Handleing and Assembly Instructions
For SGPxx Gas Sensors

Preface
Sensirion SGPxx are gas sensors of high quality and are designed for high volume applications. They are therefore compatible with standard assembly and soldering processes. For taking advantage of their outstanding performance, some precautions must be taken during storage, assembly, and packaging. Therefore, please read the following instructions carefully – preferably during design-in phase and prior to production release of the respective device. Proper handling and choice of materials are crucial. Operating and storing sensors in the field under ambient environment is not critical.

1 Applicability
This document is applicable to all Sensirion SGPxx gas sensors.

2 ESD Protection
The sensor shall be protected from ESD (Electrostatic Discharge) and only be handled in ESD protected areas (EPA) under protected and controlled conditions (ground all personnel with wrist-straps, ground all non-insulating and conductive objects, exclude insulating materials from the EPA, operate only in grounded conductive floor, etc.). Protect sensors outside the EPA using ESD protective packaging.

![Figure 1 Protection against ESD is mandatory.](image)

3 Exposure to Chemicals
SGPxx are highly sensitive environmental sensors and as such they are not ordinary electronic components. Opening of the original package exposes the sensors to the given environmental conditions and makes them susceptible to pollutants. While applying sensors in the field in ambient environment is not critical, pollutants are known to occur in manufacturing environments and during storage. Please carefully follow the guidelines in these instructions to ensure that you can benefit from the outstanding performance of the SGPxx gas sensors.

The sensors shall not get in close contact with pure volatile chemicals such as solvents or other organic compounds. Especially high gas concentrations and long exposure to them during storage must be avoided. Volatile organic compounds cover classes such as ketones (e.g., acetone), aldehydes (e.g., formaldehyde), alcohols (e.g., ethanol), aromatics (e.g., toluene), esters (e.g., glycol ester), etc. Please note that such chemicals are integral part of many epoxies, glues, adhesives, etc. and they may outgas during baking and curing. These chemicals are also added as plasticisers into plastics, used for packaging materials, and do outgas for some period.

Acids and bases may affect the sensor irreversibly and shall be avoided: HCl, H₂SO₄, HNO₃, NH₃, acetic acid, etc. Also oxidizing gases such as ozone (O₃), nitrogen dioxide (NO₂), and H₂O₂ in high concentration should be avoided. Please note that the examples listed above do not represent a complete list of harmful substances.

Be particularly careful when using strong cleaning agents (e.g., detergents, alcohols, brominated or fluorinated solvents). Cleaning any part of a product might lead to high concentration of cleaning agents on the sensor resulting in permanent drift or complete breakdown of the sensor. Please remove any sensors or devices containing sensors before cleaning the production area and tools. Ensure good ventilation (fresh air supply) and that any solvents or compounds mentioned herein have evaporated before resuming production.

4 Packing and Storage
Always store SGPxx gas sensors in originally sealed ESD bags.
SGPxx gas sensors need to be stored with care. To avoid accumulation of harmful gases that might settle on the sensing layers, it is recommended that the manufacturing environment is well ventilated. Prior to assembly or use of the sensors it is strongly recommended to store the sensors in the original sealed ESD bag.

Once the sensors have been removed from the original ESD bag we recommend to store the individual sensors as well as devices with assembled sensors in sealed metal-in antistatic shielded ESD bags, preferably under vacuum, in an environment of inert gas (like N₂) or synthetic air meeting the requirements for temperature and relative humidity as detailed under Recommended Operating and Storage Conditions in the corresponding datasheet of the SGPxx product. In particular, it is recommended not to use any adhesive or adhesive tapes to reseal the sensor bag after opening. Recommended ESD bags (no polluting effect on SGPxx sensors) are given in the table below. For more detailed information including the use of different ESD bags as specified herein please contact Sensirion.

<table>
<thead>
<tr>
<th>ESD bag</th>
<th>Manufacturer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strobel</td>
<td>«topdry EMI» bags</td>
</tr>
</tbody>
</table>

Sensors as a component or mounted into the final product shall not be packaged in outgassing plastic materials which could cause sensor pollution. Besides metal-in antistatic shielded ESD bags, paper or cartboard based packaging, deep drawn plastic trays (PE, PET, PP) may be considered. Do not use antistatic polyethylene bags (light blue, pink or rose color); be very careful with bubble foils and foams.

