

PIC16(L)F18854 Family Silicon Errata and Data Sheet Clarification

The PIC16(L)F18854 family devices that you have received conform functionally to the current Device Data Sheet (DS40001826D), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in [Table 1](#). The silicon issues are summarized in [Table 2](#).

The errata described in this document will be addressed in future revisions of the PIC16(L)F18854 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of [Table 2](#) apply to the current silicon revision (**A1**).

Data Sheet clarifications and corrections start on [page 5](#), following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com).

TABLE 1: SILICON DEVREV VALUES

Part Number	Device ID ⁽¹⁾	Revision ID (Silicon Revision) ⁽²⁾	
		A1	A2
PIC16F18854	306Ah	2001h	2002h
PIC16LF18854	306Bh	2001h	2002h

Note 1: The Revision ID and Device ID are located in the Configuration memory at addresses 8005h and 8006h, respectively.

2: Refer to the "PIC16(L)F188XX Memory Programming Specification" (DS40001753) for detailed information on Device and Revision IDs for your specific device.

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. For MPLAB X IDE, select *Window > Dashboard* and click the **Refresh Debug Tool Status** icon ().
5. Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC16(L)F18854 silicon revisions are shown in [Table 1](#).

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	Item No.	Issue Summary	Affected Revision ⁽¹⁾	
				A1	A2
Analog-to-Digital Converter with Computation (ADC2)	Computation Overflow Bit	1.1	The Computation Overflow bit will be erroneously set by the ADFLTR.	X	
Analog-to-Digital Converter with Computation (ADC2)	ADC Conversion	1.2	When using ADCRC as the ADCC clock source, there is a delay of one instruction cycle to set the ADGO bit.	X	
Analog-to-Digital Converter with Computation (ADC2)	Positive Voltage Reference	1.3	Using the FVR as the ADC positive voltage reference can cause missing codes.	X	X
Nonvolatile Memory Control	NVMREG Access	2.1	Self-writes on LF devices below 2.2V at -40°C may not work.	X	
EEPROM	Indirect Read	3.1	Indirect read of EEPROM with FSR returns unexpected value.	X	
ECCP	Compare Mode	4.1	Toggle mode may output multiple pulses when source clock has a prescaler other than 1:1.	X	
MSSP	I ² C Communication	5.1	Acknowledge failure on LF Devices Only.	X	
Electrical Specifications	Fixed Voltage Reference (FVR) Accuracy	6.1	Fixed Voltage Reference (FVR) output tolerance may be higher than specified at temperatures below -20°C.	X	
Secondary Oscillator (Sosc)	Low-Power Mode	7.1	SOSC does not properly run in Low-Power mode at low temperatures.	X	
Comparators	Offset Voltage	8.1	Comparator Input Offset value is higher than specified.	X	X

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A1).

1. Module: Analog-to-Digital Converter with Computation (ADC2)

1.1 Computation Overflow Bit

If the sign bit of ADFLTR (bit 7 of ADFLTRH) is set, the Computation Overflow bit will also be set, even though this is not a legitimate case of an overflow event.

Work around

None.

Affected Silicon Revisions

A1	A2						
X							

1.2 ADC Conversion

When using ADCRC as the clock source for ADCC, there is a delay of one instruction cycle between the user setting the ADGO bit and being able to read it set. This can lead to a false conversion complete scenario (i.e., ADGO being cleared), depending if the user code has a bit clear test (BTFS) instruction on the ADGO bit, immediately after setting the ADGO bit. See code example below.

e.g.

```
BSF ADCON0, ADGO      ; Start conversion
BTFS ADCON0, ADGO     ; Is conversion done?
GOTO $-1               ; No, test again
```

The BTFS will pass the very first time in this situation.

Work around

Add a NOP instruction after setting the ADGO bit and before testing the bit for completion of conversion. See code example below.

e.g.

```
BSF ADCON0, ADGO      ; Start conversion
NOP
BTFS ADCON0, ADGO     ; Is conversion done?
GOTO $-1               ; No, test again
```

Affected Silicon Revisions

A1	A2						
X							

1.3 Positive Voltage Reference

Using the FVR as the positive voltage reference for the ADC can cause an increase in missing codes.

