

Single Serial Input PLL Frequency Synthesizer On-chip 1.2 GHz Prescaler

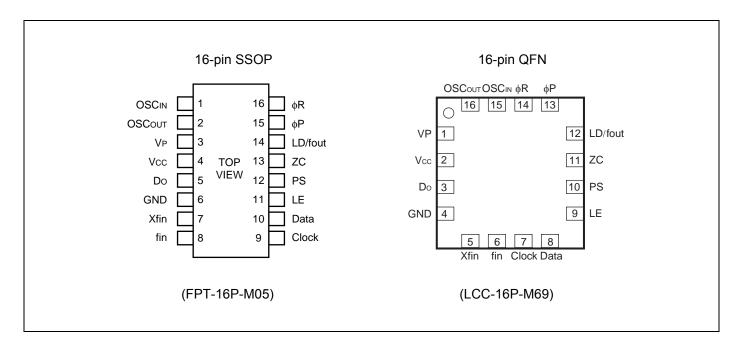
The Cypress MB15E03SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1.2 GHz prescaler. The 1.2 GHz prescaler has a dual modulus division ratio of 64/65 or 128/129 enabling pulse swallowing operation.

The supply voltage range is between 2.4 V and 3.6 V. The MB15E03SL uses the latest BiCMOS process, as a result, the supply current is typically 2.0 mA at 2.7 V. A refined charge pump supplies a well balanced output currents of 1.5 mA or 6 mA. The charge pump current is selectable by serial data.

Features

- High frequency operation: 1.2 GHz max
- Low power supply voltage: V_{CC} = 2.4 V to 3.6 V
- Ultra Low power supply current: I_{CC} = 2.0 mA typ. (V_{CC} = Vp = 2.7 V, Ta = +25°C, in locking state) I_{CC} = 2.5 mA typ. (V_{CC} = Vp = 3 V, Ta = +25°C, in locking state)
- Direct power saving function:Power supply current in power saving mode

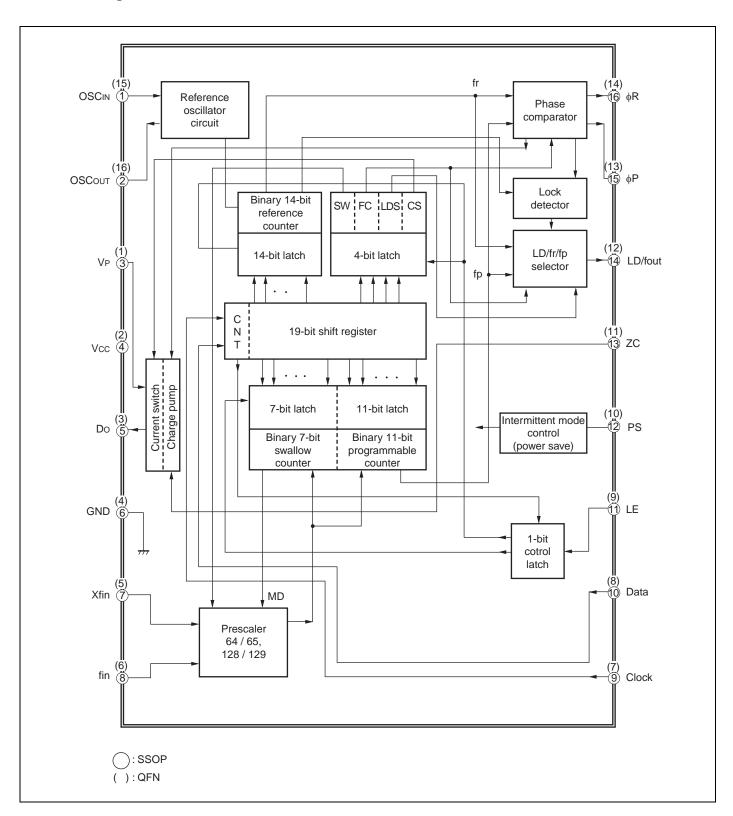
 Typ. 0.1 μ A ($V_{CC} = Vp = 3 V$, Ta = +25°C), Max. 10 μ A ($V_{CC} = Vp = 3 V$)
- Dual modulus prescaler: 64/65 or 128/129
- Serial input 14-bit programmable reference divider: R = 3 to 16,383
- Serial input programmable divider consisting of:
 - ☐ Binary 7-bit swallow counter: 0 to 127
 - ☐ Binary 11-bit programmable counter: 3 to 2,047
- Selectable charge pump current
- On-chip phase control for phase comparator
- Operating temperature: Ta = -40 to +85°C


Contents

3
4
5
6
6
7
9
9
9
12
12
13
14

Measurement Circuit (for Measuring Input Sensitivity fin/OSCIN)	15
Typical Characteristics	16
fin Input Sensitivity	
OSCIN Input Sensitivity	16
Do Output Current	
fin Input Impedance	18
OSCIN Input Impedance	18
Reference Information	19
Application Example	22
Usage Precautions	23
Ordering Information	23
Package Dimensions	24
Document History	26
Sales, Solutions, and Legal Information	27

