

## **Change in Lead Frame Material**

< Affected products: DIP package products of Discrete Division produced at Oita Operations >

Date: June 26, 2015
Toshiba Corporation
Semiconductor & Storage
Products Company

#### Description of Change/ Product to be Affected

■ Reason of change

As the current lead frame supplier, Panasonic, will discontinue the lead frame business, it has become necessary to change the supplier.

- Description of changes
- Change in lead frame supplier/manufacturing site and plating specification for DIP package products of Discrete Division produced at Oita Operations

| Change item           | From      | То        |  |  |  |
|-----------------------|-----------|-----------|--|--|--|
| Lead frame supplier   | Panasonic | Company A |  |  |  |
| Plating specification | SnAg-PPF  | Pd-PPF    |  |  |  |

 $\mathbf{\mathscr{R}PPF} = \mathbf{\underline{P}}$ re  $\mathbf{\underline{P}}$ lated  $\mathbf{\underline{F}}$ rame, which is a type of lead frame whose entire surface is plated at a time.

#### ■ Product to be affected

| Category            | Part number to be affected    |
|---------------------|-------------------------------|
| Standard logic CMOS | See List of affected products |



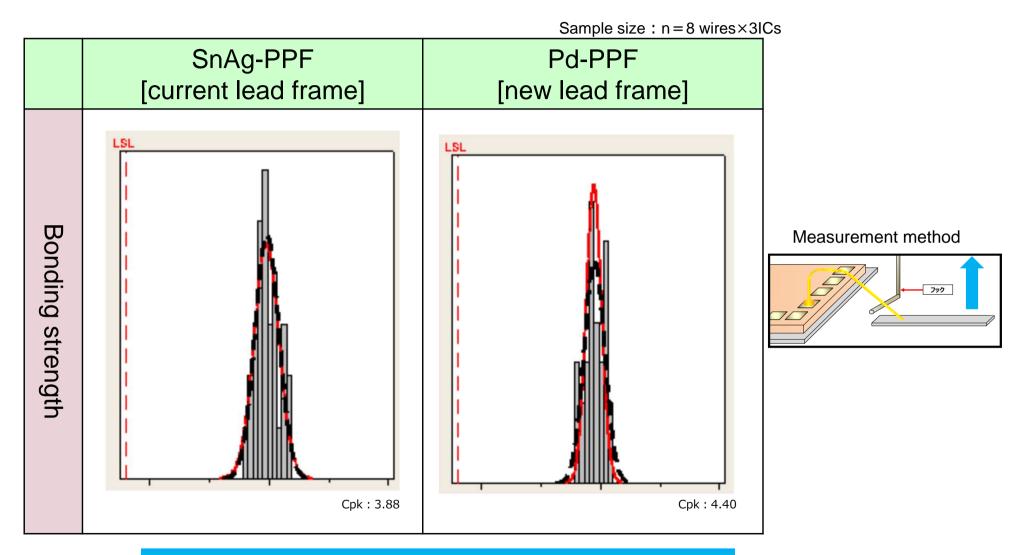
## **♦** Changes in 5M1E

| 5M1E                  | From                                                                             | То                                                             |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| Man                   | No change                                                                        |                                                                |  |  |  |  |
| Machine               | No c                                                                             | change                                                         |  |  |  |  |
| Measurement           | No c                                                                             | hange                                                          |  |  |  |  |
| Method                | No c                                                                             | hange                                                          |  |  |  |  |
| Material              | No change in quality/property of materials<br>Including lead frame               |                                                                |  |  |  |  |
| Lead frame supplier   | Panasonic                                                                        | Company A                                                      |  |  |  |  |
| Plating specification | SnAg-PPF Au wire Ag plating SnAg plating SnAg plating Mold resin Lead frame (Cu) | Pd-PPF Au wire Chip Ni/Pd/Au plating Mold resin Lead frame(Cu) |  |  |  |  |
| Environment           | No change                                                                        |                                                                |  |  |  |  |

Material (quality/properties) and shape of lead frame will be unchanged.

