

PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data

1.1 Company		STMicroelectronics International N.V
1.2 PCN No.		AMS/22/13298
1.3 Title of PCN		Qualification of subcontractor TSHT (China) as additional assembly plant for selected products of General Purpose Analog Division in SO8 package
1.4 Product Category		See product list
1.5 Issue date		2022-04-11

2. PCN Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Marcello SAN BIAGIO
2.1.2 Marketing Manager	Salvatore DI VINCENZO
2.1.3 Quality Manager	Jean-Marc BUGNARD

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
Transfer	Line transfer for a full process or process brick (process step, control plan, recipes) from one site to another site: Assembly site (SOP 2617)	TSHT

4. Description of change

	Old	New
4.1 Description	Assembly : - ST Bouskoura (Morocco) - ST Shenzhen (China) for Voltage reference only	Assembly : - ST Bouskoura (Morocco) - ST Shenzhen (China) for Voltage reference only - Subcontractor TSHT (China)
4.2 Anticipated Impact on form, fit, function, quality, reliability or processability?	No impact	

5. Reason / motivation for change

5.1 Motivation	The purpose of this change is to improve the rationalization of our manufacturing assets, provide a better support to our customers by enhancing the manufacturing process for higher volume production
5.2 Customer Benefit	SERVICE IMPROVEMENT

6. Marking of parts / traceability of change

6.1 Description	New Finished good codes
-----------------	-------------------------

7. Timing / schedule

7.1 Date of qualification results	2022-03-03
7.2 Intended start of delivery	2022-07-15
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation

8.1 Description	13298 Qual report.zip	
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date

9. Attachments (additional documentations)

13298 Public product.pdf
13298 Qual report.zip

10. Affected parts

10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
LMV358IDT	LMV358IDT	
MC1458DT	MC1458DT	
	MC1458IDT	
MC33078D	MC33078D	
MC33078DT	MC33078DT	
MC33172D	MC33172D	
MC33172DT	MC33172DT	
TL062ACDT	TL062ACDT	
	TL062BCDT	
TL062ID	TL062ID	
TL062IDT	TL062IDT	
TL431ACDT	TL431ACDT	
TL431AIDT	TL431AIDT	
TL431CDT	TL431CDT	
TL431IDT	TL431IDT	
TS1852IDT	TS1852IDT	
TS1872AIDT	TS1872AIDT	
TS1872IDT	TS1872IDT	
TS462CDT	TS462CDT	
TS482IDT	TS482IDT	
TS512AIDT	TS512AIDT	
TS512IDT	TS512IDT	
TS522IDT	TS522IDT	
TS862IDT	TS862IDT	
TS932IDT	TS932IDT	
TS942AIDT	TS942AIDT	
TS942IDT	TS942IDT	
TS972IDT	TS972IDT	
TSH22IDT	TSH22IDT	
	TSV358AIDT	
TSV358IDT	TSV358IDT	
	TSV632AIDT	
	TSV632IDT	
	TSV912AIDT	
	TSV912IDT	
	TSV992AIDT	
	TSV992IDT	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title : Qualification of subcontractor TSHT (China) as additional assembly plant for selected products of General Purpose Analog Division in SO8 package

PCN Reference : AMS/22/13298

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

MC33172DT	TSV912AIDT	TSV992IDT
TL062IDT	TS522IDT	TSV632AIDT
TSH22IDT	TS942AIDT	MC1458IDT
MC33078D	TS512AIDT	MC1458DT
TL431AIDT	TS1872AIDT	TSV358IDT
TS512IDT	TL431ACDT	MC33172D
TSV992AIDT	TS972IDT	TS482IDT
TSV632IDT	TSV912IDT	TS462CDT
TL062ID	TS942IDT	TL062BCDT
TS932IDT	TS1872IDT	TSV358AIDT
TL431CDT	TL062ACDT	TS1852IDT
LMV358IDT	MC33078DT	TS862IDT
TL431IDT		

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

External Reliability Evaluation Report

New assembly plant TSHT with 70x70LF

General Information		Locations	
Product Line	0158, 0922, 0082, LA05, KS33	Wafer fab	Ang Mo Kio 6"
Product Description	Low power dual op-amps with low input bias current, Rail-to-rail, high output current, dual operational amplifier, LDO	Assembly plant	TSHT (TianShui Huatian Technology) China
P/N	LM358DT, TS922IDT, L78L05, LD1117	Reliability Lab	Grenoble
Product Group	AMS		
Product division	GPA&RF		
Package	SO8		
Silicon Process technology	Bipolar, HF2CMOS, HBIP40		

