Skip to Main Content
 
United States - Flag United States

Please confirm your currency selection:

  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
  • Loading...
Applications & Technologies
RF Wireless Technology
RF Wirelesss Diagram

A radio frequency (RF) signal refers to a wireless electromagnetic signal used as a form of communication, if one is discussing wireless electronics. Radio waves are a form of electromagnetic radiation with identified radio frequencies that range from 3kHz to 300 GHz. Frequency refers to the rate of oscillation (of the radio waves.) RF propagation occurs at the speed of light and does not need a medium like air in order to travel. RF waves occur naturally from sun flares, lightning, and from stars in space that radiate RF waves as they age. Humankind communicates with artificially created radio waves that oscillate at various chosen frequencies. RF communication is used in many industries including television broadcasting, radar systems, computer and mobile platform networks, remote control, remote metering/monitoring, and many more.

While individual radio components such as mixers, filters, and power amplifiers can be classified according to operating frequency range, they cannot be strictly categorized by wireless standard (e.g. Wi-Fi, Bluetooth, etc.) because these devices only provide physical layer (PHY) support. In contrast, RF modules, transceivers, and SoCs often include data link layer support for one or more wireless communication protocols. These products are organized by wireless technology and can be browsed under the "Solutions" tab.

Bluetooth Solutions
ZigBee Solutions
Wi-Fi Solutions
GPS Solutions
< 1 GHz
Click to view larger RF Wirelesss Diagram
Click to enlarge

Although wireless communication is often associated with the 2.4 GHz frequency range, many devices and technologies use radio frequencies below 1 GHz (1000 MHz). The 900 MHz band, or 33-centimeter band, is a well-known ISM (industrial, scientific and medical) frequency range used for cordless phones, walkie-talkies, amateur radio and even amateur television. ZigBee, a specification for low-power communication in wireless personal area networks (WPANs), as well as the IEEE 802.15.4 standard it is based on, can use the 900 MHz ISM band in the Americas.

Also in the sub- GHz range is Citizens’ Band (CB) radio, a popular two-way amateur radio service occupying the 26.79 MHz to 27.4 MHz range in the United States. Both AM broadcast radio (535 KHz – 1.7 MHz) and FM broadcast radio (87 MHz – 108 MHz) are in this lower range of frequencies as well, and over-the-air television in the U.S. spans a wide (54 MHz to 806 MHz) range of carrier frequencies. Recent near field communication technology (NFC), found today in many of the newest smartphones, operates at 13.56 MHz.

» Antennas » RF Switches » Filters » LNAs (Low Noise Amplifiers) » Power Amplifiers » Buffers » Mixers » VCOs (Voltage Controlled Oscillators)
1 GHz - 5 GHz
Click to view larger RF Wirelesss Diagram
Click to enlarge

The 2.4 GHz ISM (industrial, scientific and medical) band is perhaps the most common in this frequency range. Its unlicensed nature has made the ISM bands a popular choice for many wireless technologies, such as ZigBee (IEEE 802.15.4), Bluetooth (IEEE 802.15.1), and Wi-Fi (802.11).

Many other 2.4GHz technologies exist as well; WiMAX, GPS, cordless phones, car alarms, and even microwave ovens operate in this frequency range.

» Antennas » RF Switches » Filters » LNAs (Low Noise Amplifiers) » Power Amplifiers » Buffers » Mixers » VCOs (Voltage Controlled Oscillators)
> 5 GHz
Click to view larger RF Wirelesss Diagram
Click to enlarge

Wireless signals in the upper end of the super high frequency (SHF) band and higher (5 GHz+) are often referred to as microwaves. At these frequencies water is more or less "opaque", so a microwave signal will experience significant attenuation and scattering issues due to moisture in the air. For this reason, extremely high frequency communications are either severely limited in range or always require line of sight.

Still, these types of signals can be made highly directional, and are seeing increasing use in modern technology. The ISM (industrial, scientific and medical) bands include several frequencies in the high GHz range such as Wi-Fi based on IEEE 802.11a and 802.11n wireless standards, which both 5 GHz capable. IEEE 802.11ac is the latest standard standard for emerging WiFi technology, operating exclusively in the 5 GHz band and offering significant improvements in speed, range, power consumption, and reliability. Other new technologies are designed to opearate on frequency bands much higher still; WirelessHD is a wireless specification based and frequencies as high as 60 GHz and features an impressive maximum nominal data rate of 25 gigabits per second – rivaling that of HDMI.