1. Pin Assignments



2. Pin Description

Pir	Pin No.					D t. C
SSOP	QFN	Pin Name	I/O	Descriptions		
1	15	OSCIN	I	Programmable reference divider input. Oscillator input connection to a TCXO.		
2	16	OSCout	0	Oscillator output.		
3	1	VP	_	Power supply voltage input for the charge pump.		
4	2	Vcc	_	Power supply voltage input.		
5	3	Do	0	Charge pump output. Phase of the charge pump can be selected via programming of the FC bit.		
6	4	GND	_	Ground.		
7	5	Xfin	I	Prescaler complementary input which should be grounded via a capacitor.		
8	6	fin	1	Prescaler input. Connection to an external VCO should be done via AC coupling.		
9	7	Clock	I	Clock input for the 19-bit shift register. Data is shifted into the shift register on the rising edge of the clock. (Open is prohibited.)		
10	8	Data	I	Serial data input using binary code. The last bit of the data is a control bit. (Open is prohibited.)		
11	9	LE	I	Load enable signal input. (Open is prohibited.) When LE is set high, the data in the shift register is transferred to a latch according to the control bit in the serial data.		
12	10	PS	I	Power saving mode control. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS = "H"; Normal mode PS = "L"; Power saving mode		
13	11	ZC	I	Forced high-impedance control for the charge pump (with internal pull up resistor.) ZC = "H"; Normal Do output. ZC = "L"; Do becomes high impedance.		
14	12	LD/fout	0	Lock detect signal output (LD)/phase comparator monitoring output (fout). The output signal is selected via programming of the LDS bit. LDS = "H"; outputs fout (fr/fp monitoring output) LDS = "L"; outputs LD ("H" at locking, "L" at unlocking.)		
15	13	φР	0	Phase comparator N-channel open drain output for an external charge pump. Phase can be selected via programming of the FC bit.		
16	14	φR	0	Phase comparator CMOS output for an external charge pump. Phase can be selected via programming of the FC bit.		

3. Block Diagram

4. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ra	ting	Unit	Remark
Farameter	Symbol		Min.	Max.	Offic	Remark
Power supply voltage	Vcc	_	-0.5	4.0	V	
	VP	_	Vcc	6.0	V	
Input voltage	Vı	_	-0.5	Vcc +0.5	V	
Output voltage	Vo	Except Do	GND	Vcc	V	
	Vo	Do	GND	VP	V	
Storage temperature	Tstg	_	- 55	+125	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

5. Recommended Operating Conditions

Parameter	Symbol		Unit	Remark		
Faiailletei	Symbol	Min.	Тур.	Max.	Oilit	Remark
Power supply voltage	Vcc	2.4	3.0	3.6	V	
	VP	Vcc	_	5.5	V	
Input voltage	Vı	GND	_	Vcc	V	
Operating temperature	Та	-40	_	+85	°C	

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

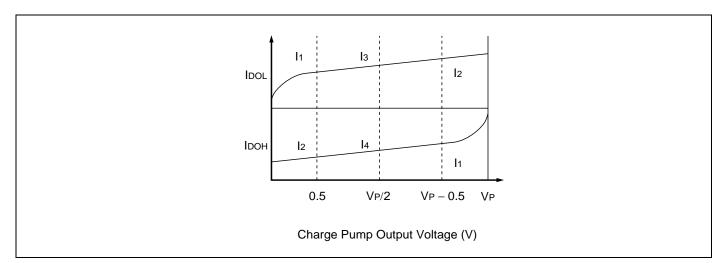
Document Number: 002-08431 Rev. *A Page 6 of 27

6. Electrical Characteristics

 $(V_{CC} = 2.4 \text{ to } 3.6 \text{ V}, \text{ Ta} = -40 \text{ to } +85^{\circ}\text{C})$