DOCUMENT INFORMATION

Version	Date	Pages	Comment
1.0	6-oct-2017	12	First issue
2.0	19-Apr-2018	12	Plan for large LF Pad

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS.....	3
2	GLOSSARY.....	3
3	RELIABILITY EVALUATION OVERVIEW.....	3
3.1	OBJECTIVES	3
3.2	CONCLUSION.....	4
4	DEVICE CHARACTERISTICS.....	5
4.1	DEVICE DESCRIPTION	5
5	CONSTRUCTION NOTE.....	9
6	TESTS RESULTS SUMMARY.....	10
6.1	TEST VEHICLE.....	10
6.2	TEST PLAN AND RESULTS SUMMARY	10
7	ANNEXES	12
7.1	DEVICE DETAILS.....	12
7.2	TESTS DESCRIPTION.....	16

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	Stress test qualification for automotive grade integrated circuits
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

The objective of this evaluation is to qualify the subcontractor TSHT for the assembly of selected product in SO8 package.

The line under qualification will serve several part numbers.

The qualification plan is based on the similarity and based on the JESD47 specification.

Here below are the details of the change depending on the affected product.

From ST Bouskoura to TSHT (see annex for product list)

Material	Current process	Modified process	Comment
Diffusion location	No change		
Assembly location	ST Bouskoura	TSHT	
Molding compound	Sumitomo G700KC	Hitachi CEL-9220	
Die attach	Ablestick 8601-S25	Ablestik -Ablecoat 8200T	
Lead-frame	Copper	Copper	
Wire	Copper 1 mil	Copper 1 mil Pd coated	
Plating	Sn	Sn	

From ST Shenzhen to TSHT (see annex for product list)

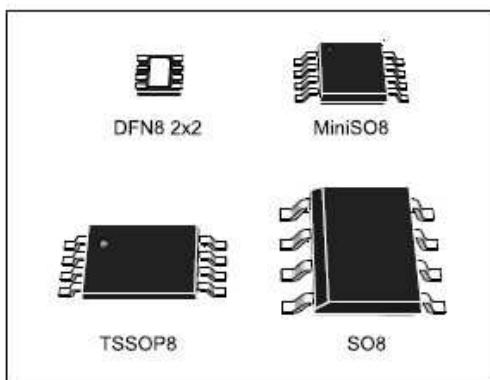
Material	Current process	Modified process	Comment
Diffusion location	No change		
Assembly location	ST Shenzhen	TSHT	
Molding compound	Sumitomo G700KC	Hitachi CEL-9220	
Die attach	Ablestick 8601-S25	Ablestik -Ablecoat 8200T	
Lead-frame	Copper	Copper	
Wire	Copper 1 mil	Copper 1 mil	
Plating	NiPdAgAu	Sn	

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

Reliability agreement for qualification.

4 DEVICE CHARACTERISTICS


4.1 Device description

LM158, LM258, LM358

Low-power dual operational amplifiers

Datasheet - production data

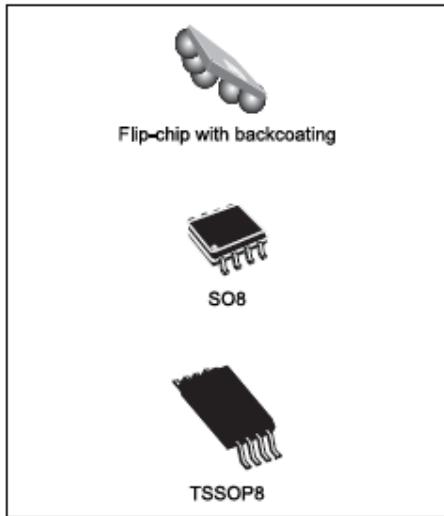
Features

- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current per channel essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset voltage: 2 mV
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rails
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to $(V_{cc}^+ - 1.5\text{ V})$

Related products

- See LM158W for enhanced ESD ratings

Description


These circuits consist of two independent, high-gain, internally frequency-compensated op amps, specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard 5 V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

Rail-to-rail, high output current, dual operational amplifier

Datasheet - production data

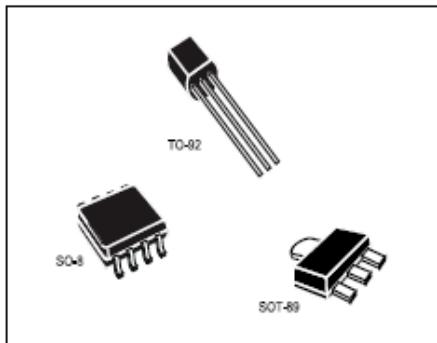
Applications

- Headphone and servo amplifiers
- Sound cards, multimedia systems
- Line drivers, actuator drivers
- Mobile phones and portable equipment
- Instrumentation with low noise as key factor
- Piezoelectric speaker drivers

Description

TS922 and TS922A devices are rail-to-rail dual BiCMOS operational amplifiers optimized and fully specified for 3 V and 5 V operation. These devices have high output currents which allow low-load impedances to be driven.

