



# Through Hole Lamp Product Data Sheet

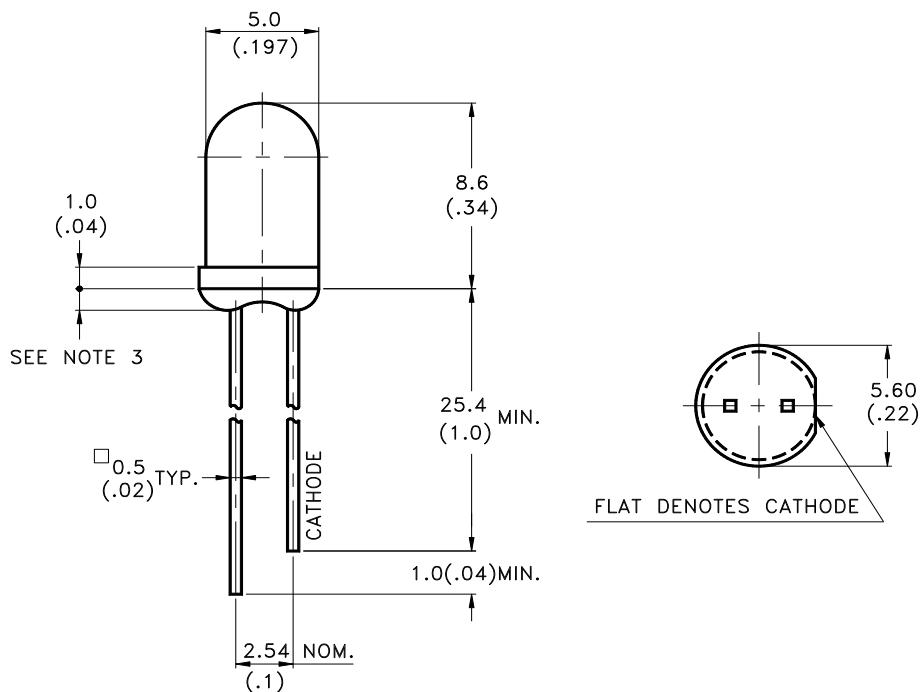
LTL-4253

Spec No.: DS-20-92-0264

Effective Date: 05/31/2000

Revision: -

LITE-ON DCC


RELEASE

BNS-OD-FC001/A4

## Features

- \* High Intensity.
- \* Popular T-1 3/4 diameter Package.
- \* Selected minimum intensities.
- \* General purpose leads.
- \* Reliable and rugged.

## Package Dimensions



| Part No. | Lens            | Source Color |
|----------|-----------------|--------------|
| LTL-4253 | Yellow Diffused | Yellow       |

### Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is  $\pm 0.25\text{mm} (.010")$  unless otherwise noted.
3. Protruded resin under flange is 1.0mm(.04") max.
4. Lead spacing is measured where the leads emerge from the package.
5. Specifications are subject to change without notice.