Be careful with stickers located inside the packing (e.g., on the housing of the device). Sticker size should be kept to a minimum, and the sticky side shall fully adhere onto a surface.

Please note that many packaging materials may be provided with additives (plasticizers) which may have a polluting effect on the sensor. Generally speaking, if a material emits a strong odor you should not use it. Additives may also be added to materials which are listed for recommended use. For high safety, device housing and shipment packaging must be qualified. Such a qualification test may contain exposure of the final device together with sensors in the original shipment packaging to a temperature of 55 °C for at least 168 hours. If shipping or storage conditions are expected to be harsh, the qualification test conditions for the packing material have to be customized. Residual outgassing of the package can be excluded if the difference in sensor reading between the devices and references reveals no change as function of this baking procedure.

5 Pick-and-Place Process

Standard pick-and-place equipment for QFN packages may be used for handling. The center part of the sensor is very sensitive to any mechanical impact and any contact must be prevented. The inner diameter of the pick-and-place nozzle must be sufficiently large to ensure (under consideration of maximum pick-up offsets) that the nozzle will not be in mechanical contact with the central part of the sensor package with a diameter of 1.5 mm. In particular we recommend a pick-and-place nozzle having an opening with inner diameter larger than 2 mm.

Avoid mechanical contact during pick-and-place process at the sensor center.

Sensors as a component or mounted into the final product shall not be packaged in outgassing plastic materials which could cause sensor pollution. Besides metal-in antistatic shielded ESD bags, paper or cartboard based packaging, deep drawn plastic trays (PE, PET, PP) may be considered. Do not use antistatic polyethylene bags (light blue, pink or rose color); be very careful with bubble foils and foams.

Be careful with stickers located inside the packing (e.g., on the housing of the device). Sticker size should be kept to a minimum, and the sticky side shall fully adhere onto a surface.

Please note that many packaging materials may be provided with additives (plasticizers) which may have a polluting effect on the sensor. Generally speaking, if a material emits a strong odor you should not use it. Additives may also be added to materials which are listed for recommended use. For high safety, device housing and shipment packaging must be qualified. Such a qualification test may contain exposure of the final device together with sensors in the original shipment packaging to a temperature of 55 °C for at least 168 hours. If shipping or storage conditions are expected to be harsh, the qualification test conditions for the packing material have to be customized. Residual outgassing of the package can be excluded if the difference in sensor reading between the devices and references reveals no change as function of this baking procedure.

5 Pick-and-Place Process

Standard pick-and-place equipment for QFN packages may be used for handling. The center part of the sensor is very sensitive to any mechanical impact and any contact must be prevented. The inner diameter of the pick-and-place nozzle must be sufficiently large to ensure (under consideration of maximum pick-up offsets) that the nozzle will not be in mechanical contact with the central part of the sensor package with a diameter of 1.5 mm. In particular we recommend a pick-and-place nozzle having an opening with inner diameter larger than 2 mm.

Areas of the sensor suitable for application of force during mounting process. Red area is restricted, grey frame area is allowed.

The surface of the tool that touches the module outside of the center area should be flat and smooth. Pick-and-place forces should not exceed 4 N during downward placement.

6 Water & Dust Protection Membrane

The SGPxx gas sensor is equipped with a water and dust protection membrane that is directly attached to the sensor. The membrane completely covers the sensor opening (see Figure 3) and thus acts as a shield against pollution from spray water and dust. The membrane is completely
permeable to all target gases the SGPxx is intended to measure. Therefore, the water and dust protection membrane must not be removed, damaged, or altered in any way to ensure reliable operation of the SGPxx gas sensor.

7 Assembly

No mechanical force shall be applied to any part of the sensor during assembly or usage. Use gloves or finger cots while assembling the SGPxx.

7.1 Soldering Instructions

Sensors in SMT packages such as Sensirion SGPxx gas sensors are classified as Moisture Sensitivity Level 1 (IPC/JEDEC J-STD-020). It is recommended to process the sensors within 1 year after date of delivery.