Very low noise, low distortion, low offset, and a high output current capability make these devices an excellent choice for high quality, low voltage, or battery operated audio systems.


The devices are stable for capacitive loads up to 500 pF.

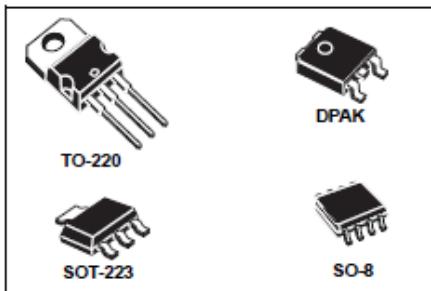
Features

- Rail-to-rail input and output
- Low noise: 9 nV/√Hz
- Low distortion
- High output current: 80 mA (able to drive 32 Ω loads)
- High-speed: 4 MHz, 1 V/μs
- Operating from 2.7 to 12 V
- Low input offset voltage: 900 μV max. (TS922A)
- ESD internal protection: 2 kV
- Latch-up immunity
- Macromodel included in this specification
- Dual version available in Flip-chip package

Positive voltage regulators

Datasheet - production data

Features


- Output current up to 100 mA
- Output voltages of 3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 V thermal overload protection
- Short-circuit protection
- No external components are required
- Available in either $\pm 4\%$ (A) or $\pm 8\%$ (C) selection

Description

The L78L series of three-terminal positive regulators employ internal current limiting and thermal shutdown, making them essentially indestructible. If adequate heat-sink is provided, they can deliver up to 100 mA output current. They are intended as fixed voltage regulators in a wide range of applications including local or on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power pass elements to make high-current voltage regulators. The L78L series used as Zener diode/resistor combination replacement, offers improvement along with lower quiescent current and lower noise.

Adjustable and fixed low drop positive voltage regulator

Datasheet - production data

flows mostly into the load. Only a very common 10 μ F minimum capacitor is needed for stability. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within $\pm 1\%$ at 25 °C. The adjustable LD1117 is pin to pin compatible with the other standard. Adjustable voltage regulators maintaining the better performances in terms of drop and tolerance.

Features

- Low dropout voltage (1 V typ.)
- 2.85 V device performances are suitable for SCSI-2 active termination
- Output current up to 800 mA
- Fixed output voltage of: 1.2 V, 1.8 V, 2.5 V, 3.3 V, 5.0 V
- Adjustable version availability ($V_{REF} = 1.25$ V)
- Internal current and thermal limit
- Available in $\pm 1\%$ (at 25 °C) and 2 % in full temperature range
- Supply voltage rejection: 75 dB (typ.)

Description

The LD1117 is a low drop voltage regulator able to provide up to 800 mA of output current, available even in adjustable version ($V_{REF} = 1.25$ V). Concerning fixed versions, are offered the following output voltages: 1.2 V, 1.8 V, 2.5 V, 2.85 V, 3.3 V and 5.0 V. The device is supplied in: SOT-223, DPAK, SO-8 and TO-220. The SOT-223 and DPAK surface mount packages optimize the thermal characteristics even offering a relevant space saving effect. High efficiency is assured by NPN pass transistor. In fact in this case, unlike than PNP one, the quiescent current

5 CONSTRUCTION NOTE

	New Plant Qualification			
	P/N LM358DT	PN/TS922IDT	P/N L78L05ABD13TR	P/N LD1117D33CTR
Wafer/Die fab. information				
Wafer fab manufacturing location	AM6F (Singapore)			
Technology	Bipolar	HF2CMOS	HBIP40	Bipolar
Process family	Bipolar	BiCMOS2	Bipolar	Bipolar
Die finishing back side	Raw Silicon	Raw Silicon	Lapped silicon	CrNiAg
Die size	1070 x 1010 μm^2	1720x1190 μm^2	766 x 706 μm^2	1990 x 1860 μm^2
Passivation type	SiN (nitride)	PVAPOX+Nitride	PVAPOX+Nitride	SiN (nitride)
Assembly information				
Assembly site	SC-Tianshui Huatian-China (TSHT)			
Package description	SO8			
Molding compound	Hitachi CEL-9220			
Frame material	Copper 70x70	Copper 90x90	Copper 94x125	Copper 94x125
Die attach process	Glue			
Die attach material	Ablestik -Ablecoat 8200T-			
Wire bonding process	Wire			
Wires bonding materials/diameters	1.0mil PdCu			
Lead finishing process	Copper			
Lead finishing/bump solder material	Sn			
Final testing information				
Testing location	SC-Tianshui Huatian-China (TSHT) 999L			