						-40 to +85°C			
Parameter	Symbol	bol Condition			Value				
					Min.	Тур.	Max.		
Power supply current*1		Icc	$V_{CC} = V_P = 2.7 \text{ V}$ $(V_{CC} = V_P = 3.0 \text{ V})$		_	2.0 (2.5)	_	mA	
Power saving current		I PS	ZC = "H" or ope	n	_	0.1*2	10	μΑ	
Operating frequency	fin	fin	_		100	_	1200	MHz	
	OSCIN	fosc	_		3	_	40	MHz	
nput sensitivity	fin*3	Pfin	50Ω system (Refer to the Me	easurment circuit.)	–15	_	+2	dBm	
	OSC _{IN*3}	Vosc	_		0.5	_	Vcc	Vp-p	
H" level input voltage	Data,	VIH	_		Vcc × 0.7	_	_	V	
L" level input voltage	Clock, LE, PS, ZC	VIL	_				Vcc × 0.3		
H" level input current	Data,	Iıh*4	_		-1.0	_	+1.0	μΑ	
L" level input current	Clock, LE, PS	IIL*4	_		-1.0	_	+1.0		
H" level input current	OSCIN	Іін	_		0	_	+100	μА	
L" level input current		I _{IL} *4	_		-100	_	0		
H" level input current	ZC	I _{IH} *4	_		-1.0	_	+1.0	μΑ	
L" level input current		I _{IL} *4	Pull up input	Pull up input		_	0		
L" level output voltage	φР	Vol	Open drain outp	out	_	_	0.4	V	
H" level output voltage	φR,	Vон	$V_{CC} = V_P = 3 V$,	loн = -1 mA	Vcc - 0.4	_	_	V	
L" level output voltage	LD/fout	Vol	$V_{CC} = V_P = 3 V$,	loL = 1 mA	_	_	0.4		
H" level output voltage	Do	V _{DOH}	$V_{CC} = V_P = 3 V$,	_{рон} = -0.5 mA	V _P − 0.4	_	_	V	
L" level output voltage		V _{DOL}	$V_{CC} = V_P = 3 V$,	DOL = 0.5 mA	_	_	0.4		
High impedance cutoff current	Do	loff	$V_{CC} = V_P = 3 V,$ $V_{OFF} = 0.5 V to V$	/ _P − 0.5 V	_	_	2.5	nA	
L" level output current	φР	loL	Open drain outp	out	1.0	_	_	mA	
H" level output current	φR,	Іон	_		_	_	-1.0	mA	
L" level output current	LD/fout	lol	_		1.0	_	_		
H" level output current	Do	IDOH*4	Vcc = 3 V,	CS bit = "H"	_	-6.0	_	mA	
			$V_P = 3 V,$ $V_{DO} = V_P/2$ $Ta = +25^{\circ}C$	CS bit = "L"	_	-1.5	_		
L" level output current		IDOL		CS bit = "H"	_	6.0	_		
				CS bit = "L"	_	1.5	_		
Charge pump current rate	IDOL/IDOH	I DOMТ ^{*5}	$V_{DD} = V_P/2$		_	3		%	
	vs V _{DO}	IDOVD*6	$0.5 \text{ V} \le \text{V}_{DO} \le \text{V}$	$0.5 \text{ V} \le \text{V}_{DO} \le \text{V}_{P} - 0.5 \text{ V}$		10		%	
	vs Ta	IDOTA*7	– 40°C ≤ Ta ≤ +85°C		_	10	_	%	

(Continued)


Page 7 of 27

Document Number: 002-08431 Rev. *A

(Continued)

- *1: Conditions; fin = 1200 MHz, fosc = 12 MHz, Ta = +25°C, in locking state.
- *2: $V_{CC} = V_P = 3.0 \text{ V}$, fosc = 12.8 MHz, Ta = +25°C, in power saving mode
- *3: AC coupling. 1000 pF capacitor is connected under the condition of min. operating frequency.
- *4: The symbol "-" (minus) means direction of current flow.
- *5: $V_{CC} = V_P = 3.0 \text{ V}$, $T_a = +25^{\circ}C (|I_3| |I_4|) / [(|I_3| + |I_4|) /2] \times 100(\%)$
- *6: $V_{CC} = V_P = 3.0 \text{ V}$, $T_a = +25^{\circ}\text{C} \left[\left(\left| I_2 \right| \left| I_1 \right| \right) / 2 \right] / \left[\left(\left| I_1 \right| + \left| I_2 \right| \right) / 2 \right] \times 100(\%)$ (Applied to each IDDL, IDDH)
- *7: Vcc = Vp = 3.0 V, Vbo = Vp/2 (|Ibo(+85°C) Ibo(-40°C)| /2) / (|Ibo(+85°C) + Ibo(-40°C)| /2) × 100(%) (Applied to each Ibol, IboH)

7. Functional Description

7.1 Pulse Swallow Function

The divide ratio can be calculated using the following equation:

$$f_{VCO} = [(M \times N) + A] \times f_{OSC} \div R \quad (A < N)$$

fvco: Output frequency of external voltage controlled oscillator (VCO)

N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)

A : Preset divide ratio of binary 7-bit swallow counter ($0 \le A \le 127$)

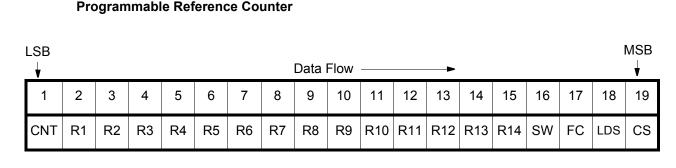
fosc: Output frequency of the reference frequency oscillator

R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)

M : Preset divide ratio of the dual modulus prescaler (64 or 128)

7.2 Serial Data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.

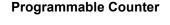

Binary serial data is entered through the Data pin.