Standard reflow soldering ovens may be used for soldering. The sensors are designed to withstand a soldering profile according to IPC/JEDEC J-STD-020 with a recommended peak temperature of 245 °C during up to 30 s for Pb-free assembly in IR/Convection reflow ovens (see Figure 4). In addition, we strongly advice a maximum ramp-down rate of <4 °C/s. Make sure that maximum temperatures and exposure times are respected. In case the PCB passes through multiple solder cycles (as is the case for, e.g., PCBs that are assembled on top and bottom side), it is recommended to assemble the SGPxx only during the last solder cycle. This is to reduce risks of sensor pollution.

<table>
<thead>
<tr>
<th>Recommended conditions during soldering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>Liquid phase</td>
</tr>
<tr>
<td>Ramp-up</td>
</tr>
<tr>
<td>Peak</td>
</tr>
<tr>
<td>Ramp-down</td>
</tr>
</tbody>
</table>

Board wash shall be avoided for Sensirion SGPxx gas sensors and it is therefore recommended to use a “no-clean” solder paste. In addition, we recommend not to use ultrasonic cleaning since it could result in damage of the sensor. If a board wash is a requirement for the final product or application, the corresponding wash process needs to be properly qualified in order to prove compatibility with the SGPxx gas sensor.

Figure 5 Do not apply board wash to PCBs containing SGPxx sensors.

We recommend not to manually solder the Sensirion SGPxx gas sensor since corresponding process parameters may not be controlled well and it could result in a damage of the sensor. In particular, hot air with an air temperature above 250 °C on the device surface should be avoided. Since the sensing element has a very low thermal mass, it heats up to the air temperature very quickly.

It is important to note that the side faces of the I/O pads may oxidise over time. Therefore, a solder fillet may or may not form.

For application in corrosive environment – such as condensed water or corrosive gases – it may be necessary to protect the electronic assembly including the soldered contacts of the sensor with a passivation. Such passivation may be achieved by conformal coating or by applying adhesive.

7.2 Conformal Coating

Low viscose conformal coatings or potting materials may flow onto the sensor, cover the sensor element and thus render the gas sensor dysfunctional. Ensure that nothing is

1 Solder types are related to the solder particle size in the paste: Type 3 covers the size range of 25–45 µm as specified in IPC J-STD-005A.
(even partly) covering the dust protection membrane of the sensors. Do not protect/cover the top surface with tape as this may harm the dust protection membrane.

Use recommended conformal coatings, avoid outgassing by curing and avoid covering of the sensor top surface.

Make sure that the employed conformal coating material is not outgassing volatile organic compounds (e.g., aromatics) or containing volatile solvents that will outgas in the final application in order not to compromise the sensor reading.

Figure 6 Do not put tape directly on the sensor.

Do not use silicone-based conformal coatings. Sensirion tested and recommends the conformal coatings listed in the table below which are known to be suitable if applied and fully cured under good ventilation (fresh air supply) and according to respective datasheet.

<table>
<thead>
<tr>
<th>Conformal coating</th>
<th>Manufacturer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chase</td>
<td>Humiseal 1B73EPA</td>
<td></td>
</tr>
<tr>
<td>Peters</td>
<td>Elpeguard SL 1301 ECO-FLZ</td>
<td></td>
</tr>
<tr>
<td>Electrolube</td>
<td>AFA (Aromatic Free Acrylic Conformal Coating)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7 If conformal coating is applied, the top surface of the sensor must remain free of coating.

The SGPxx gas sensor is highly sensitive to small ambient gas concentrations. Therefore, it has to be ensured that the conformal coating is not outgassing to avoid unwanted gas concentrations around the sensor. Drying conformal coatings for 24 h at room temperature and additional baking for 5 h at 80 °C has been tested and leads to reduced outgassing. Depending on the type and amount/thickness of coating, longer baking time might yield even better results. However, baking temperature should not exceed 85° C. In any case, ensure good ventilation throughout the application, staging and curing to prevent sensor pollution.

In order to ensure a homogeneous baking it is essential to have the thinnest possible coating and avoid accumulation of the fluid material in gaps and voids on the PCB. Please contact Sensirion in case of uncertainty.

Figure 8 Do not spray onto sensor.

7.3 Adhesives and Encapsulants

Use recommended adhesive and encapsulant materials.

Regarding adhesives and encapsulants the materials in the following tables have been tested and may be used – according to respective datasheets, applied and fully cured in well ventilated environment (fresh air supply). Other materials than the ones listed below might also be used, however they were not tested and thus are not recommended.