6 TESTS RESULTS SUMMARY

6.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Trace Code	Process/ Package	Product Line	Comments
1	V66053FV	9HL190060001	G9714001	SO8	0158	
2	V66053FV	9HL1900A0001	G9714005	SO8	0158	
3	V66053FV	9HL190090001	G9714004	SO8	0158	

Detailed results in below chapter will refer to P/N and Lot #.

6.2 Test plan and results summary

P/N LM358DT

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS			Note
						Lot 1	Lot 2	Lot 3	
Die Oriented Tests									
HTOL	N	JESD22 A-108	T _j = 125°C, BIAS	80	168 H	0/80	0/80	0/80	
					500 H	0/80	0/80	0/80	
					1000 H	0/80	0/80	0/80	
HTSL	N	JESD22 A-103	Ta = 150°C		168 H	0/77	0/77		
					500 H				
					1000 H	0/77	0/77		
ELFR	N	AEC Q100 - 008		400	48H	0/400	0/401	0/396	
Package Oriented Tests									
PC		JESD22 A-113	Drying 24 H @ 125°C		Final	PASS	PASS	PASS	
			Store 192 H @ Ta=30°C Rh=60%						
			Over Reflow @ Tpeak=260°C 3 times						
uHAST	Y	JESD22 A-118	T°=130°C; Pressure=2.3 atm; HR=85%		96 H	0/80	0/80		
THS	Y	JESD22 A-110	Ta = 85°C, RH = 85%,		168 H	0/80			
					1000 H	0/80			
TC	Y	JESD22 A-104	Ta = -65°C to 150°C		100 cy	0/77	0/77		
					1000 cy	0/77	0/77		
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS		168 H	0/77	0/77	0/77	
					500 H	0/77	0/77	0/77	
					1000 H	0/77	0/77	0/77	
Other Tests									
ESD	N	AEC Q101-001, 002 and 005	CDM	3	1.5kV	PASS			

Evaluation plan and preliminary results for P/N TS922IDT, L78L05ABD13TR, LD1117D33CTR

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS				Note
						Lot 1 0922	Lot 2 LA05	Lot 3 KS33		
HTB/ HTOL	N	JESD22 A-108	Ta = 150°C, BIAS		168 H	0/77	0/77	0/77		
					500 H	0/77	0/77	0/77		
					1000 H	0/77	0/77	0/77		
HTSL	N	JESD22 A-103	Ta = 150°C		168 H	0/77	0/45	0/45		
					500 H	0/77	0/45	0/45		
					1000 H	0/77	0/45	0/45		
Package Oriented Tests										
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final					
UHAST/ AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H 168H	0/77	0/77	0/77		
TC	Y	JESD22 A-104	Ta = -65°C to 150°C		100 cy	0/77	0/77	0/77		
					200 cy	0/77	0/77	0/77		
					500 cy	0/77	0/77	0/77		
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS		168 H	0/77	0/77	0/77		
					500 H	0/77	0/77	0/77		
					1000 H	0/77	0/77	0/77		

