled ^[25]

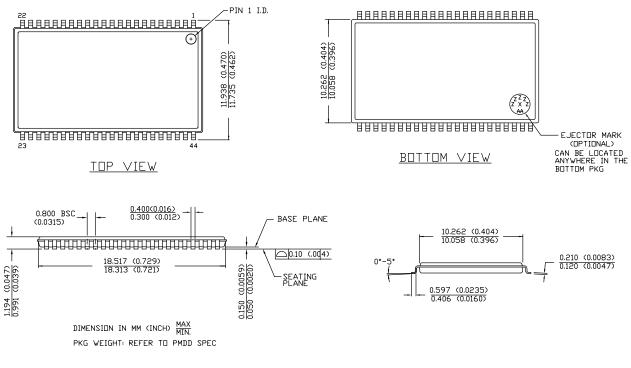
Notes_____25. If \overline{CE} goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state. 26. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table


CE ^[27]	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power down	Standby (I _{SB})
L	Х	Х	Н	Н	High-Z	Output disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z		
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); Read Active (I _{CC}) O_0 –I/O ₇ in High-Z		Active (I _{CC})
L	Н	Н	L	L	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	igh-Z Output disabled	
L	Н	Н	L	Н	High-Z	Output disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram		Operating Range
45	CY62146ESL-45ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	Industrial


Ordering Code Definitions

Package Diagram

Figure 9. 44-pin TSOP Z44-II Package Outline, 51-85087

51-85087 *E

Acronyms

Acronym	Description			
BHE	Byte High Enable			
BLE	Byte Low Enable			
CE	Chip Enable			
CMOS	Complementary Metal Oxide Semiconductor			
I/O	Input/Output			
OE	Output Enable			
SRAM	Static Random Access Memory			
TSOP	Thin Small Outline Package			
VFBGA	Very Fine-Pitch Ball Grid Array			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure				
°C	degree Celsius				
MHz	megahertz				
μΑ	microampere				
mA	milliampere				
ns	nanosecond				
Ω	ohm				
pF	picofarad				
V	volt				
W	watt				

Document History Page

Document Title: CY62146ESL MoBL [®] , 4-Mbit (256 K × 16) Static RAM Document Number: 001-43142				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	1875228	See ECN	VKN / AESA	New data sheet.
*A	2944332	06/04/2010	VKN	Added Contents
				Updated Electrical Characteristics: Added Note 8 and referred the same note in I _{SB2} parameter.
				Updated Truth Table: Added Note 27 and referred the same note in \overline{CE} column.
				Updated Package Diagram.
				Added Sales, Solutions, and Legal Information.
*В	3109186	12/13/2010	PRAS	Changed Table Footnotes to Footnotes.
				Added Ordering Code Definitions.
*C	3296704	06/29/2011	RAME	Updated Functional Description: Removed reference to AN1064 SRAM system guidelines.
				Updated Electrical Characteristics: Updated Note 8 (Added I_{SB1}) and referred the same note in I_{SB1} parameter.
				Updated Capacitance: Added Note 9 and referred the same note in parameter column.
				Updated Thermal Resistance: Added Note 9 and referred the same note in parameter column.
				Updated Data Retention Characteristics: Added Note 11 and referred the same note in I_{CCDR} parameter. Changed minimum value of t_R parameter from t_{RC} to 45 ns.
				Updated Switching Characteristics: Moved Note 14 to parameter column.
				Added Units of Measure.
*D	3903350	02/13/2013	MEMJ	Updated Switching Waveforms: Updated Figure 6 (Removed \underline{OE} signal). Updated Figure 7 (Removed OE signal). Removed the Note "Data I/O is high impedance if $\overline{OE} = V_{IH}$." and its reference in Figure 6, Figure 7. Removed the figure "Write Cycle 3: WE controlled, \overline{OE} LOW". Updated Figure 8 (Removed "OE LOW" in caption only).
				Updated Package Diagram: spec 51-85087 – Changed revision from *C to *E.
*E	4100920	08/21/2013	VINI	Updated Switching Characteristics: Added Note 14 and referred the same note in "Parameter" column.
				Updated in new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2008–2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems applications in life support and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-43142 Rev. *E

Revised August 21, 2013

Page 16 of 16

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor: CY62146ESL-45ZSXIT