<table>
<thead>
<tr>
<th>Epoxy adhesives</th>
<th>Manufacturer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO-TEK</td>
<td>H70S</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other recommended materials</th>
<th>Manufacturer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teflon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEEK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polycarbonate (PC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FR4 PCB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viton seals (after thermal outgassing)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3M</td>
<td>Kaplon (polyimide) tape</td>
</tr>
</tbody>
</table>
The sensor shall be mounted into the final product, if possible, after all materials that are used in the assembly process have completely cured, outgassed or dried out. Otherwise ensure good ventilation (fresh air supply) in curing ovens and assembly lines.

7.4 Handling after Assembly until Final Use

In order to protect the SGPxx gas sensor during shipment, it is strongly recommended to seal the cavity of the housing in the device where the sensor is placed in by one of the recommended adhesives (see above) until its final use by the end-customer. The adhesive must not touch the dust protection membrane of the SGPxx.

![Adhesive sealing illustration](image)

Figure 9 Cover the device cavity where the SGPxx is located by a recommended adhesive during shipment until final use as well as during rework and repair.

7.5 Rework and repair of final devices

Ensure that recommendations in these instructions are equally considered during repair and rework of assemblies containing the SGPxx gas sensor. During repair and rework it may be recommendable to cover the opening of the cavity within the device where the SGPxx is placed in with kapton tape (specific recommendation see above).

8 Application in extreme environments

Some applications require the exposure of gas sensors to harsh environments. In many cases, this is uncritical for the use of the SGPxx. However, some precautions must be taken.

For exposure to extreme conditions with regards to humidity and temperature please consult the datasheet of the respective product. Please make sure that exposure time of the sensor to the maximum range of operating conditions is limited. Limits are provided in the corresponding data sheet. Exposure to volatile organic compounds at high concentration and long exposure time is critical not only in assembly but also in the field. Such applications need to be carefully tested and qualified.

Exposure to acids (pH < 6) or bases (pH > 8) may be critical, too. Critical concentrations are typically high enough to attack polymers. Etching substances such as H2O2, NH3, etc. at high concentration are critical to the sensor, too.

Corrosive substances at very low concentrations are not critical to the sensor itself. However, they may attack the solder contacts. Therefore, the contacts must be well protected (passivated) in case of an application to such environment – compare also Section 7 Assembly.

Application of Sensirion SGPxx sensors to harsh environments must be carefully tested and qualified. Sensirion qualifies its SGPxx sensors to work properly within ambient clean air – qualification for use in harsh environments is duty of the user of the sensor.

9 Disclaimer

The above given restrictions, recommendations, materials, etc. do not cover all possible cases and items. Material recommendations are provided regarding pollution of SGPxx gas sensors and assume optimally sealed storage conditions – the materials were not tested regarding other properties like reliability, performance, usability or mechanical properties. The material recommendations have been compiled with our best knowledge at the time of writing. Manufacturers may change the compounds without notice, which can lead to reduced sensor performance due to outgassing. This document is not to be considered complete and is subject to change without prior notice.
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Page(s)</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2018</td>
<td>1.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>May 2020</td>
<td>1.1</td>
<td>All</td>
<td>Total revision</td>
</tr>
</tbody>
</table>
Headquarters and Subsidiaries

Sensirion AG
Laubisruetistr. 50
CH-8712 Staefa ZH
Switzerland

phone: +41 44 306 40 00
fax: +41 44 306 40 30

info@sensirion.com
www.sensirion.com

Sensirion Inc., USA
phone: +1 312 690 5858
info-us@sensirion.com
www.sensirion.com

Sensirion Japan Co. Ltd.
phone: +81 3 3444 4940
info-jp@sensirion.com
www.sensirion.com/jp

Sensirion Korea Co. Ltd.
phone: +82 31 337 7700-3
info-kr@sensirion.com
www.sensirion.com/kr

Sensirion China Co. Ltd.
phone: +86 755 8252 1501
info-cn@sensirion.com
www.sensirion.com/cn

Sensirion Taiwan Co. Ltd
phone: +886 3 5506701
info@sensirion.com
www.sensirion.com

To find your local representative, please visit www.sensirion.com/distributors