7 ANNEXES

7.1 Device details

7.1.1 Package outline/Mechanical data

PACKAGE OUTLINE ASSEMBLY

TITLE: POA SO 8L

PLANT CODE: 999L

PACKAGE CODE: 07

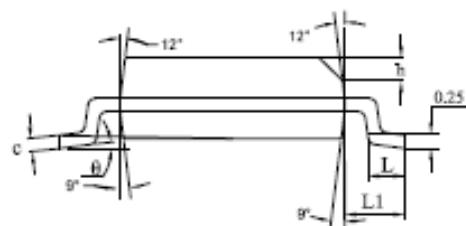
PACKAGE WEIGHT: 0.0765 g/unit typ

JEDEC REFERENCE NUMBER: JEDEC MS-012-AA

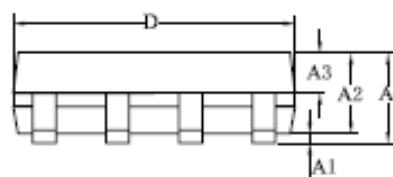
Option C

PACKAGE DIMENSIONS

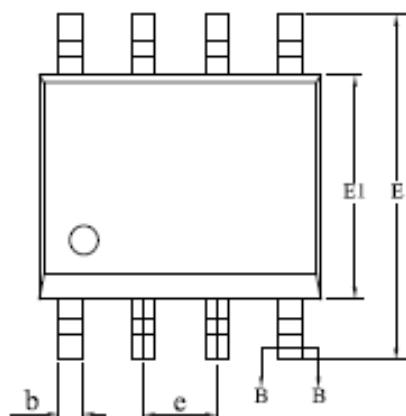
DATABOOK				
SYMBOL	MIN.	NOM.	MAX.	NOTE
A	-	-	1.75	
A1	0.10	-	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	-	0.47	
b1	0.38	0.41	0.44	
c	0.20	-	0.24	
c1	0.19	0.20	0.21	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
e	1.27BSC			
L1	1.05REF			
h	0.25	-	0.50	
L	0.50	-	0.80	
Θ	0	-	8°	


NOTES:

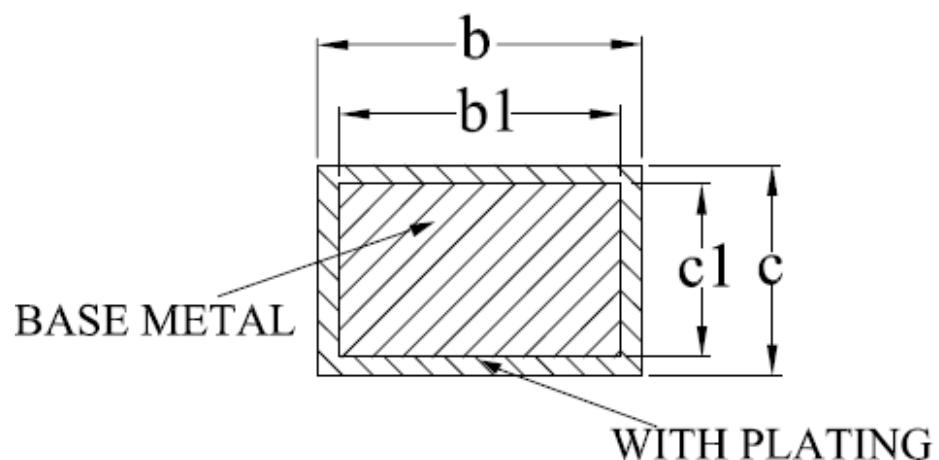
1. Controlling Dimension: MILLIMETER
2. Package outline exclusive of any mold flashes dimensions and metal burrs
3. Max resin gate protrusion : 0.20mm


PLANT CODE: 999L

SO 8L


SIDE VIEW

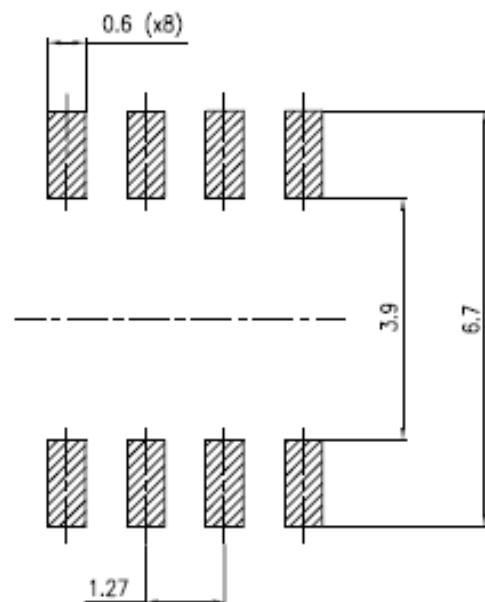
SIDE VIEW



TOP VIEW

PLANT CODE: 999L

S0 8L



SECTION B-B

	FIGURE : 2	DOC. NUMBER : 0016023
TITLE : PLASTIC SMALL OUTLINE PACKAGE 8L		

RECOMMENDED FOOTPRINT

ST [®]	NATIVE SCALE	DIM are in mm - Unspecified tolerance						
		Precision rate	0 mm 8 mm	6,01 mm 30 mm	30,01mm 120 mm	120,01mm 315 mm	over 315 mm	Angular
MATERIAL		Coarse	± 0.2	± 0.5	± 0.8	± 1.2	± 2	$\pm 1^\circ$
		Medium	± 0.1	± 0.2	± 0.3	± 0.5	± 0.8	$\pm 0^\circ 30'$
		Fine	± 0.05	± 0.1	± 0.15	± 0.2	± 0.3	$\pm 0^\circ 20'$

7.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL Higt Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTB High Temperature Bias		
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and acold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.