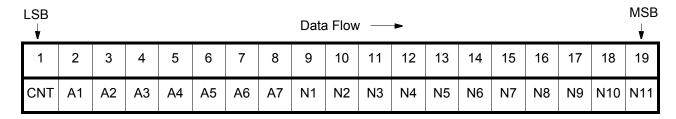
One bit of data is shifted into the shift register on the rising edge of the Clock. When the LE pin is taken high, stored data is latched according to the control bit data as follows:

Table 1. Control Bit

Control Bit (CNT)	Destination of Serial Data
Н	For the programmable reference divider
L	For the programmable divider

7.2.1 Shift Register Configuration




CNT : Control bit [Table 1] Divide ratio setting bit for the programmable reference counter (3 to 16,383) R1 to R14 [Table 2] SW Divide ratio setting bit for the prescaler (64/65 or 128/129) [Table 5] FC Phase control bit for the phase comparator [Table 8] LDS : LD/fout signal select bit [Table 7] : Charge pump current select bit Table 6

Note: Start data input with MSB first.

Document Number: 002-08431 Rev. *A Page 9 of 27

CNT : Control bit

N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047) A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)

[Table 1] [Table 3] [Table 4]

Note: Start data input with MSB first.

Table 2. Binary 14-bit Programmable Reference Counter **Data Setting**

Divide ratio (R)	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

Table 3. Binary 11-bit Programmable Counter Data Setting

•					. •						
Divide ratio (N)	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
×	×	×	×	×	×	×	×	×	×	×	×
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

Table 4. Binary 7-bit Swallow Counter Data Setting

Divide ratio (A)	A 7	A6	A5	A 4	А3	A2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
×	×	×	×	×	×	×	×
127	1	1	1	1	1	1	1

Table 5. Prescaler Data Setting

SW	Prescaler Divide Ratio
Н	64/65
L	128/129

Table 6. Charge Pump Current Setting

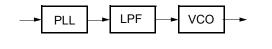
CS	Current Value
Н	±6.0 mA
L	±1.5 mA

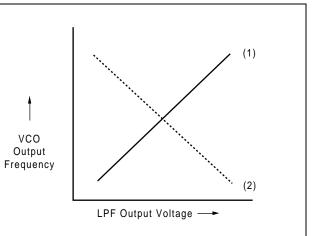
Table 7. LD/fout Output Select Data Setting

LDS	LD/fouт Output Signal	
Н	fout signal	
L	LD signal	

7.2.2 Relation between the FC Input and Phase Characteristics

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (Do) and the phase comparator output (ϕ R, ϕ P) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of Do, ϕ R, and ϕ P is shown below.


Table 8. Table 8. FC Bit Data Setting (LDS = "H")


	FC = High			FC = Low				
	Do	φR	φР	LD/fout	Do	φR	φР	LD/fout
fr > fp	Н	L	L	fout = fr	L	Н	Z*	fout = fp
fr < fp	L	Н	Z*		Н	L	L	
fr = fp	Z*	L	Z*	1	Z*	L	Z*	

^{*:} High impedance

When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

- When the LPF and VCO characteristics are similar to (1), set FC bit high.
- When the VCO characteristics are similar to (2), set FC bit low.

7.3 Do Output Control

Table 9. ZC Pin Setting

ZC pin	Do output
Н	Normal output
L	High impedance

7.4 Power Saving Mode (Intermittent Mode Control Circuit)

Table 10. Table 10. PS Pin Setting

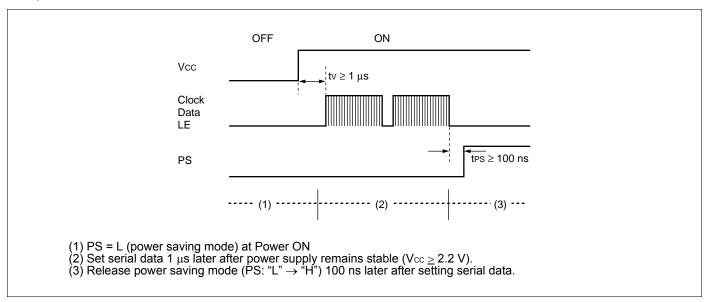
PS pin	Status
Н	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.

By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.

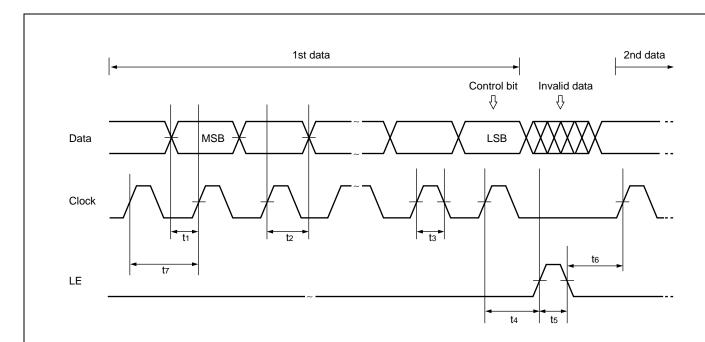
The phase detector output, Do, becomes high impedance.