The supplier to be applied has track record in manufacturing of lead frames for SOP packages with Pd plating

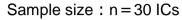
### **◆ FMEA for Risk Analysis**

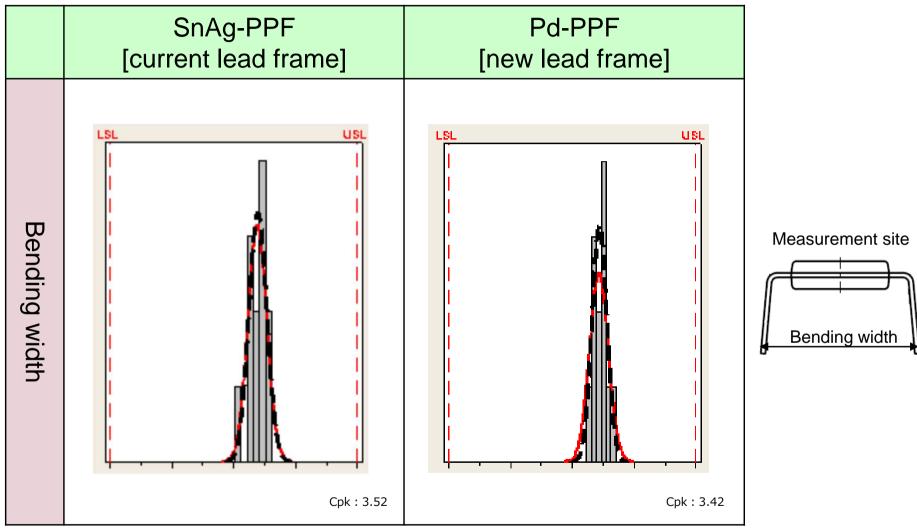

RPN is calculated based on scores of occurrence, severity and detection.

Items whose RPN is 105 or more have been subjected to unit evaluation.

| Change point/ novelty                 | Process             | Failure mode                          | 220 | Failure effect                                    | SEV | Detection method                                                               | DET | RPN | Actions taken                           |
|---------------------------------------|---------------------|---------------------------------------|-----|---------------------------------------------------|-----|--------------------------------------------------------------------------------|-----|-----|-----------------------------------------|
|                                       | Wire bonding        |                                       | 5   | Electrical/DC<br>failure                          | 7   | Discovered inside Toshiba<br>(by IQC)                                          | 3   | 105 | Check of bondability on inner lead side |
| Change in<br>lead frame<br>supplier   | Wire bonding        | Poorly bonded wire on inner lead side | 5   | Electrical/DC<br>failure                          | 7   | Discovered inside Toshiba<br>(by outgoing<br>inspection/special<br>inspection) | 5   | 175 | Reliability test<br>(TCT,PCT,THB,HTS)   |
|                                       | -                   | Problem in mounting                   | 5   | Defect in<br>mounted<br>appearance/dime<br>nsions | 7   | Discovered at customer's site (by incoming/outgoing inspections)               | 7   | 245 | Check of solderability                  |
|                                       | Wire bonding        |                                       | 5   | Electrical/DC<br>failure                          | 7   | Discovered inside Toshiba (by IQC)                                             | 3   | 105 | Check of bondability on inner lead side |
| Change in<br>plating<br>specification | Wire bonding        | Poorly bonded wire on inner lead side | 5   | Electrical/DC<br>failure                          | 7   | Discovered inside Toshiba<br>(by outgoing<br>inspection/special<br>inspection) | 5   | 175 | Reliability test<br>(TCT,PCT,THB,HTS)   |
|                                       | Lead trim & forming | Defect in trimmed/formed dimensions   | 10  | Defect in<br>mounted<br>appearance/dime<br>nsions | 7   | Discovered inside Toshiba<br>(by IQC)                                          | 3   | 210 | Check of bending width                  |
|                                       | -                   | Problem in mounting                   | 5   | Defect in<br>mounted<br>appearance/dime<br>nsions | 7   | Discovered at customer's site (by incoming/outgoing inspections)               | 7   | 245 | Check of solderability                  |