Annex 1: Other results

Wire pull test

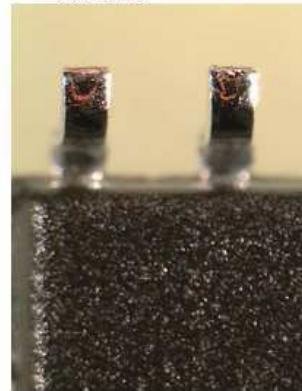
Value in gram (min limit 4g)						
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
	23.67	23.97	22.2	21.1	22.17	20.99
	24.06	23.24	23.14	20.26	19.5	24.18
	19.33	24.01	21.18	23	25.42	19.36
	19.58	22.17	20.99	21.15	24.64	22.17
	20.16	20.35	24.87	22.87	24.2	20.5
	20.48	20.69	22.96	21.55	22.5	25.97
	20.77	21.29	21.34	21.51	21.3	24.64
	21.65	21.79	20.85	23.26	23.31	24.2
Min(g)	19.33					
Max(g)	25.97					
average(g)	22.09					
cpl	3.56					

Wire shear test

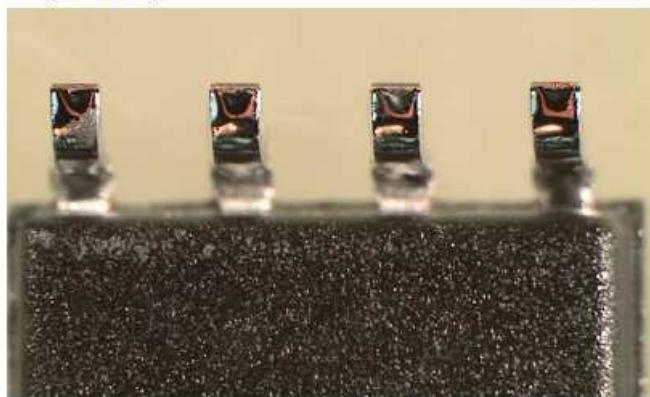
Value in gram (min limit 18g)						
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
	46.89	49.58	48.33	49.26	46.21	46.88
	48.15	46.33	46.27	47.55	48.71	49.54
	45.25	49.88	16.86	45.65	49.55	49.67
	48.22	48.37	48.17	48.14	46.35	49.18
	47.36	48.16	46.88	49.33	45.33	49.24
	48.31	48.87	47.33	48.98	49.36	48.98
	49.16	49.33	45.33	50.17	48.71	48.36
	48.24	47.24	46.24	48.98	49.36	48.78
Min (g)	16.86					
Max (g)	50.17					
Average (g)	46.67					
cpl	2.05					

Conclusion: in line with ST specification

Solderability

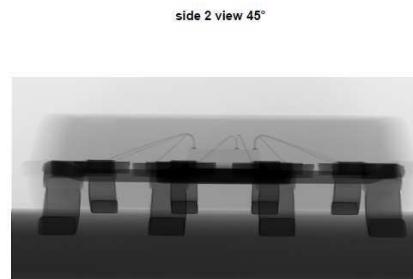
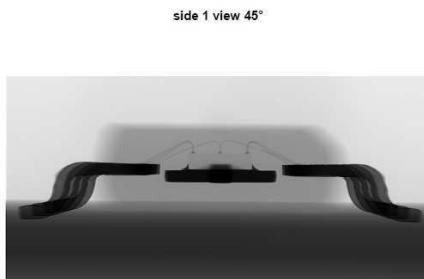
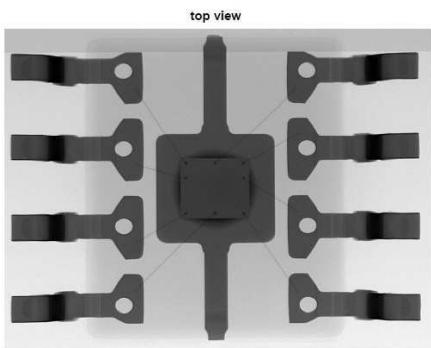

Coverage minimum 95% after dipping

PACKAGE	SOLDER BATH	SOLDER BATH TEMP.	SOLDER DIPPING TIME	AGING	SAMPLING	REJECT
Lead finishing Sn Preplated	SnPb	220°C	10s	8h steam @85°C/85HR	10	0
			10s	16hrs dry air @150°C	10	0
	SnAgCu	245°C	10s	8h steam @85°C/85HR	10	0
			10s	16hrs dry air @150°C	10	0