For the signal PLL, the lock detector, LD, remains high, indicating a locked condition.


Setting the PS pin high, releases the power saving mode, and the device works normally.

The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.

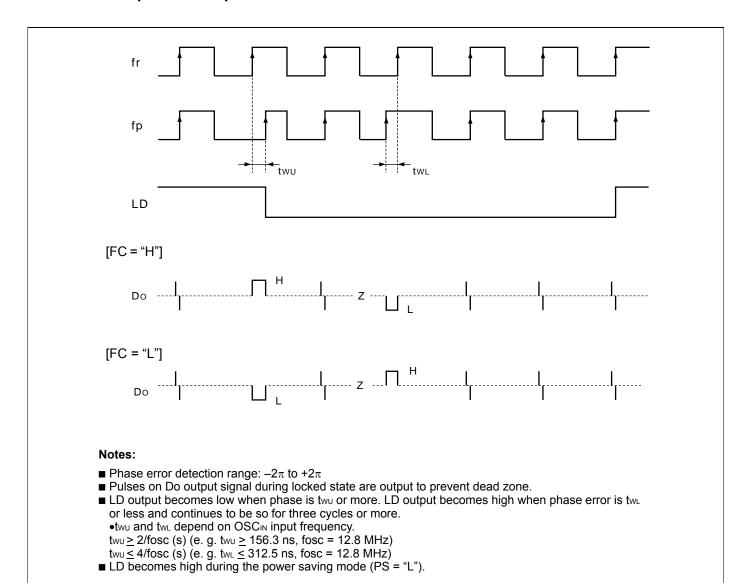
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time. To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.


Note:

- When power (Vcc) is first applied, the device must be in standby mode, PS = Low, for at least 1 µs.
- PS pin must be set "L" for Power-ON.

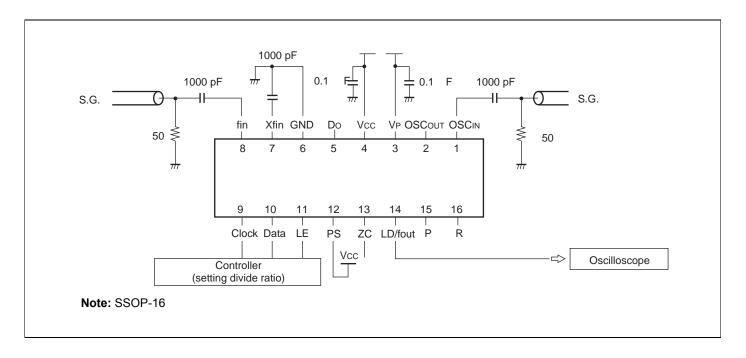
8. Serial Data Input Timing

On the rising edge of the clock, one bit of data is transferred into the shift register.

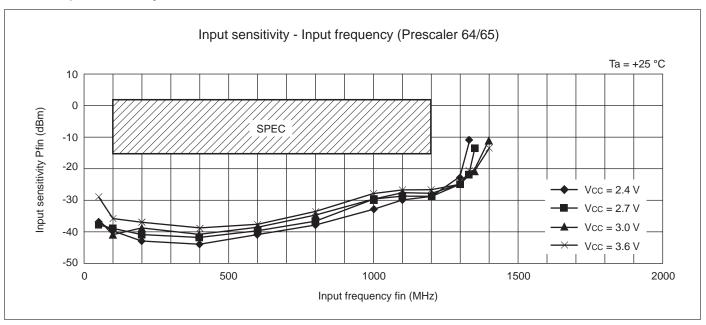

Parameter	Min.	Тур.	Max.	Unit
t1	20	_	_	ns
t2	20	_	_	ns
t3	30	_	_	ns
t4	30	_	_	ns

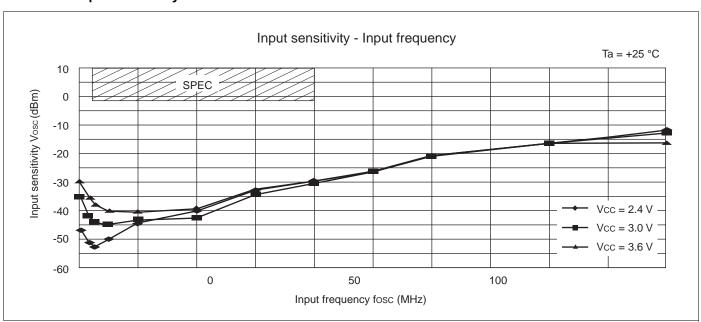
Parameter	Min.	Тур.	Max.	Unit
t5	100	_		ns
t6	20	_	_	ns
t7	100	_	_	ns

Note: LE should be "L" when the data is transferred into the shift register.