Work around

Increase the bit conversion time (TAD) to 8 us or higher.

Affected Silicon Revisions

A1	A2						
X	X						

2. Module: Nonvolatile Memory Control

2.1 NVMREG Access

When performing self-writes through NVMREG access on PIC16LF18854 devices with VDD below 2.2V and temperature of -40°C, the writes may not work. This applies to both PFM and EEPROM writes.

Work around

None.

Affected Silicon Revisions

A1	A2						
X							

3. Module: EEPROM

3.1 Indirect Read

Performing FSR reads of Data EEPROM addresses other than the lowest address (FSR=7000h) will return unexpected values.

Work around

Set NVMADRHL to the desired address (F000h through F0FFh) and retrieve the EEPROM value from the NVMDAVL register by setting the NVMREGS and RD bits in the NVMCON1 register.

Affected Silicon Revisions

A1	A2						
X							

4. Module: ECCP

4.1 Compare Mode

The ECCP Compare Toggle modes (CCPxCON<3:0> bits = 0010 or 0001) output multiple pulses instead of a single toggle pulse when its source clock has a prescaler other than 1:1.

Work around

Use CCP Compare mode with pulse output (CCPxCON<3:0> bits = 1011) to clock a CLC configured as a J-K flip-flop in Toggle mode.

Affected Silicon Revisions

A1	A2					
X						

5. Module: MSSP

5.1 I²C Communication

When using the MSSP to perform I²C communication on LF devices and the voltage for VDD is above 3V, the Acknowledge signal (ACK) does not always occur after the second address byte is received, as expected. This issue exhibits itself when the MSSP is configured either for 7-bit or 10-bit addressing and in either Master or Slave mode.

The issue occurs more frequently when using 10-bit addressing in Slave mode and the lower address bits (A7-A0) are transmitted by the Master on the SDA line.

Work around

Do not exceed 3V on VDD when using an LF device in this manner.

Affected Silicon Revisions

A1	A2						
X							

6. Module: Electrical Specifications

6.1 Fixed Voltage Reference (FVR) Accuracy

At temperatures below -20°C, the output voltage for the FVR may be greater than the levels specified in the data sheet. This will apply to all three gain amplifier settings (1X, 2X, 4X). The affected parameter numbers found in the data sheet are: FVR01, (1X gain setting), FVR02 (2X gain setting), and FVR03 (4X gain setting).

Work around

At temperatures above -20°C, the stated tolerances in the data sheet remain in effect. Operate the FVR only at temperatures above -20°C.

Affected Silicon Revisions

A1	A2						
X							

7. Module: Secondary Oscillator (Sosc)

7.1 Low-Power Mode

While operating the device at low temperatures and using the Sosc in Low-Power mode (OSCCON3<6> = 0), the Sosc might fail to operate as expected.

Work around

If Sosc functionality is required at low temperatures, configure the Sosc for high-power operation (OSCCON3<6> = 1).

Affected Silicon Revisions

A1	A2						
X							

8. Module: Comparators

8.1 Offset Voltage

The maximum value of the input offset voltage for the comparators is increasing from ± 30 mV to ± 60 mV.

The parameter in the data sheet is CM01, also known as V_{IOFF}.

Work around

None.

Affected Silicon Revisions

A1	A2						
X	X						

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001826D):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

None.

APPENDIX A: DOCUMENT REVISION HISTORY

Rev E Document (3/2020)

Added Module 8 (Comparators).

Rev D Document (3/2018)

Added Module 7 (Secondary Oscillator) and a row in Table 2;

Added silicon revision A2 and associated issues.

Rev C Document (6/2017)

Added Module 1.3 (PVR), Module 5 (MSSP) and Module 6 (Electrical Specifications).

Data Sheet Clarifications:

Removed all modules, data sheet updated.

Rev B Document (9/2016)

Modifications brought to Table 2.

Silicon Errata Issues:

Added ADC Conversion feature to Analog-to-Digital Converter with Computation (ADC2);
Added EEPROM and ECCP modules.

Data Sheet Clarifications:

Added modules 4 to 15.

Rev A Document (5/2016)

Initial release of this document.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. **MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.** Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzers, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQL, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5870-5

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820