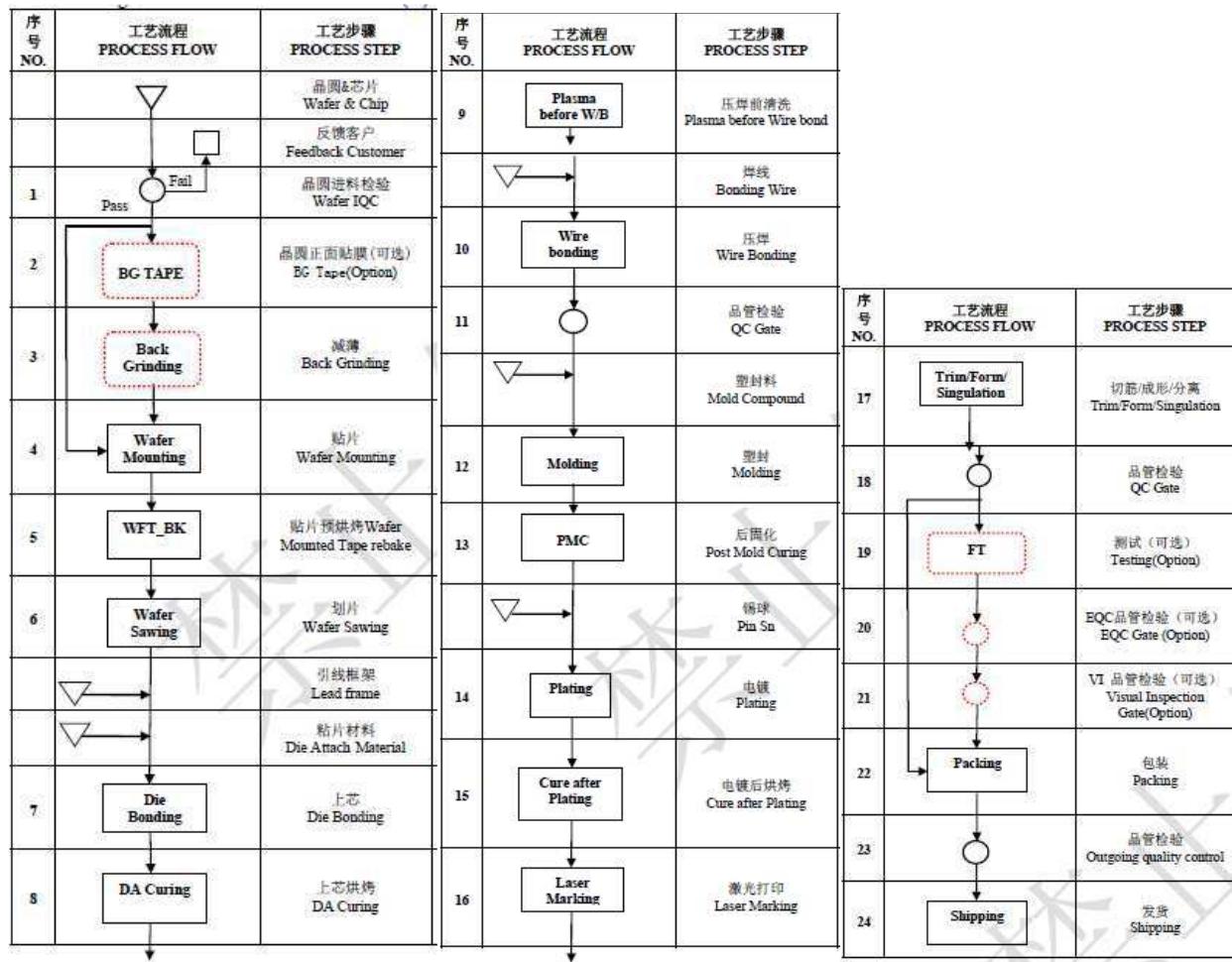

Dry air SnAgCu

Steam SnPb

Dry air SnPb




Conclusion: in line with ST specification.