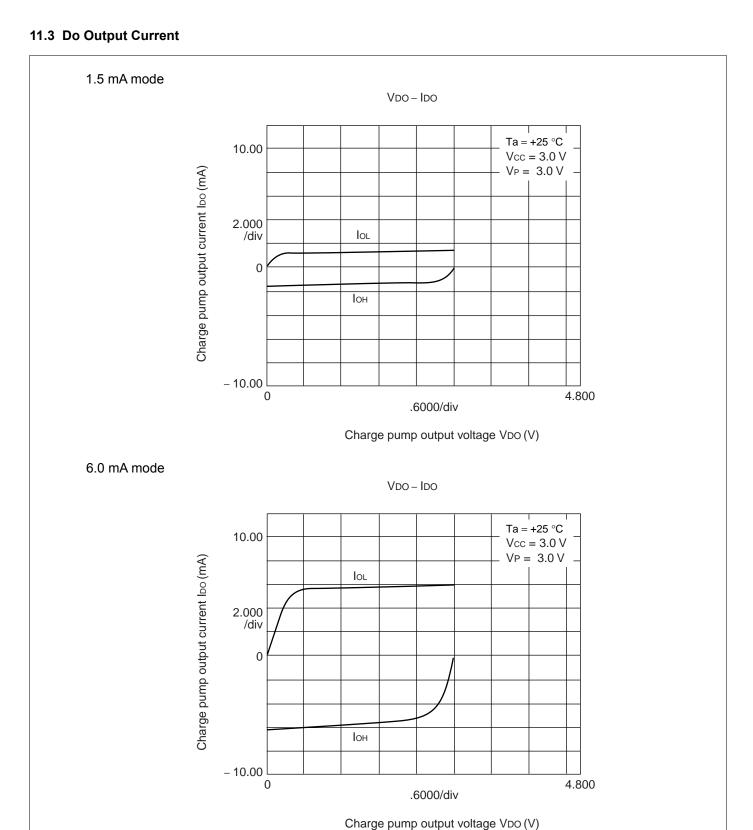


9. Phase Comparator Output Waveform

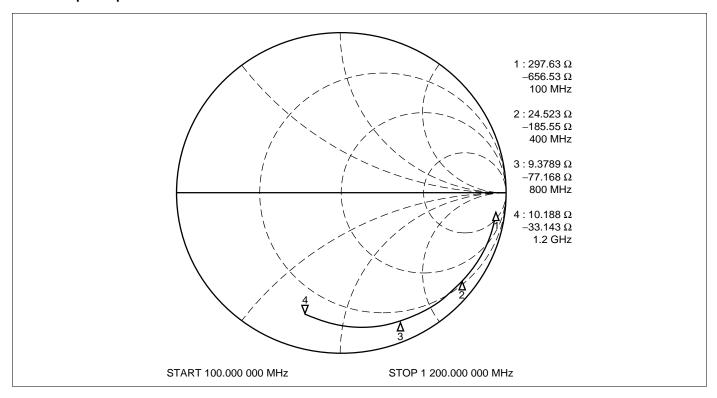

10. Measurement Circuit (for Measuring Input Sensitivity fin/OSC_{IN})

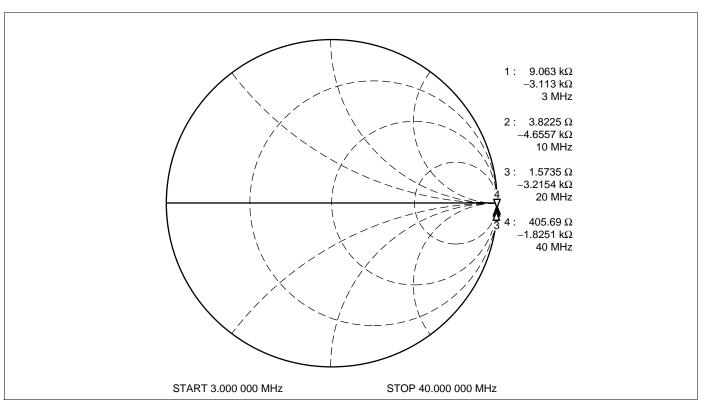


11. Typical Characteristics

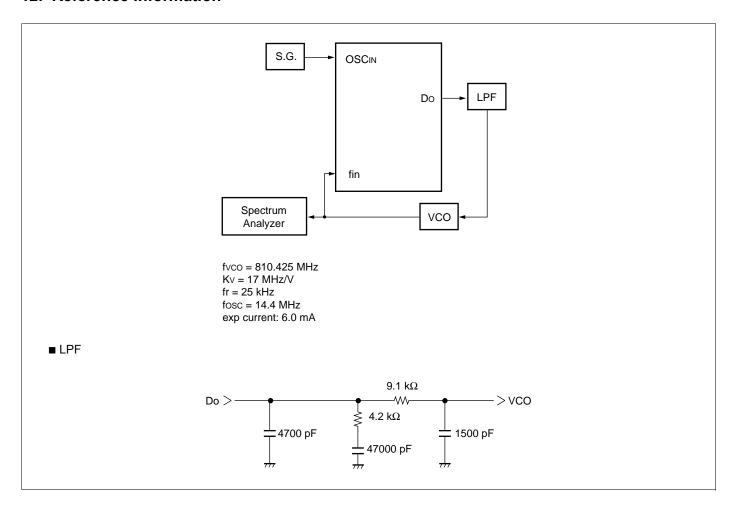

11.1 fin Input Sensitivity

11.2 OSC_{IN} Input Sensitivity