# -Evaluation Data of Bondability on Inner Lead Side at Wire Bonding Process




No problem without significant difference from the current lead frame



#### - Evaluation Data of Bending Width at Lead Trim & Forming Process





No problem without significant difference from the current lead frame



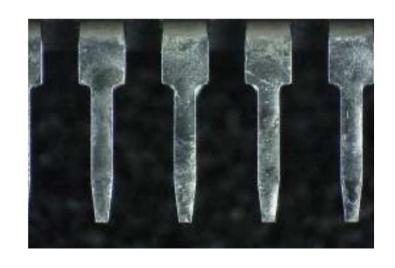
### - Reliability Test Result

| Test item                        | Test condition                                            | Sample size               | Read point  Test result (reject/gross) |  |  |
|----------------------------------|-----------------------------------------------------------|---------------------------|----------------------------------------|--|--|
| Temperature cycle                | est -65°C~150°C 30pcs×3 leadframe                         |                           | 300 cycles                             |  |  |
| (TCT)                            |                                                           |                           | 0 /30pcs×3 leadframe lots              |  |  |
| Pressure cooker<br>test<br>(PCT) | Ta=127°C, RH=100%<br>0.25MPa(non-condensing)              | 30pcs×3 leadframe         | 120 hours                              |  |  |
|                                  |                                                           | lots                      | 0 /30pcs×3 leadframe lots              |  |  |
| Temperature                      | Ta=85°C, RH=85%<br>Power supply voltage=<br>Operation Max |                           | 1000 hours                             |  |  |
| Humidity<br>Bias test<br>(THB)   |                                                           | 30pcs×3 leadframe<br>lots | 0/30pcs×3 leadframe lots               |  |  |
| High temperature                 | To 450°C                                                  | 30pcs×3 leadframe         | 1000 hours                             |  |  |
| storage<br>(HTS)                 | Ta=150°C                                                  | lots                      | 0/30pcs×3 leadframe lots               |  |  |

<sup>\*</sup>The following pre-treatment was performed: solder dipping at 26degC for 10sec

No failure occurred.




### - Solderability Test Data

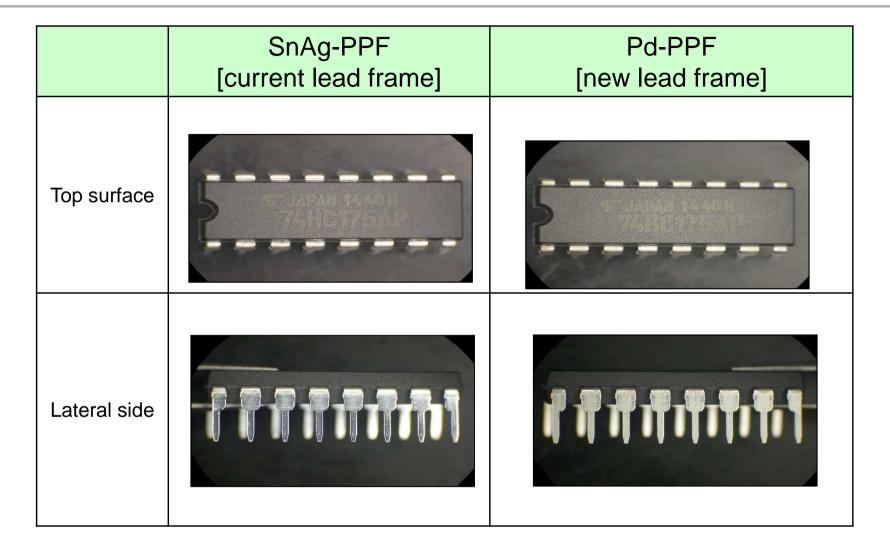
| Test item     | Sample size | Test result (reject/gross) |
|---------------|-------------|----------------------------|
| Solderability | 12pcs       | 0/12pcs                    |

SnAg-PPF [current lead frame]

Pd-PPF [new lead frame]