» Antennas » RF Switches » Filters » LNAs (Low Noise Amplifiers) » Power Amplifiers » Buffers » Mixers » VCOs (Voltage Controlled Oscillators)
Bluetooth 5
Point-to-Point Network Topology Diagram

Bluetooth is managed by the Bluetooth Special Interest Group (SIG) and is based on the IEEE 802.15.1 standard for wireless personal area networks (WPANs). Bluetooth technology is designed to provide reliable, low-power, secure wireless communications over short-range and ad hoc–piconet–networks. Bluetooth operates in the unlicensed industrial, scientific and medical (ISM) band of 2.4 GHz.

Methods - Bluetooth 5

Methods Bluetooth 5

Bluetooth® 5 Webinar

Barry Manz presenting
» Bluetooth / 802.15.1 Modules » Bluetooth / 802.15.1 Development Tools
ZigBee
Mesh Network Topology Diagram

ZigBee, like Bluetooth, is a specification for communication in wireless personal area networks (WPANs). Designed to be low cost, low power and low duty cycle, ZigBee technology is ideal for wireless sensor networks (WSNs) and other low power networks that span potentially large distances. ZigBee builds upon the IEEE 802.15.4 standard, but adds mesh networking capability with multi-hop functionality and a routing protocol. Star networks as well as peer-to-peer (e.g., mesh and cluster tree) are supported, making ZigBee networks dynamic, scalable, and decentralized.

ZigBee technology is not meant to compete with technologies such as Wi-Fi (IEEE 802.11) or Bluetooth (IEEE 802.15.1). Rather, ZigBee is designed for applications where data transfer rate is much less important than power efficiency, network size, and the capacity for ad hoc routing.

» ZigBee / 802.15.4 Modules » ZigBee / 802.15.4 Development Tools
Wi-Fi
Point-to-Multipoint Topology Diagram

Virtually all wireless local area networks (WLANs) are based upon the IEEE 802.11 standard for WLANs, called "Wi-Fi". Nearly all of today's smartphones, laptops, tablets, and eBook readers are Wi-Fi capable – with very few exceptions. WLANs allow computer networks to be established for often a fraction of the cost of installing wired Ethernet, and can be used for temporary Wi-Fi connection "hotspots" in hotels, coffee shops, airports, libraries, and more. There are a range of standards within IEEE 802.11, each denoted by a letter suffix:

802.11b – This was the first Wi-Fi standard to be widely used for creating wireless computer networks. It operates in the unlicensed 2.4GHz ISM frequency band and supports a maximum (nominal) data rate of 11 Mbit/s. 802.11b supports two modulation techniques: complementary code keying (CCK) and direct-sequence spread spectrum (DSSS).

» WiFi / 802.11 Modules » WiFi / 802.11 Development Tools
GPS & More

While Bluetooth, ZigBee, and Wi-Fi are some of the most prominent wireless standards, there are certainly many other important wireless technologies.

The Global Positioning System (GPS) is a satellite-based global navigation system that provides accurate location and time information anywhere on the planet. GPS is an important and ubiquitous technology used in applications ranging from commercial car-based navigation to advanced military target tracking and missile guidance systems. Most GPS satellites broadcast at the same two frequencies: 1575.42MHz, called the "L1" band, and the 1227.60MHz "L2" band. The signals are encoded using a CDMA spread-spectrum technique, allowing individual satellites to be distinguished from each other without co channel interference.

Radio frequency identification (RFID) is a wireless technology analogous to UPC barcodes. It is used worldwide for tracking and identifying consumer products. RFID transponders, or tags, are placed on portable objects to be tracked or identified, whether it is vehicles, livestock, baggage, or even people. RFID readers entail greater cost and complexity, so are typically stationary – installed in locations where the RFID data exchange is to take place. RFID is used in many applications including employee access control, asset tracking, electronic toll collection, and supply chain control.

» GPS Modules » GPS Development Tools » RF Modules » RF Development Tools » RFID Transponder » RFID Transponder Tools

HOW TO TEST - RF WIRELESS TECHNOLOGY
Teledyne LeCroy HDO 4000 Series High Definition Oscilloscopes
Teledyne LeCroy HDO 4000 Series High Definition Oscilloscopes

Combining Teledyne LeCroy's HD4096 high definition 12-bit technology, with long memory, a compact form factor, 12.1" touch screen display and powerful debug tools, the HDO4000 is the ideal oscilloscope for precise measurements and quick debug. Pair with Lecroy ZS series active probes for high impedance across the entire system bandwidth.



 
Amplifiers
 
Antennas
 
Cellular
 
Diodes
 
General
 
GPS
 
ISM
 
LNAs
 
Oscillators
 
Reference Design
 
Regulations
 
RF Basics
 
Broadcom
 
Crystek
 
Eaton
 
Linx Technologies
 
MA-COM
 
Maxim Integrated
 
Microsemi / Microchip
 
Qorvo
 
Skyworks Solutions, Inc.
 
TI