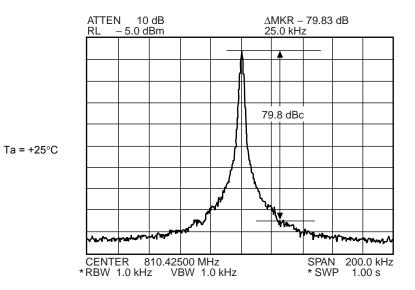




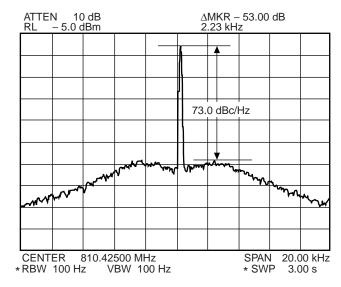
11.4 fin Input Impedance



11.5 OSC_{IN} Input Impedance

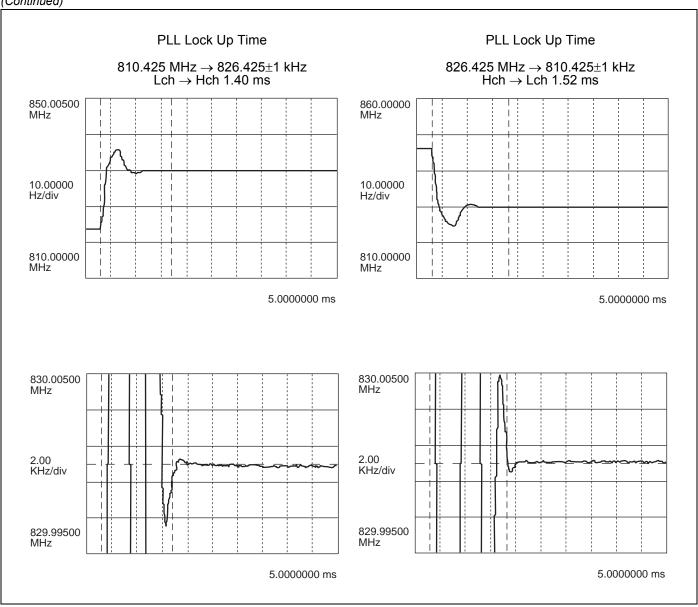


12. Reference Information



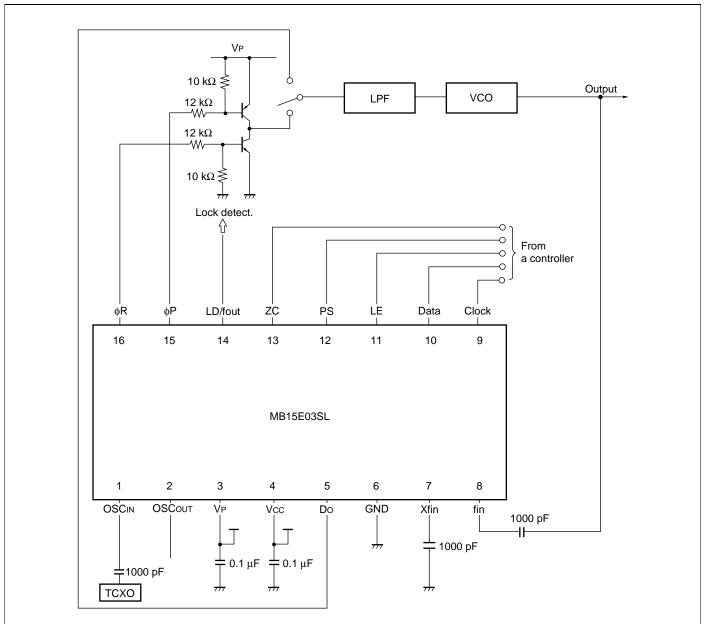
■ PLL Reference Leakage

■ PLL Phase Noise



Ta = +25°C

(Continued)



(Continued)