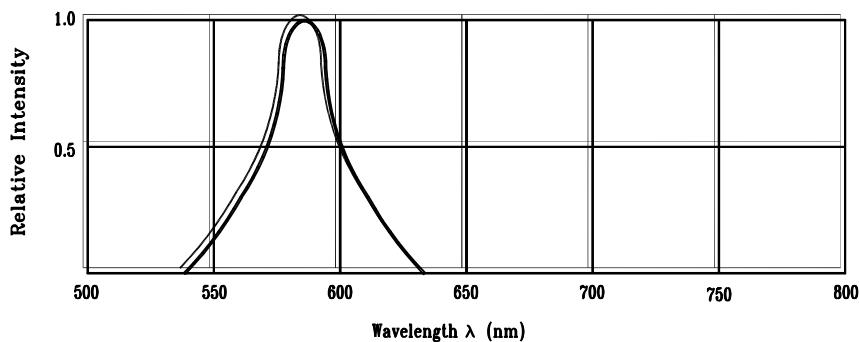
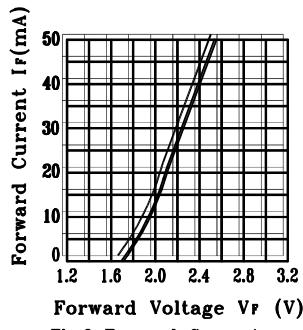
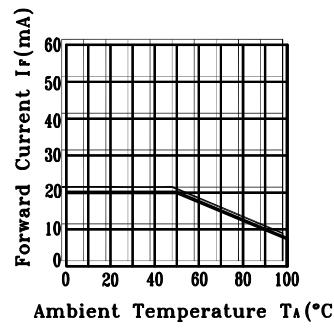
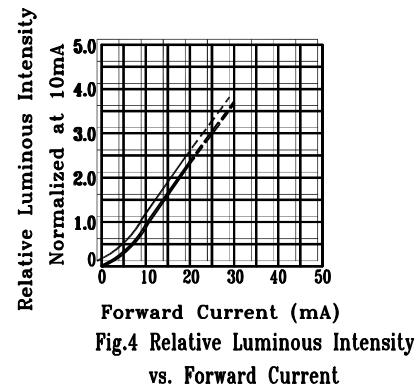
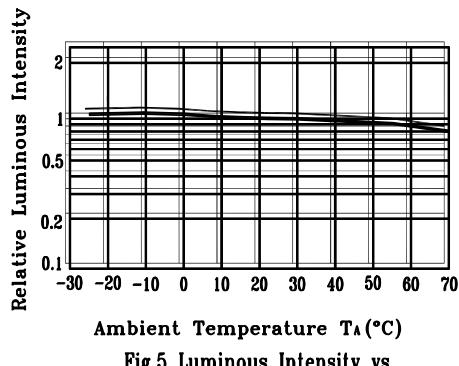
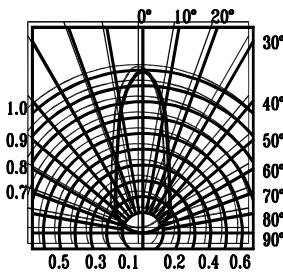
LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

**Absolute Maximum Ratings at TA=25°C**

| Parameter                                                    | Maximum Rating      | Unit  |
|--------------------------------------------------------------|---------------------|-------|
| Power Dissipation                                            | 60                  | mW    |
| Peak Forward Current<br>(1/10 Duty Cycle, 0.1ms Pulse Width) | 80                  | mA    |
| Continuous Forward Current                                   | 20                  | mA    |
| Derating Linear From 50°C                                    | 0.25                | mA/°C |
| Reverse Voltage                                              | 5                   | V     |
| Operating Temperature Range                                  | -55°C to + 100°C    |       |
| Storage Temperature Range                                    | -55°C to + 100°C    |       |
| Lead Soldering Temperature<br>[1.6mm(.063") From Body]       | 260°C for 5 Seconds |       |

## Electrical / Optical Characteristics at TA=25°C







| Parameter                | Symbol            | Min. | Typ. | Max. | Unit | Test Condition                    |
|--------------------------|-------------------|------|------|------|------|-----------------------------------|
| Luminous Intensity       | I <sub>V</sub>    | 5.6  | 19   |      | mcd  | I <sub>F</sub> = 10mA<br>Note 1,4 |
| Viewing Angle            | 2θ <sub>1/2</sub> |      | 36   |      | deg  | Note 2 (Fig.6)                    |
| Peak Emission Wavelength | λ <sub>P</sub>    |      | 585  |      | nm   | Measurement<br>@Peak (Fig.1)      |
| Dominant Wavelength      | λ <sub>d</sub>    |      | 588  |      | nm   | Note 3                            |
| Spectral Line Half-Width | Δλ                |      | 35   |      | nm   |                                   |
| Forward Voltage          | V <sub>F</sub>    |      | 2.1  | 2.6  | V    | I <sub>F</sub> = 20mA             |
| Reverse Current          | I <sub>R</sub>    |      |      | 100  | μA   | V <sub>R</sub> = 5V               |
| Capacitance              | C                 |      | 15   |      | pF   | V <sub>F</sub> = 0, f = 1MHz      |

Note:

1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.
2. θ<sub>1/2</sub> is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, λ<sub>d</sub> is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
4. The I<sub>V</sub> guarantee should be added ±15%.

**Typical Electrical / Optical Characteristics Curves**

(25°C Ambient Temperature Unless Otherwise Noted)

**Fig.1** Relative Intensity vs. Wavelength**Fig.2** Forward Current vs. Forward Voltage**Fig.3** Forward Current Derating Curve**Fig.4** Relative Luminous Intensity vs. Forward Current**Fig.5** Luminous Intensity vs. Ambient Temperature**Fig.6** Spatial Distribution