Electrical distribution compare to part produce in ST Bouskoura


Units	MEAN		Mean Drift	CPK		Comments
	TSHT	BSK		TSHT	Comments	
P106_*0	mA	0.45	0.46	-0.01	50.38	OK
P101_A0	mV	0.26	0.49	-0.23	3.03	OK
P101_B0	mV	0.98	1.26	-0.27	3.07	OK
P117_A0	V	28.52	28.53	-0.01	8.11	OK
P117_B0	V	28.53	28.52	0.01	8.55	OK
P117_A0	V	0.00	0.00	0.00	10.11	OK
P117_B0	V	0.00	0.00	0.00	9.14	OK
P106_*1	mA	0.56	0.62	-0.05	30.83	OK
P101_A1	mV	0.25	0.46	-0.21	2.82	OK
P101_B1	mV	1.00	1.23	-0.23	2.38	OK
P106_*3	mA	0.47	0.50	-0.03	13.11	OK
P101_A3	mV	0.24	0.47	-0.23	2.86	OK
P101_B3	mV	0.98	1.23	-0.25	2.43	OK
P101_A2	mV	-0.03	0.23	-0.26	2.97	OK
P101_B2	mV	0.68	0.99	-0.31	2.66	OK
P105_A1	dB	128.55	129.38	-0.83	n/a .	OK
P105_B1	dB	119.44	133.49	-14.05	n/a .	OK
P109_A1	dB	100.65	102.89	-2.24	n/a .	OK
P109_B1	dB	99.57	102.83	-3.26	n/a .	OK
P104_A1	V/mV	302.14	253.98	48.15	n/a .	OK
P104_B1	V/mV	318.47	259.78	58.69	n/a .	OK
P115_*1	n/a	1.00	1.00	0.00	n/a .	OK
P150_*1	V	5.00	5.00	0.00	3024.28	OK
P117_A3	mV	0.00	0.00	0.00	8.43	OK
P117_B3	mV	0.00	0.00	0.00	8.29	OK
P117_A1	V	28.20	28.45	-0.24	70.80	OK
P117_B1	V	28.21	28.44	-0.23	69.45	OK
P117_A5	V	8.52	8.53	-0.01	14.79	OK
P117_B5	V	8.53	8.53	-0.01	14.46	OK
P117_A3	V	3.62	3.59	0.03	8.21	OK
P117_B3	V	3.62	3.59	0.03	8.13	OK
P101_A31	mV	0.00	0.00	0.00	3.19	OK
P101_B31	mV	0.00	0.00	0.00	3.28	OK
P102_A1	nA	-1.85	0.00	-1.85	n/a .	OK
P102_B1	nA	-3.92	0.00	-3.92	n/a .	OK
P103_A1	µA	-0.0395	-0.0311	-0.0084	n/a .	OK
P103_B1	µA	-0.0403	-0.0324	-0.0079	n/a .	OK
P103_A1	µA	-0.0377	-0.0306	-0.0071	n/a .	OK
P103_B1	µA	-0.0364	-0.0298	-0.0066	n/a .	OK
P137_A2	mA	0.0180729	0.0183346	-0.0002617	20.07	OK
P137_B2	mA	0.0182641	0.0184874	-0.0002233	18.19	OK
P137_A1	mA	-0.03	-0.03	0.00	18.23	OK
P137_B1	mA	-0.03	-0.03	0.00	20.08	OK
P137_A21	mA	0.08	0.00	0.08	13.39	OK
P137_B21	mA	0.08	0.00	0.08	10.34	OK
P121_A1	MHz	1.19	1.27	-0.08	13.47	OK
P121_B1	MHz	1.22	1.27	-0.05	13.07	OK
P113_A2	V/uS	0.84	0.82	0.02	20.08	OK
P113_B2	V/uS	0.85	0.86	-0.01	19.50	OK
P113_A2	V/uS	0.73	0.71	0.02	15.39	OK
P113_B2	V/uS	0.73	0.74	-0.01	20.00	OK

No CPK calculation done on the lib, AVD, CMR, SVR as they are not gaussian

Xray pictures

Process flow chart:

7.3 Product list

Commercial products from Shenzhen
LM2931AD50R
LM2931D-R
LM2931AD33R
LD1117D33CTR
LD1117D33TR
L78L05ABD13TR
L78L05ACD13TR
L78L05CD13TR
L78L06ACD13TR
L78L08ABD13TR
L78L08ACD13TR
L78L08CD13TR
L78L09ABD13TR
L78L09ACD13TR
L78L09CD13TR
L78L12ABD-TR
L78L12ACD13TR
L78L12CD13TR
L78L15ACD13TR
L78L15CD-TR
LM217LD13TR
LM317LD13TR
L78L18CD13TR
L78L24CD-TR
L78L33ABD-TR
L78L33ACD13TR
L78L33CD-TR
L79L05ABD13TR
L79L05ACD13TR
L79L08ACD13TR
L79L12ACD13TR
L79L15ABD13TR
L79L15ACD13TR
LE30CD-TR
LE50ABD-TR
LE50CD-TR
LE80CD-TR
LE33CD-TR
LE45CD-TR

Commercial products from Bouskoura
LF253DT
LF351D
LF351DT
LF353DT
LM833DT
MC4558CDT
MC4558IDT
TJM4558CDT
TL061CDT
TL062CD
TL062CDT
TL071CDT
TL072CD
TL072CDT
TL081CDT
TL082CD
TL082CDT
TS922ID
TS922IDT
TS952IDT