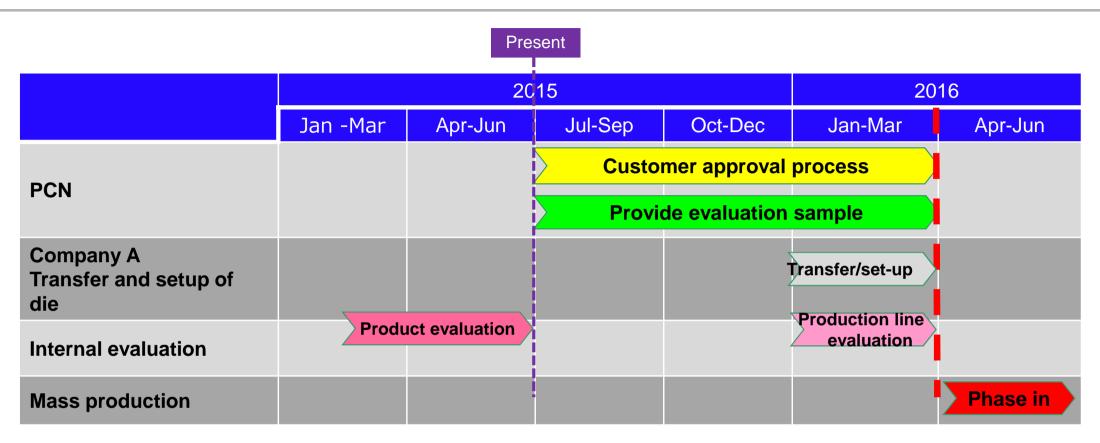





#### - Electrical Characteristics Comparison

| DC characteristic          |           | Measurement - |                                       | Spec (Ta=25℃) |     |      | Ave  | rage          | Cpk       |               |           |    |
|----------------------------|-----------|---------------|---------------------------------------|---------------|-----|------|------|---------------|-----------|---------------|-----------|----|
|                            |           | Symbol        | conditions                            | Min           | Std | Max  | Unit | Current frame | New frame | Current frame | New frame | 判定 |
| Input<br>voltage           | "H" level | VIH           | VCC=4.5V                              | 3.15          | -   | -    | V    | OK            | ОК        | -             | -         | ОК |
|                            | "L" level | VIL           | VCC=4.5V                              | -             | -   | 1.35 | V    | OK            | ОК        | -             | -         | OK |
| Output<br>current          | "H" level | IOH           | VIN=VCCorGND<br>VOH=4.18V<br>VCC=4.5V | -             | -   | -4   | mA   | -7.205        | -7.185    | 8.96          | 8.75      | OK |
|                            | "L" level |               | VIN=VCCorGND<br>VOL=0.26V<br>VCC=4.5V | 4             | -   | -    | mA   | 6.915         | 6.976     | 4.61          | 4.42      | OK |
|                            |           | IIH           | VIN=VCC<br>VCC=6V                     | -0.1          | -   | 0.1  | μΑ   | 0.005         | 0.005     | 23.73         | 21.28     | ОК |
| Input curr                 | Current   | IIL           | VIN=GND<br>VCC=6V                     | -0.1          | -   | 0.1  | μA   | -0.012        | -0.012    | 6.75          | 8.44      | OK |
| Static consumption current |           | ICC           | VIN=VCCorGND<br>VCC=6V                | -             | -   | 4    | μA   | 0.004         | 0.004     | ***           | ***       | OK |

No problem in process capabilities without significant difference from the current lead frame




#### - Package Appearance Comparison



No problem in marking visibility without significant difference from the current package Slight difference in gloss of outer leads is due to difference in plating composition.

## **♦** Changeover Schedule





#### **◆** Conclusion

#### < Request >

Toshiba has confirmed through the evaluations mentioned in this document that this lead frame change will cause no problem.

Therefore, you are kindly requested to internally review and consider approval for this change.

If you have requests for the relevant document/data or any questions, please inform our Sales representatives nearest you.

We would appreciate your understanding and cooperation.



# TOSHIBA

**Leading Innovation** >>>