13. Application Example

V_P: 5.5 V Max

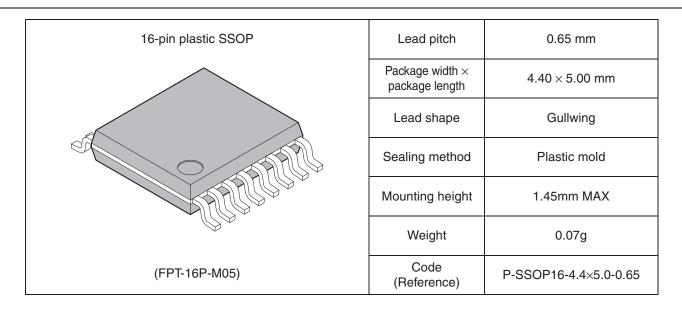
Notes:

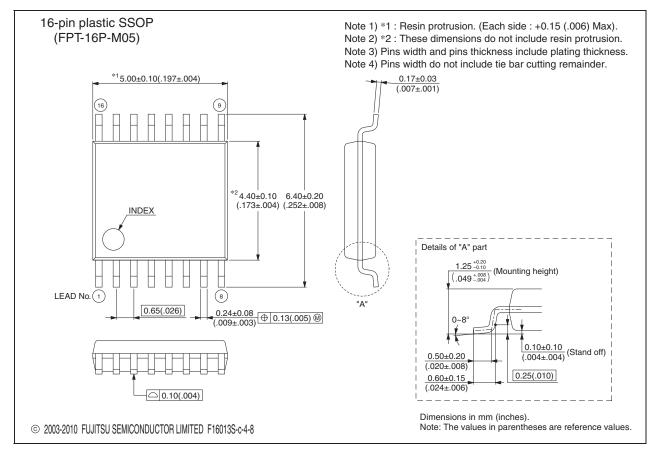
- In case of using a crystal resonator, it is necessary to optimize matching between the crystal and this LSI, and perform detailed system evaluation. It is recommended to consult with a supplier of the crystal resonator. (Reference oscillator circuit provides its own bias, feedback resistor is $100 \text{ k}\Omega$ (typ).)
- SSOP-16

14. Usage Precautions

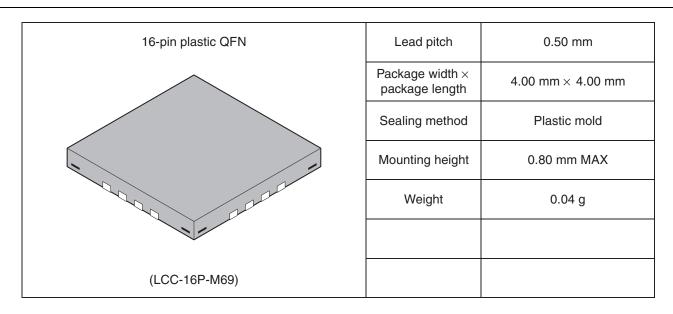
To protect against damage by electrostatic discharge, note the following handling precautions:

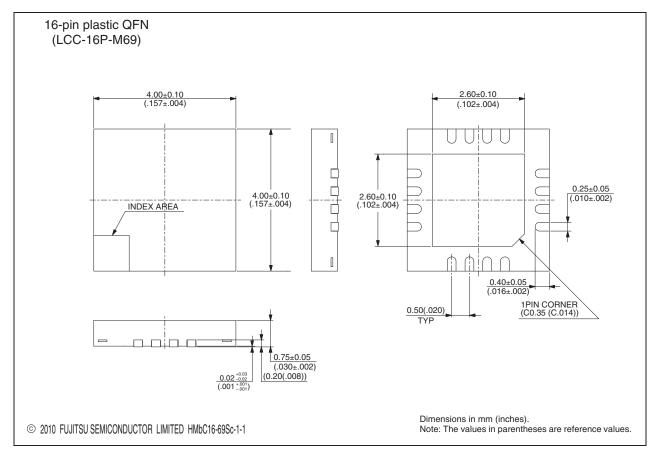
- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting device into or removing device from a socket.
- Protect leads with a conductive sheet when transporting a board-mounted device.


15. Ordering Information


Part number	Package	Remarks
MB15E03SLPFV1	16-pin, Plastic SSOP (FPT-16P-M05)	
MB15E03SLWQN	16-pin, Plastic QFN (LCC-16P-M69)	

Document Number: 002-08431 Rev. *A Page 23 of 27




16. Package Dimensions

Document History

Document Title: MB15E03SL Single Serial Input PLL Frequency Synthesizer On-chip 1.2 GHz Prescaler Document Number: 002-08431				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	TAOA	05/31/2012	Initial release.
*A	5562033	TAOA	12/22/2016	Migrated Spansion datasheet "DS04–21359–6E" into Cypress Template.

Document Number: 002-08431 Rev. *A

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Lighting & Power Control

Memory

Cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/interface

cypress.com/powerpsoc

cypress.com/powerpsoc

cypress.com/memory

PSoC cypress.com/psoc
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless/RF cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IoT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2000-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-08431 Rev. *A Revised December 22, 2016 Page 27 of 27

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

MB15E03SLPFV1-G-ER-6E1 MB15E03SLWQN-G-JK-EFE1 MB15E03SLWQN-G-JK-ERE1